115-518: See text Proboscivirus is a genus of viruses in the order Herpesvirales , in the family Herpesviridae , in the subfamily Betaherpesvirinae . Elephants serve as natural hosts. EEHV1 is apathogenic for African elephants but causes fatal haemorrhagic disease in Asian elephants . The name " Proboscivirus " comes from the Greek word προβοσκίς or " proboscis " meaning "the elephant trunk ," for which
230-425: A virion , consists of nucleic acid surrounded by a protective coat of protein called a capsid . These are formed from protein subunits called capsomeres . Viruses can have a lipid "envelope" derived from the host cell membrane . The capsid is made from proteins encoded by the viral genome and its shape serves as the basis for morphological distinction. Virally-coded protein subunits will self-assemble to form
345-484: A 1993 Nobel to Philip Sharp and Richard Roberts . Catalytic RNA molecules ( ribozymes ) were discovered in the early 1980s, leading to a 1989 Nobel award to Thomas Cech and Sidney Altman . In 1990, it was found in Petunia that introduced genes can silence similar genes of the plant's own, now known to be a result of RNA interference . At about the same time, 22 nt long RNAs, now called microRNAs , were found to have
460-413: A T=16 icosahedral capsid, which is surrounded by [a] proteinaceous [mixture] and lipid envelope containing membrane-associated proteins". Species under the genus Proboscivirus tend to leave physical symptoms of cyanosis of the tongue, mouth/stomach ulcers, oedema of the head (or trunk for Elephants) on its host - often leading to death afterwards. Viral replication is nuclear, and is lysogenic. Entry into
575-606: A basic optical microscope. In 2013, the Pandoravirus genus was discovered in Chile and Australia, and has genomes about twice as large as Megavirus and Mimivirus. All giant viruses have dsDNA genomes and they are classified into several families: Mimiviridae , Pithoviridae, Pandoraviridae , Phycodnaviridae , and the Mollivirus genus. Some viruses that infect Archaea have complex structures unrelated to any other form of virus, with
690-418: A capsid diameter of 400 nm. Protein filaments measuring 100 nm project from the surface. The capsid appears hexagonal under an electron microscope, therefore the capsid is probably icosahedral. In 2011, researchers discovered the largest then known virus in samples of water collected from the ocean floor off the coast of Las Cruces, Chile. Provisionally named Megavirus chilensis , it can be seen with
805-581: A capsid, in general requiring the presence of the virus genome. Complex viruses code for proteins that assist in the construction of their capsid. Proteins associated with nucleic acid are known as nucleoproteins , and the association of viral capsid proteins with viral nucleic acid is called a nucleocapsid. The capsid and entire virus structure can be mechanically (physically) probed through atomic force microscopy . In general, there are five main morphological virus types: The poxviruses are large, complex viruses that have an unusual morphology. The viral genome
920-596: A cell, viruses exist in the form of independent viral particles, or virions , consisting of (i) genetic material , i.e., long molecules of DNA or RNA that encode the structure of the proteins by which the virus acts; (ii) a protein coat, the capsid , which surrounds and protects the genetic material; and in some cases (iii) an outside envelope of lipids . The shapes of these virus particles range from simple helical and icosahedral forms to more complex structures. Most virus species have virions too small to be seen with an optical microscope and are one-hundredth
1035-639: A cellular structure, which is often seen as the basic unit of life. Viruses do not have their own metabolism and require a host cell to make new products. They therefore cannot naturally reproduce outside a host cell —although some bacteria such as rickettsia and chlamydia are considered living organisms despite the same limitation. Accepted forms of life use cell division to reproduce, whereas viruses spontaneously assemble within cells. They differ from autonomous growth of crystals as they inherit genetic mutations while being subject to natural selection. Virus self-assembly within host cells has implications for
1150-425: A certain amount of time, the message degrades into its component nucleotides with the assistance of ribonucleases . Transfer RNA (tRNA) is a small RNA chain of about 80 nucleotides that transfers a specific amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation. It has sites for amino acid attachment and an anticodon region for codon recognition that binds to
1265-493: A different DNA (or RNA) molecule. This can occur when viruses infect cells simultaneously and studies of viral evolution have shown that recombination has been rampant in the species studied. Recombination is common to both RNA and DNA viruses. Coronaviruses have a single-strand positive-sense RNA genome. Replication of the genome is catalyzed by an RNA-dependent RNA polymerase . The mechanism of recombination used by coronaviruses likely involves template switching by
SECTION 10
#17328482953311380-559: A few species, or broad for viruses capable of infecting many. Viral infections in animals provoke an immune response that usually eliminates the infecting virus. Immune responses can also be produced by vaccines , which confer an artificially acquired immunity to the specific viral infection. Some viruses, including those that cause HIV/AIDS , HPV infection , and viral hepatitis , evade these immune responses and result in chronic infections. Several classes of antiviral drugs have been developed. The English word "virus" comes from
1495-549: A fluid, by Wendell Meredith Stanley , and the invention of the electron microscope in 1931 allowed their complex structures to be visualised. Scientific opinions differ on whether viruses are a form of life or organic structures that interact with living organisms. They have been described as "organisms at the edge of life", since they resemble organisms in that they possess genes , evolve by natural selection , and reproduce by creating multiple copies of themselves through self-assembly. Although they have genes, they do not have
1610-445: A genome size of only two kilobases; the largest—the pandoraviruses —have genome sizes of around two megabases which code for about 2500 proteins. Virus genes rarely have introns and often are arranged in the genome so that they overlap . In general, RNA viruses have smaller genome sizes than DNA viruses because of a higher error-rate when replicating, and have a maximum upper size limit. Beyond this, errors when replicating render
1725-506: A ladder. The virus particles of some virus families, such as those belonging to the Hepadnaviridae , contain a genome that is partially double-stranded and partially single-stranded. For most viruses with RNA genomes and some with single-stranded DNA (ssDNA) genomes, the single strands are said to be either positive-sense (called the 'plus-strand') or negative-sense (called the 'minus-strand'), depending on if they are complementary to
1840-436: A life form, because they carry genetic material, reproduce, and evolve through natural selection , although they lack some key characteristics, such as cell structure, that are generally considered necessary criteria for defining life. Because they possess some but not all such qualities, viruses have been described as "organisms at the edge of life" and as replicators . Viruses spread in many ways. One transmission pathway
1955-472: A limited range of hosts and many are species-specific. Some, such as smallpox virus for example, can infect only one species—in this case humans, and are said to have a narrow host range . Other viruses, such as rabies virus, can infect different species of mammals and are said to have a broad range. The viruses that infect plants are harmless to animals, and most viruses that infect other animals are harmless to humans. The host range of some bacteriophages
2070-682: A negative charge each, making RNA a charged molecule (polyanion). The bases form hydrogen bonds between cytosine and guanine, between adenine and uracil and between guanine and uracil. However, other interactions are possible, such as a group of adenine bases binding to each other in a bulge, or the GNRA tetraloop that has a guanine–adenine base-pair. The chemical structure of RNA is very similar to that of DNA , but differs in three primary ways: Like DNA, most biologically active RNAs, including mRNA , tRNA , rRNA , snRNAs , and other non-coding RNAs , contain self-complementary sequences that allow parts of
2185-644: A nucleoprotein called a ribosome. The ribosome binds mRNA and carries out protein synthesis. Several ribosomes may be attached to a single mRNA at any time. Nearly all the RNA found in a typical eukaryotic cell is rRNA. Transfer-messenger RNA (tmRNA) is found in many bacteria and plastids . It tags proteins encoded by mRNAs that lack stop codons for degradation and prevents the ribosome from stalling. The earliest known regulators of gene expression were proteins known as repressors and activators – regulators with specific short binding sites within enhancer regions near
2300-547: A nucleus, also contain nucleic acids. The role of RNA in protein synthesis was suspected already in 1939. Severo Ochoa won the 1959 Nobel Prize in Medicine (shared with Arthur Kornberg ) after he discovered an enzyme that can synthesize RNA in the laboratory. However, the enzyme discovered by Ochoa ( polynucleotide phosphorylase ) was later shown to be responsible for RNA degradation, not RNA synthesis. In 1956 Alex Rich and David Davies hybridized two separate strands of RNA to form
2415-544: A number of RNA-dependent RNA polymerases that use RNA as their template for synthesis of a new strand of RNA. For instance, a number of RNA viruses (such as poliovirus) use this type of enzyme to replicate their genetic material. Also, RNA-dependent RNA polymerase is part of the RNA interference pathway in many organisms. Many RNAs are involved in modifying other RNAs. Introns are spliced out of pre-mRNA by spliceosomes , which contain several small nuclear RNAs (snRNA), or
SECTION 20
#17328482953312530-457: A pathogen and determine which molecular parts to extract, inactivate, and use in a vaccine. Small molecules with conventional therapeutic properties can target RNA and DNA structures, thereby treating novel diseases. However, research is scarce on small molecules targeting RNA and approved drugs for human illness. Ribavirin, branaplam, and ataluren are currently available medications that stabilize double-stranded RNA structures and control splicing in
2645-408: A prime target for natural selection. Segmented genomes confer evolutionary advantages; different strains of a virus with a segmented genome can shuffle and combine genes and produce progeny viruses (or offspring) that have unique characteristics. This is called reassortment or 'viral sex'. Genetic recombination is a process by which a strand of DNA (or RNA) is broken and then joined to the end of
2760-468: A role in the development of C. elegans . Studies on RNA interference earned a Nobel Prize for Andrew Fire and Craig Mello in 2006, and another Nobel for studies on the transcription of RNA to Roger Kornberg in the same year. The discovery of gene regulatory RNAs has led to attempts to develop drugs made of RNA, such as siRNA , to silence genes. Adding to the Nobel prizes for research on RNA, in 2009 it
2875-417: A role in the activation of the innate immune system against viral infections. In the late 1970s, it was shown that there is a single stranded covalently closed, i.e. circular form of RNA expressed throughout the animal and plant kingdom (see circRNA ). circRNAs are thought to arise via a "back-splice" reaction where the spliceosome joins a upstream 3' acceptor to a downstream 5' donor splice site. So far
2990-412: A single viral particle that is released from the cell and is capable of infecting other cells of the same type. Viruses are found wherever there is life and have probably existed since living cells first evolved . The origin of viruses is unclear because they do not form fossils, so molecular techniques are used to infer how they arose. In addition, viral genetic material occasionally integrates into
3105-456: A small part of the total diversity of viruses has been studied. As of 2022, 6 realms, 10 kingdoms, 17 phyla, 2 subphyla, 40 classes, 72 orders, 8 suborders, 264 families, 182 subfamilies , 2,818 genera, 84 subgenera , and 11,273 species of viruses have been defined by the ICTV. The general taxonomic structure of taxon ranges and the suffixes used in taxonomic names are shown hereafter. As of 2022,
3220-455: A specific sequence on the messenger RNA chain through hydrogen bonding. Ribosomal RNA (rRNA) is the catalytic component of the ribosomes. The rRNA is the component of the ribosome that hosts translation. Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5.8S, 28S and 5S rRNA. Three of the rRNA molecules are synthesized in the nucleolus , and one is synthesized elsewhere. In the cytoplasm, ribosomal RNA and protein combine to form
3335-431: A specific spatial tertiary structure . The scaffold for this structure is provided by secondary structural elements that are hydrogen bonds within the molecule. This leads to several recognizable "domains" of secondary structure like hairpin loops , bulges, and internal loops . In order to create, i.e., design, RNA for any given secondary structure, two or three bases would not be enough, but four bases are enough. This
3450-809: A variety of disorders. Protein-coding mRNAs have emerged as new therapeutic candidates, with RNA replacement being particularly beneficial for brief but torrential protein expression. In vitro transcribed mRNAs (IVT-mRNA) have been used to deliver proteins for bone regeneration, pluripotency, and heart function in animal models. SiRNAs, short RNA molecules, play a crucial role in innate defense against viruses and chromatin structure. They can be artificially introduced to silence specific genes, making them valuable for gene function studies, therapeutic target validation, and drug development. mRNA vaccines have emerged as an important new class of vaccines, using mRNA to manufacture proteins which provoke an immune response. Their first successful large-scale application came in
3565-605: A wide diversity of sizes and shapes, called ' morphologies '. In general, viruses are much smaller than bacteria and more than a thousand bacteriophage viruses would fit inside an Escherichia coli bacterium's cell. Many viruses that have been studied are spherical and have a diameter between 20 and 300 nanometres . Some filoviruses , which are filaments, have a total length of up to 1400 nm; their diameters are only about 80 nm. Most viruses cannot be seen with an optical microscope , so scanning and transmission electron microscopes are used to visualise them. To increase
Proboscivirus - Misplaced Pages Continue
3680-553: A wide variety of unusual shapes, ranging from spindle-shaped structures to viruses that resemble hooked rods, teardrops or even bottles. Other archaeal viruses resemble the tailed bacteriophages, and can have multiple tail structures. An enormous variety of genomic structures can be seen among viral species ; as a group, they contain more structural genomic diversity than plants, animals, archaea, or bacteria. There are millions of different types of viruses, although fewer than 7,000 types have been described in detail. As of January 2021,
3795-402: Is protein synthesis , a universal function in which RNA molecules direct the synthesis of proteins on ribosomes . This process uses transfer RNA ( tRNA ) molecules to deliver amino acids to the ribosome , where ribosomal RNA ( rRNA ) then links amino acids together to form coded proteins. It has become widely accepted in science that early in the history of life on Earth , prior to
3910-423: Is a ribozyme . Each nucleotide in RNA contains a ribose sugar, with carbons numbered 1' through 5'. A base is attached to the 1' position, in general, adenine (A), cytosine (C), guanine (G), or uracil (U). Adenine and guanine are purines , and cytosine and uracil are pyrimidines . A phosphate group is attached to the 3' position of one ribose and the 5' position of the next. The phosphate groups have
4025-416: Is a feature of many bacterial and some animal viruses. Some viruses undergo a lysogenic cycle where the viral genome is incorporated by genetic recombination into a specific place in the host's chromosome. The viral genome is then known as a " provirus " or, in the case of bacteriophages a " prophage ". Whenever the host divides, the viral genome is also replicated. The viral genome is mostly silent within
4140-405: Is a major change in the genome of the virus. This can be a result of recombination or reassortment . The Influenza A virus is highly prone to reassortment; occasionally this has resulted in novel strains which have caused pandemics . RNA viruses often exist as quasispecies or swarms of viruses of the same species but with slightly different genome nucleoside sequences. Such quasispecies are
4255-437: Is a submicroscopic infectious agent that replicates only inside the living cells of an organism . Viruses infect all life forms , from animals and plants to microorganisms , including bacteria and archaea . Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. Since Dmitri Ivanovsky 's 1892 article describing a non-bacterial pathogen infecting tobacco plants and
4370-472: Is around 150-200 nm. Genomes are linear and non-segmented. Considering Proboscivirus is a herpesvirus, it is then unique in the sense that morphologically the virus is atypical to other viruses. According to University of Glasgow Immunology & Virology Professor, A.J. Davison, and his research team, the Proboscivirus morphology is a "linear, double-stranded DNA genome of 125-290 kbp contained within
4485-400: Is associated with proteins within a central disc structure known as a nucleoid . The nucleoid is surrounded by a membrane and two lateral bodies of unknown function. The virus has an outer envelope with a thick layer of protein studded over its surface. The whole virion is slightly pleomorphic , ranging from ovoid to brick-shaped. Mimivirus is one of the largest characterised viruses, with
4600-495: Is called enhancer RNAs . It is not clear at present whether they are a unique category of RNAs of various lengths or constitute a distinct subset of lncRNAs. In any case, they are transcribed from enhancers , which are known regulatory sites in the DNA near genes they regulate. They up-regulate the transcription of the gene(s) under control of the enhancer from which they are transcribed. At first, regulatory RNA
4715-439: Is caused by cessation of its normal activities because of suppression by virus-specific proteins, not all of which are components of the virus particle. The distinction between cytopathic and harmless is gradual. Some viruses, such as Epstein–Barr virus , can cause cells to proliferate without causing malignancy, while others, such as papillomaviruses , are established causes of cancer. Some viruses cause no apparent changes to
Proboscivirus - Misplaced Pages Continue
4830-516: Is controversy over whether the bornavirus , previously thought to cause neurological diseases in horses, could be responsible for psychiatric illnesses in humans. RNA Ribonucleic acid ( RNA ) is a polymeric molecule that is essential for most biological functions, either by performing the function itself ( non-coding RNA ) or by forming a template for the production of proteins ( messenger RNA ). RNA and deoxyribonucleic acid (DNA) are nucleic acids . The nucleic acids constitute one of
4945-512: Is correct. It seems unlikely that all currently known viruses have a common ancestor, and viruses have probably arisen numerous times in the past by one or more mechanisms. The first evidence of the existence of viruses came from experiments with filters that had pores small enough to retain bacteria. In 1892, Dmitri Ivanovsky used one of these filters to show that sap from a diseased tobacco plant remained infectious to healthy tobacco plants despite having been filtered. Martinus Beijerinck called
5060-498: Is first recorded in 1728, long before the discovery of viruses by Dmitri Ivanovsky in 1892. The English plural is viruses (sometimes also vira ), whereas the Latin word is a mass noun , which has no classically attested plural ( vīra is used in Neo-Latin ). The adjective viral dates to 1948. The term virion (plural virions ), which dates from 1959, is also used to refer to
5175-607: Is identical in sequence to the viral mRNA and is thus a coding strand, while negative-sense viral ssDNA is complementary to the viral mRNA and is thus a template strand. Several types of ssDNA and ssRNA viruses have genomes that are ambisense in that transcription can occur off both strands in a double-stranded replicative intermediate. Examples include geminiviruses , which are ssDNA plant viruses and arenaviruses , which are ssRNA viruses of animals. Genome size varies greatly between species. The smallest—the ssDNA circoviruses, family Circoviridae —code for only two proteins and have
5290-419: Is likely why nature has "chosen" a four base alphabet: fewer than four would not allow the creation of all structures, while more than four bases are not necessary to do so. Since RNA is charged, metal ions such as Mg are needed to stabilise many secondary and tertiary structures . The naturally occurring enantiomer of RNA is D -RNA composed of D -ribonucleotides. All chirality centers are located in
5405-431: Is limited to a single strain of bacteria and they can be used to trace the source of outbreaks of infections by a method called phage typing . The complete set of viruses in an organism or habitat is called the virome ; for example, all human viruses constitute the human virome . A novel virus is one that has not previously been recorded. It can be a virus that is isolated from its natural reservoir or isolated as
5520-413: Is processed to mature mRNA. This removes its introns —non-coding sections of the pre-mRNA. The mRNA is then exported from the nucleus to the cytoplasm , where it is bound to ribosomes and translated into its corresponding protein form with the help of tRNA . In prokaryotic cells, which do not have nucleus and cytoplasm compartments, mRNA can bind to ribosomes while it is being transcribed from DNA. After
5635-475: Is through disease-bearing organisms known as vectors : for example, viruses are often transmitted from plant to plant by insects that feed on plant sap , such as aphids ; and viruses in animals can be carried by blood-sucking insects. Many viruses spread in the air by coughing and sneezing, including influenza viruses , SARS-CoV-2 , chickenpox , smallpox , and measles . Norovirus and rotavirus , common causes of viral gastroenteritis , are transmitted by
5750-550: Is used as template for building the ends of eukaryotic chromosomes . Double-stranded RNA (dsRNA) is RNA with two complementary strands, similar to the DNA found in all cells, but with the replacement of thymine by uracil and the adding of one oxygen atom. dsRNA forms the genetic material of some viruses ( double-stranded RNA viruses ). Double-stranded RNA, such as viral RNA or siRNA , can trigger RNA interference in eukaryotes , as well as interferon response in vertebrates . In eukaryotes, double-stranded RNA (dsRNA) plays
5865-547: The D -ribose. By the use of L -ribose or rather L -ribonucleotides, L -RNA can be synthesized. L -RNA is much more stable against degradation by RNase . Like other structured biopolymers such as proteins, one can define topology of a folded RNA molecule. This is often done based on arrangement of intra-chain contacts within a folded RNA, termed as circuit topology . RNA is transcribed with only four bases (adenine, cytosine, guanine and uracil), but these bases and attached sugars can be modified in numerous ways as
SECTION 50
#17328482953315980-474: The CD4 molecule—a chemokine receptor —which is most commonly found on the surface of CD4+ T-Cells . This mechanism has evolved to favour those viruses that infect only cells in which they are capable of replication. Attachment to the receptor can induce the viral envelope protein to undergo changes that result in the fusion of viral and cellular membranes, or changes of non-enveloped virus surface proteins that allow
6095-540: The International Committee on Taxonomy of Viruses (ICTV) was formed. The system proposed by Lwoff, Horne and Tournier was initially not accepted by the ICTV because the small genome size of viruses and their high rate of mutation made it difficult to determine their ancestry beyond order. As such, the Baltimore classification system has come to be used to supplement the more traditional hierarchy. Starting in 2018,
6210-675: The Latin vīrus , which refers to poison and other noxious liquids. Vīrus comes from the same Indo-European root as Sanskrit viṣa , Avestan vīša , and Ancient Greek ἰός ( iós ), which all mean "poison". The first attested use of "virus" in English appeared in 1398 in John Trevisa 's translation of Bartholomeus Anglicus 's De Proprietatibus Rerum . Virulent , from Latin virulentus ('poisonous'), dates to c. 1400 . A meaning of 'agent that causes infectious disease'
6325-484: The NCBI Virus genome database has more than 193,000 complete genome sequences, but there are doubtlessly many more to be discovered. A virus has either a DNA or an RNA genome and is called a DNA virus or an RNA virus , respectively. Most viruses have RNA genomes. Plant viruses tend to have single-stranded RNA genomes and bacteriophages tend to have double-stranded DNA genomes. Viral genomes are circular, as in
6440-493: The RNA World theory. There are indications that the enterobacterial sRNAs are involved in various cellular processes and seem to have significant role in stress responses such as membrane stress, starvation stress, phosphosugar stress and DNA damage. Also, it has been suggested that sRNAs have been evolved to have important role in stress responses because of their kinetic properties that allow for rapid response and stabilisation of
6555-453: The amino acid sequence in the protein that is produced. However, many RNAs do not code for protein (about 97% of the transcriptional output is non-protein-coding in eukaryotes ). These so-called non-coding RNAs ("ncRNA") can be encoded by their own genes (RNA genes), but can also derive from mRNA introns . The most prominent examples of non-coding RNAs are transfer RNA (tRNA) and ribosomal RNA (rRNA), both of which are involved in
6670-539: The common cold , influenza , chickenpox , and cold sores . Many serious diseases such as rabies , Ebola virus disease , AIDS (HIV) , avian influenza , and SARS are caused by viruses. The relative ability of viruses to cause disease is described in terms of virulence . Other diseases are under investigation to discover if they have a virus as the causative agent, such as the possible connection between human herpesvirus 6 (HHV6) and neurological diseases such as multiple sclerosis and chronic fatigue syndrome . There
6785-422: The faecal–oral route , passed by hand-to-mouth contact or in food or water. The infectious dose of norovirus required to produce infection in humans is fewer than 100 particles. HIV is one of several viruses transmitted through sexual contact and by exposure to infected blood. The variety of host cells that a virus can infect is called its host range : this is narrow for viruses specialized to infect only
6900-575: The galactic center of the Milky Way Galaxy . RNA, initially deemed unsuitable for therapeutics due to its short half-life, has been made useful through advances in stabilization. Therapeutic applications arise as RNA folds into complex conformations and binds proteins, nucleic acids, and small molecules to form catalytic centers. RNA-based vaccines are thought to be easier to produce than traditional vaccines derived from killed or altered pathogens, because it can take months or years to grow and study
7015-414: The genetic code . There are more than 100 other naturally occurring modified nucleosides. The greatest structural diversity of modifications can be found in tRNA , while pseudouridine and nucleosides with 2'-O-methylribose often present in rRNA are the most common. The specific roles of many of these modifications in RNA are not fully understood. However, it is notable that, in ribosomal RNA, many of
SECTION 60
#17328482953317130-430: The germline of the host organisms, by which they can be passed on vertically to the offspring of the host for many generations. This provides an invaluable source of information for paleovirologists to trace back ancient viruses that existed as far back as millions of years ago. There are three main hypotheses that aim to explain the origins of viruses: In the past, there were problems with all of these hypotheses:
7245-408: The polyomaviruses , or linear, as in the adenoviruses . The type of nucleic acid is irrelevant to the shape of the genome. Among RNA viruses and certain DNA viruses, the genome is often divided into separate parts, in which case it is called segmented. For RNA viruses, each segment often codes for only one protein and they are usually found together in one capsid. All segments are not required to be in
7360-447: The three domains . This discovery has led modern virologists to reconsider and re-evaluate these three classical hypotheses. The evidence for an ancestral world of RNA cells and computer analysis of viral and host DNA sequences give a better understanding of the evolutionary relationships between different viruses and may help identify the ancestors of modern viruses. To date, such analyses have not proved which of these hypotheses
7475-469: The 2006 Nobel Prize in Physiology or Medicine for discovering microRNAs (miRNAs), specific short RNA molecules that can base-pair with mRNAs. Post-transcriptional expression levels of many genes can be controlled by RNA interference , in which miRNAs , specific short RNA molecules, pair with mRNA regions and target them for degradation. This antisense -based process involves steps that first process
7590-423: The 3’ to 5’ direction, synthesizing a complementary RNA molecule with elongation occurring in the 5’ to 3’ direction. The DNA sequence also dictates where termination of RNA synthesis will occur. Primary transcript RNAs are often modified by enzymes after transcription. For example, a poly(A) tail and a 5' cap are added to eukaryotic pre-mRNA and introns are removed by the spliceosome . There are also
7705-558: The B-form most commonly observed in DNA. The A-form geometry results in a very deep and narrow major groove and a shallow and wide minor groove. A second consequence of the presence of the 2'-hydroxyl group is that in conformationally flexible regions of an RNA molecule (that is, not involved in formation of a double helix), it can chemically attack the adjacent phosphodiester bond to cleave the backbone. The functional form of single-stranded RNA molecules, just like proteins, frequently requires
7820-527: The ICTV began to acknowledge deeper evolutionary relationships between viruses that have been discovered over time and adopted a 15-rank classification system ranging from realm to species. Additionally, some species within the same genus are grouped into a genogroup . The ICTV developed the current classification system and wrote guidelines that put a greater weight on certain virus properties to maintain family uniformity. A unified taxonomy (a universal system for classifying viruses) has been established. Only
7935-768: The RNA so that it can base-pair with a region of its target mRNAs. Once the base pairing occurs, other proteins direct the mRNA to be destroyed by nucleases . Next to be linked to regulation were Xist and other long noncoding RNAs associated with X chromosome inactivation . Their roles, at first mysterious, were shown by Jeannie T. Lee and others to be the silencing of blocks of chromatin via recruitment of Polycomb complex so that messenger RNA could not be transcribed from them. Additional lncRNAs, currently defined as RNAs of more than 200 base pairs that do not appear to have coding potential, have been found associated with regulation of stem cell pluripotency and cell division . The third major group of regulatory RNAs
8050-410: The RNA to fold and pair with itself to form double helices. Analysis of these RNAs has revealed that they are highly structured. Unlike DNA, their structures do not consist of long double helices, but rather collections of short helices packed together into structures akin to proteins. In this fashion, RNAs can achieve chemical catalysis (like enzymes). For instance, determination of the structure of
8165-503: The RNAs mature. Pseudouridine (Ψ), in which the linkage between uracil and ribose is changed from a C–N bond to a C–C bond, and ribothymidine (T) are found in various places (the most notable ones being in the TΨC loop of tRNA ). Another notable modified base is hypoxanthine , a deaminated adenine base whose nucleoside is called inosine (I). Inosine plays a key role in the wobble hypothesis of
8280-484: The basis of similarities. In 1962, André Lwoff , Robert Horne , and Paul Tournier were the first to develop a means of virus classification, based on the Linnaean hierarchical system. This system based classification on phylum , class , order , family , genus , and species . Viruses were grouped according to their shared properties (not those of their hosts) and the type of nucleic acid forming their genomes. In 1966,
8395-445: The case of the 5S rRNA of the members of the genus Halococcus ( Archaea ), which have an insertion, thus increasing its size. Messenger RNA (mRNA) carries information about a protein sequence to the ribosomes , the protein synthesis factories in the cell. It is coded so that every three nucleotides (a codon ) corresponds to one amino acid. In eukaryotic cells, once precursor mRNA (pre-mRNA) has been transcribed from DNA, it
8510-402: The cell nucleus and is usually catalyzed by an enzyme— RNA polymerase —using DNA as a template, a process known as transcription . Initiation of transcription begins with the binding of the enzyme to a promoter sequence in the DNA (usually found "upstream" of a gene). The DNA double helix is unwound by the helicase activity of the enzyme. The enzyme then progresses along the template strand in
8625-410: The contrast between viruses and the background, electron-dense "stains" are used. These are solutions of salts of heavy metals, such as tungsten , that scatter the electrons from regions covered with the stain. When virions are coated with stain (positive staining), fine detail is obscured. Negative staining overcomes this problem by staining the background only. A complete virus particle, known as
8740-418: The discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail. The study of viruses is known as virology , a subspeciality of microbiology . When infected, a host cell is often forced to rapidly produce thousands of copies of the original virus. When not inside an infected cell or in the process of infecting
8855-444: The earliest forms of life (self-replicating molecules) could have relied on RNA both to carry genetic information and to catalyze biochemical reactions—an RNA world . In May 2022, scientists discovered that RNA can form spontaneously on prebiotic basalt lava glass , presumed to have been abundant on the early Earth . In March 2015, DNA and RNA nucleobases , including uracil , cytosine and thymine , were reportedly formed in
8970-414: The evolution of DNA and possibly of protein-based enzymes as well, an " RNA world " existed in which RNA served as both living organisms' storage method for genetic information —a role fulfilled today by DNA, except in the case of RNA viruses —and potentially performed catalytic functions in cells—a function performed today by protein enzymes, with the notable and important exception of the ribosome, which
9085-431: The extreme of the ssRNA virus case. Viruses undergo genetic change by several mechanisms. These include a process called antigenic drift where individual bases in the DNA or RNA mutate to other bases. Most of these point mutations are "silent"—they do not change the protein that the gene encodes—but others can confer evolutionary advantages such as resistance to antiviral drugs . Antigenic shift occurs when there
9200-446: The filtered, infectious substance a "virus" and this discovery is considered to be the beginning of virology. The subsequent discovery and partial characterization of bacteriophages by Frederick Twort and Félix d'Herelle further catalyzed the field, and by the early 20th century many viruses had been discovered. In 1926, Thomas Milton Rivers defined viruses as obligate parasites. Viruses were demonstrated to be particles, rather than
9315-456: The first crystal of RNA whose structure could be determined by X-ray crystallography. The sequence of the 77 nucleotides of a yeast tRNA was found by Robert W. Holley in 1965, winning Holley the 1968 Nobel Prize in Medicine (shared with Har Gobind Khorana and Marshall Nirenberg ). In the early 1970s, retroviruses and reverse transcriptase were discovered, showing for the first time that enzymes could copy RNA into DNA (the opposite of
9430-399: The form of single-stranded nucleoprotein complexes, through pores called plasmodesmata . Bacteria, like plants, have strong cell walls that a virus must breach to infect the cell. Given that bacterial cell walls are much thinner than plant cell walls due to their much smaller size, some viruses have evolved mechanisms that inject their genome into the bacterial cell across the cell wall, while
9545-646: The four major macromolecules essential for all known forms of life . RNA is assembled as a chain of nucleotides . Cellular organisms use messenger RNA ( mRNA ) to convey genetic information (using the nitrogenous bases of guanine , uracil , adenine , and cytosine , denoted by the letters G, U, A, and C) that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome . Some RNA molecules play an active role within cells by catalyzing biological reactions, controlling gene expression , or sensing and communicating responses to cellular signals. One of these active processes
9660-423: The function of circRNAs is largely unknown, although for few examples a microRNA sponging activity has been demonstrated. Research on RNA has led to many important biological discoveries and numerous Nobel Prizes . Nucleic acids were discovered in 1868 by Friedrich Miescher , who called the material 'nuclein' since it was found in the nucleus . It was later discovered that prokaryotic cells, which do not have
9775-551: The genes to be regulated. Later studies have shown that RNAs also regulate genes. There are several kinds of RNA-dependent processes in eukaryotes regulating the expression of genes at various points, such as RNAi repressing genes post-transcriptionally , long non-coding RNAs shutting down blocks of chromatin epigenetically , and enhancer RNAs inducing increased gene expression. Bacteria and archaea have also been shown to use regulatory RNA systems such as bacterial small RNAs and CRISPR . Fire and Mello were awarded
9890-408: The host cell is achieved by attachment of the viral glycoproteins to host receptors, which mediates endocytosis. Replication follows the dsDNA bidirectional replication model. DNA-templated transcription, with some alternative splicing mechanism is the method of transcription. The virus exits the host cell by nuclear egress, and budding. Elephants serve as the natural host. Virus A virus
10005-406: The host. At some point, the provirus or prophage may give rise to the active virus, which may lyse the host cells. Enveloped viruses (e.g., HIV) typically are released from the host cell by budding . During this process, the virus acquires its envelope, which is a modified piece of the host's plasma or other, internal membrane. The genetic material within virus particles, and the method by which
10120-517: The infected cell. Cells in which the virus is latent and inactive show few signs of infection and often function normally. This causes persistent infections and the virus is often dormant for many months or years. This is often the case with herpes viruses . Viruses are by far the most abundant biological entities on Earth and they outnumber all the others put together. They infect all types of cellular life including animals, plants, bacteria and fungi . Different types of viruses can infect only
10235-461: The introns can be ribozymes that are spliced by themselves. RNA can also be altered by having its nucleotides modified to nucleotides other than A , C , G and U . In eukaryotes, modifications of RNA nucleotides are in general directed by small nucleolar RNAs (snoRNA; 60–300 nt), found in the nucleolus and cajal bodies . snoRNAs associate with enzymes and guide them to a spot on an RNA by basepairing to that RNA. These enzymes then perform
10350-472: The laboratory under outer space conditions, using starter chemicals such as pyrimidine , an organic compound commonly found in meteorites . Pyrimidine , like polycyclic aromatic hydrocarbons (PAHs), is one of the most carbon-rich compounds found in the universe and may have been formed in red giants or in interstellar dust and gas clouds. In July 2022, astronomers reported massive amounts of prebiotic molecules , including possible RNA precursors, in
10465-416: The material is replicated, varies considerably between different types of viruses. The range of structural and biochemical effects that viruses have on the host cell is extensive. These are called ' cytopathic effects '. Most virus infections eventually result in the death of the host cell. The causes of death include cell lysis, alterations to the cell's surface membrane and apoptosis . Often cell death
10580-401: The nucleotide modification. rRNAs and tRNAs are extensively modified, but snRNAs and mRNAs can also be the target of base modification. RNA can also be methylated. Like DNA, RNA can carry genetic information. RNA viruses have genomes composed of RNA that encodes a number of proteins. The viral genome is replicated by some of those proteins, while other proteins protect the genome as
10695-461: The original virus. Their life cycle differs greatly between species, but there are six basic stages in their life cycle: Attachment is a specific binding between viral capsid proteins and specific receptors on the host cellular surface. This specificity determines the host range and type of host cell of a virus. For example, HIV infects a limited range of human leucocytes . This is because its surface protein, gp120 , specifically interacts with
10810-693: The physiological state. Bacterial small RNAs generally act via antisense pairing with mRNA to down-regulate its translation, either by affecting stability or affecting cis-binding ability. Riboswitches have also been discovered. They are cis-acting regulatory RNA sequences acting allosterically . They change shape when they bind metabolites so that they gain or lose the ability to bind chromatin to regulate expression of genes. Archaea also have systems of regulatory RNA. The CRISPR system, recently being used to edit DNA in situ , acts via regulatory RNAs in archaea and bacteria to provide protection against virus invaders. Synthesis of RNA typically occurs in
10925-416: The polymerase during genome replication. This process appears to be an adaptation for coping with genome damage. Viral populations do not grow through cell division, because they are acellular. Instead, they use the machinery and metabolism of a host cell to produce multiple copies of themselves, and they assemble in the cell. When infected, the host cell is forced to rapidly produce thousands of copies of
11040-405: The post-transcriptional modifications occur in highly functional regions, such as the peptidyl transferase center and the subunit interface, implying that they are important for normal function. Messenger RNA (mRNA) is the type of RNA that carries information from DNA to the ribosome , the sites of protein synthesis ( translation ) in the cell cytoplasm. The coding sequence of the mRNA determines
11155-928: The process of translation. There are also non-coding RNAs involved in gene regulation, RNA processing and other roles. Certain RNAs are able to catalyse chemical reactions such as cutting and ligating other RNA molecules, and the catalysis of peptide bond formation in the ribosome ; these are known as ribozymes . According to the length of RNA chain, RNA includes small RNA and long RNA. Usually, small RNAs are shorter than 200 nt in length, and long RNAs are greater than 200 nt long. Long RNAs, also called large RNAs, mainly include long non-coding RNA (lncRNA) and mRNA . Small RNAs mainly include 5.8S ribosomal RNA (rRNA), 5S rRNA , transfer RNA (tRNA), microRNA (miRNA), small interfering RNA (siRNA), small nucleolar RNA (snoRNAs), Piwi-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA) and small rDNA-derived RNA (srRNA). There are certain exceptions as in
11270-960: The ranks of subrealm, subkingdom, and subclass are unused, whereas all other ranks are in use. The Nobel Prize-winning biologist David Baltimore devised the Baltimore classification system. The ICTV classification system is used in conjunction with the Baltimore classification system in modern virus classification. The Baltimore classification of viruses is based on the mechanism of mRNA production. Viruses must generate mRNAs from their genomes to produce proteins and replicate themselves, but different mechanisms are used to achieve this in each virus family. Viral genomes may be single-stranded (ss) or double-stranded (ds), RNA or DNA, and may or may not use reverse transcriptase (RT). In addition, ssRNA viruses may be either sense (+) or antisense (−). This classification places viruses into seven groups: Examples of common human diseases caused by viruses include
11385-422: The regressive hypothesis did not explain why even the smallest of cellular parasites do not resemble viruses in any way. The escape hypothesis did not explain the complex capsids and other structures on virus particles. The virus-first hypothesis contravened the definition of viruses in that they require host cells. Viruses are now recognised as ancient and as having origins that pre-date the divergence of life into
11500-479: The result of spread to an animal or human host where the virus had not been identified before. It can be an emergent virus , one that represents a new virus, but it can also be an extant virus that has not been previously identified . The SARS-CoV-2 coronavirus that caused the COVID-19 pandemic is an example of a novel virus. Classification seeks to describe the diversity of viruses by naming and grouping them on
11615-508: The ribosome—an RNA-protein complex that catalyzes the assembly of proteins—revealed that its active site is composed entirely of RNA. An important structural component of RNA that distinguishes it from DNA is the presence of a hydroxyl group at the 2' position of the ribose sugar . The presence of this functional group causes the helix to mostly take the A-form geometry , although in single strand dinucleotide contexts, RNA can rarely also adopt
11730-451: The same virion for the virus to be infectious, as demonstrated by brome mosaic virus and several other plant viruses. A viral genome, irrespective of nucleic acid type, is almost always either single-stranded (ss) or double-stranded (ds). Single-stranded genomes consist of an unpaired nucleic acid, analogous to one-half of a ladder split down the middle. Double-stranded genomes consist of two complementary paired nucleic acids, analogous to
11845-462: The size of most bacteria. The origins of viruses in the evolutionary history of life are still unclear. Some viruses may have evolved from plasmids , which are pieces of DNA that can move between cells. Other viruses may have evolved from bacteria. In evolution, viruses are an important means of horizontal gene transfer , which increases genetic diversity in a way analogous to sexual reproduction . Viruses are considered by some biologists to be
11960-399: The structure-mediated self-assembly of the virus particles, some modification of the proteins often occurs. In viruses such as HIV, this modification (sometimes called maturation) occurs after the virus has been released from the host cell. Release – Viruses can be released from the host cell by lysis , a process that kills the cell by bursting its membrane and cell wall if present: this
12075-457: The study of the origin of life , as it lends further credence to the hypothesis that life could have started as self-assembling organic molecules . The virocell model first proposed by Patrick Forterre considers the infected cell to be the "living form" of viruses and that virus particles (virions) are analogous to spores . Although the living versus non-living debate continues, the virocell model has gained some acceptance. Viruses display
12190-423: The usual route for transmission of genetic information). For this work, David Baltimore , Renato Dulbecco and Howard Temin were awarded a Nobel Prize in 1975. In 1976, Walter Fiers and his team determined the first complete nucleotide sequence of an RNA virus genome, that of bacteriophage MS2 . In 1977, introns and RNA splicing were discovered in both mammalian viruses and in cellular genes, resulting in
12305-446: The viral messenger RNA (mRNA). Positive-sense viral RNA is in the same sense as viral mRNA and thus at least a part of it can be immediately translated by the host cell. Negative-sense viral RNA is complementary to mRNA and thus must be converted to positive-sense RNA by an RNA-dependent RNA polymerase before translation. DNA nomenclature for viruses with genomic ssDNA is similar to RNA nomenclature, in that positive-strand viral ssDNA
12420-824: The viral capsid remains outside. Uncoating is a process in which the viral capsid is removed: This may be by degradation by viral enzymes or host enzymes or by simple dissociation; the end-result is the releasing of the viral genomic nucleic acid. Replication of viruses involves primarily multiplication of the genome. Replication involves the synthesis of viral messenger RNA (mRNA) from "early" genes (with exceptions for positive-sense RNA viruses), viral protein synthesis , possible assembly of viral proteins, then viral genome replication mediated by early or regulatory protein expression. This may be followed, for complex viruses with larger genomes, by one or more further rounds of mRNA synthesis: "late" gene expression is, in general, of structural or virion proteins. Assembly – Following
12535-575: The virus accordingly uses as its means of contraction and transmission (secretions or openings of the trunk) to enter the elephant's body. Proboscivirus is located under the listings of the ICTV Updates as Section §2005.049-050V.04. With the creation of Proboscivirus as a new genus came the creation and categorization of a new species under this genus, by the name of Elephantid betaherpesvirus 1 (Acronym: EEHV1 and Scientific Name: Elephant endotheliotropic herpesvirus ) under ICTV §2005.051-050V.04. It
12650-467: The virus particle moves to a new host cell. Viroids are another group of pathogens, but they consist only of RNA, do not encode any protein and are replicated by a host plant cell's polymerase. Reverse transcribing viruses replicate their genomes by reverse transcribing DNA copies from their RNA; these DNA copies are then transcribed to new RNA. Retrotransposons also spread by copying DNA and RNA from one another, and telomerase contains an RNA that
12765-503: The virus to enter. Penetration or viral entry follows attachment: Virions enter the host cell through receptor-mediated endocytosis or membrane fusion . The infection of plant and fungal cells is different from that of animal cells. Plants have a rigid cell wall made of cellulose , and fungi one of chitin, so most viruses can get inside these cells only after trauma to the cell wall. Nearly all plant viruses (such as tobacco mosaic virus) can also move directly from cell to cell, in
12880-460: The virus useless or uncompetitive. To compensate, RNA viruses often have segmented genomes—the genome is split into smaller molecules—thus reducing the chance that an error in a single-component genome will incapacitate the entire genome. In contrast, DNA viruses generally have larger genomes because of the high fidelity of their replication enzymes. Single-strand DNA viruses are an exception to this rule, as mutation rates for these genomes can approach
12995-556: Was awarded for the elucidation of the atomic structure of the ribosome to Venki Ramakrishnan , Thomas A. Steitz , and Ada Yonath . In 2023 the Nobel Prize in Physiology or Medicine was awarded to Katalin Karikó and Drew Weissman for their discoveries concerning modified nucleosides that enabled the development of effective mRNA vaccines against COVID-19. In 1968, Carl Woese hypothesized that RNA might be catalytic and suggested that
13110-576: Was suggested by Pellett (2014) that the phylogenetic divergence of Proboscivirus from other genera in the subfamily Betaherpesvirinae warrants reassignment of the genus to a new subfamily that would be called Deltaherpesvirinae . However, the genus remains in the Betaherpesvirinae in currently accepted ICTV taxonomy. The genus consists of the following species: Viruses in Proboscivirus are enveloped, with icosahedral, spherical to pleomorphic, and round geometries, and T=16 symmetry. The diameter
13225-405: Was thought to be a eukaryotic phenomenon, a part of the explanation for why so much more transcription in higher organisms was seen than had been predicted. But as soon as researchers began to look for possible RNA regulators in bacteria, they turned up there as well, termed as small RNA (sRNA). Currently, the ubiquitous nature of systems of RNA regulation of genes has been discussed as support for
#330669