Misplaced Pages

Princeton Ocean Model

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Computer simulation is the running of a mathematical model on a computer , the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics ( computational physics ), astrophysics , climatology , chemistry , biology and manufacturing , as well as human systems in economics , psychology , social science , health care and engineering . Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions .

#508491

70-449: The Princeton Ocean Model ( POM ) is a community general numerical model for ocean circulation that can be used to simulate and predict oceanic currents, temperatures, salinities and other water properties. POM-WEB and POMusers.org The model code was originally developed at Princeton University (G. Mellor and Alan Blumberg ) in collaboration with Dynalysis of Princeton (H. James Herring, Richard C. Patchen). The model incorporates

140-507: A computer terminal (until the 1990s) to a graphical user interface (GUI) computer. Computer terminals limited programmers to a single shell running in a command-line environment . During the 1970s, full-screen source code editing became possible through a text-based user interface . Regardless of the technology available, the goal is to program in a programming language . Programming language features exist to provide building blocks to be combined to express programming ideals. Ideally,

210-462: A list of integers could be called integer_list . In object-oriented jargon, abstract datatypes are called classes . However, a class is only a definition; no memory is allocated. When memory is allocated to a class and bound to an identifier , it is called an object . Object-oriented imperative languages developed by combining the need for classes and the need for safe functional programming . A function, in an object-oriented language,

280-523: A stored-program computer loads its instructions into memory just like it loads its data into memory. As a result, the computer could be programmed quickly and perform calculations at very fast speeds. Presper Eckert and John Mauchly built the ENIAC. The two engineers introduced the stored-program concept in a three-page memo dated February 1944. Later, in September 1944, John von Neumann began working on

350-401: A color display and keyboard that was packaged in a single console. The disk operating system was programmed using IBM's Basic Assembly Language (BAL) . The medical records application was programmed using a BASIC interpreter. However, the computer was an evolutionary dead-end because it was extremely expensive. Also, it was built at a public university lab for a specific purpose. Nonetheless,

420-511: A desert-battle simulation of one force invading another involved the modeling of 66,239 tanks, trucks and other vehicles on simulated terrain around Kuwait , using multiple supercomputers in the DoD High Performance Computer Modernization Program. Other examples include a 1-billion-atom model of material deformation; a 2.64-million-atom model of the complex protein-producing organelle of all living organisms,

490-400: A different answer for each execution. Although this might seem obvious, this is a special point of attention in stochastic simulations , where random numbers should actually be semi-random numbers. An exception to reproducibility are human-in-the-loop simulations such as flight simulations and computer games . Here a human is part of the simulation and thus influences the outcome in a way that

560-605: A dozen U.S. users in the 1980s to over 1000 users in 2000 and over 4000 users by 2009; there are users from over 70 different countries. In the 1990s the usage of POM expands to simulations of the Mediterranean Sea (Zavatarelli) and the first simulations with a sigma coordinate model of the entire Atlantic Ocean for climate research (Ezer). The development of the Mellor–Ezer optimal interpolation data assimilation scheme that projects surface satellite data into deep layers allows

630-509: A major contributor. The statements were English-like and verbose. The goal was to design a language so managers could read the programs. However, the lack of structured statements hindered this goal. COBOL's development was tightly controlled, so dialects did not emerge to require ANSI standards. As a consequence, it was not changed for 15 years until 1974. The 1990s version did make consequential changes, like object-oriented programming . ALGOL (1960) stands for "ALGOrithmic Language". It had

700-470: A map that uses numeric coordinates and numeric timestamps of events. Similarly, CGI computer simulations of CAT scans can simulate how a tumor might shrink or change during an extended period of medical treatment, presenting the passage of time as a spinning view of the visible human head, as the tumor changes. Other applications of CGI computer simulations are being developed to graphically display large amounts of data, in motion, as changes occur during

770-548: A process. The interpreter then loads the source code into memory to translate and execute each statement . Running the source code is slower than running an executable . Moreover, the interpreter must be installed on the computer. The "Hello, World!" program is used to illustrate a language's basic syntax . The syntax of the language BASIC (1964) was intentionally limited to make the language easy to learn. For example, variables are not declared before being used. Also, variables are automatically initialized to zero. Here

SECTION 10

#1732852780509

840-521: A profound influence on programming language design. Emerging from a committee of European and American programming language experts, it used standard mathematical notation and had a readable, structured design. Algol was first to define its syntax using the Backus–Naur form . This led to syntax-directed compilers. It added features like: Algol's direct descendants include Pascal , Modula-2 , Ada , Delphi and Oberon on one branch. On another branch

910-466: A programming language should: The programming style of a programming language to provide these building blocks may be categorized into programming paradigms . For example, different paradigms may differentiate: Each of these programming styles has contributed to the synthesis of different programming languages . A programming language is a set of keywords , symbols , identifiers , and rules by which programmers can communicate instructions to

980-493: A simulation run. Generic examples of types of computer simulations in science, which are derived from an underlying mathematical description: Specific examples of computer simulations include: Notable, and sometimes controversial, computer simulations used in science include: Donella Meadows ' World3 used in the Limits to Growth , James Lovelock's Daisyworld and Thomas Ray's Tierra . In social sciences, computer simulation

1050-646: A simulation". Computer simulation developed hand-in-hand with the rapid growth of the computer, following its first large-scale deployment during the Manhattan Project in World War II to model the process of nuclear detonation . It was a simulation of 12 hard spheres using a Monte Carlo algorithm . Computer simulation is often used as an adjunct to, or substitute for, modeling systems for which simple closed form analytic solutions are not possible. There are many types of computer simulations; their common feature

1120-420: A state in which the system is in equilibrium. Such models are often used in simulating physical systems, as a simpler modeling case before dynamic simulation is attempted. Formerly, the output data from a computer simulation was sometimes presented in a table or a matrix showing how data were affected by numerous changes in the simulation parameters . The use of the matrix format was related to traditional use of

1190-494: A syntax that would likely fail IBM's compiler. The American National Standards Institute (ANSI) developed the first Fortran standard in 1966. In 1978, Fortran 77 became the standard until 1991. Fortran 90 supports: COBOL (1959) stands for "COmmon Business Oriented Language". Fortran manipulated symbols. It was soon realized that symbols did not need to be numbers, so strings were introduced. The US Department of Defense influenced COBOL's development, with Grace Hopper being

1260-469: A technological improvement to refine the production of field-effect transistors (1963). The goal is to alter the electrical resistivity and conductivity of a semiconductor junction . First, naturally occurring silicate minerals are converted into polysilicon rods using the Siemens process . The Czochralski process then converts the rods into a monocrystalline silicon , boule crystal . The crystal

1330-635: A turbulence scheme to handle vertical mixing. At the early 1980s the model was used primarily to simulate estuaries such as the Hudson–Raritan Estuary (by Leo Oey) and the Delaware Bay (Boris Galperin), but also first attempts to use a sigma coordinate model for basin-scale problems have started with the coarse resolution model of the Gulf of Mexico (Blumberg and Mellor) and models of the Arctic Ocean (with

1400-419: A wide variety of practical contexts, such as: The reliability and the trust people put in computer simulations depends on the validity of the simulation model , therefore verification and validation are of crucial importance in the development of computer simulations. Another important aspect of computer simulations is that of reproducibility of the results, meaning that a simulation model should not provide

1470-542: Is an example computer program, in Basic, to average a list of numbers: Once the mechanics of basic computer programming are learned, more sophisticated and powerful languages are available to build large computer systems. Improvements in software development are the result of improvements in computer hardware . At each stage in hardware's history, the task of computer programming changed dramatically. In 1837, Jacquard's loom inspired Charles Babbage to attempt to build

SECTION 20

#1732852780509

1540-439: Is an integral component of the five angles of analysis fostered by the data percolation methodology, which also includes qualitative and quantitative methods, reviews of the literature (including scholarly), and interviews with experts, and which forms an extension of data triangulation. Of course, similar to any other scientific method, replication is an important part of computational modeling Computer simulations are used in

1610-418: Is assigned to a class. An assigned function is then referred to as a method , member function , or operation . Object-oriented programming is executing operations on objects . Object-oriented languages support a syntax to model subset/superset relationships. In set theory , an element of a subset inherits all the attributes contained in the superset. For example, a student is a person. Therefore,

1680-453: Is called source code . Source code needs another computer program to execute because computers can only execute their native machine instructions . Therefore, source code may be translated to machine instructions using a compiler written for the language. ( Assembly language programs are translated using an assembler .) The resulting file is called an executable . Alternatively, source code may execute within an interpreter written for

1750-414: Is hard, if not impossible, to reproduce exactly. Vehicle manufacturers make use of computer simulation to test safety features in new designs. By building a copy of the car in a physics simulation environment, they can save the hundreds of thousands of dollars that would otherwise be required to build and test a unique prototype. Engineers can step through the simulation milliseconds at a time to determine

1820-442: Is known as the x86 series . The x86 assembly language is a family of backward-compatible machine instructions . Machine instructions created in earlier microprocessors were retained throughout microprocessor upgrades. This enabled consumers to purchase new computers without having to purchase new application software . The major categories of instructions are: VLSI circuits enabled the programming environment to advance from

1890-516: Is known to only one significant figure, then the result of the simulation might not be more precise than one significant figure, although it might (misleadingly) be presented as having four significant figures. Computer program A computer program is a sequence or set of instructions in a programming language for a computer to execute . It is one component of software , which also includes documentation and other intangible components. A computer program in its human-readable form

1960-450: Is much harder is knowing what the accuracy (compared to measurement resolution and precision ) of the values are. Often they are expressed as "error bars", a minimum and maximum deviation from the value range within which the true value (is expected to) lie. Because digital computer mathematics is not perfect, rounding and truncation errors multiply this error, so it is useful to perform an "error analysis" to confirm that values output by

2030-503: Is the attempt to generate a sample of representative scenarios for a model in which a complete enumeration of all possible states of the model would be prohibitive or impossible. The external data requirements of simulations and models vary widely. For some, the input might be just a few numbers (for example, simulation of a waveform of AC electricity on a wire), while others might require terabytes of information (such as weather and climate models). Input sources also vary widely: Lastly,

2100-427: Is then thinly sliced to form a wafer substrate . The planar process of photolithography then integrates unipolar transistors, capacitors , diodes , and resistors onto the wafer to build a matrix of metal–oxide–semiconductor (MOS) transistors. The MOS transistor is the primary component in integrated circuit chips . Originally, integrated circuit chips had their function set during manufacturing. During

2170-480: Is very important to perform a sensitivity analysis to ensure that the accuracy of the results is properly understood. For example, the probabilistic risk analysis of factors determining the success of an oilfield exploration program involves combining samples from a variety of statistical distributions using the Monte Carlo method . If, for instance, one of the key parameters (e.g., the net ratio of oil-bearing strata)

Princeton Ocean Model - Misplaced Pages Continue

2240-502: The Analytical Engine . The names of the components of the calculating device were borrowed from the textile industry. In the textile industry, yarn was brought from the store to be milled. The device had a store which consisted of memory to hold 1,000 numbers of 50 decimal digits each. Numbers from the store were transferred to the mill for processing. The engine was programmed using two sets of perforated cards. One set directed

2310-600: The Busicom calculator. Five months after its release, Intel released the Intel 8008 , an 8-bit microprocessor. Bill Pentz led a team at Sacramento State to build the first microcomputer using the Intel 8008: the Sac State 8008 (1972). Its purpose was to store patient medical records. The computer supported a disk operating system to run a Memorex , 3- megabyte , hard disk drive . It had

2380-541: The ribosome , in 2005; a complete simulation of the life cycle of Mycoplasma genitalium in 2012; and the Blue Brain project at EPFL (Switzerland), begun in May 2005 to create the first computer simulation of the entire human brain, right down to the molecular level. Because of the computational cost of simulation, computer experiments are used to perform inference such as uncertainty quantification . A model consists of

2450-455: The 1960s, controlling the electrical flow migrated to programming a matrix of read-only memory (ROM). The matrix resembled a two-dimensional array of fuses. The process to embed instructions onto the matrix was to burn out the unneeded connections. There were so many connections, firmware programmers wrote a computer program on another chip to oversee the burning. The technology became known as Programmable ROM . In 1971, Intel installed

2520-578: The ENIAC project. On June 30, 1945, von Neumann published the First Draft of a Report on the EDVAC , which equated the structures of the computer with the structures of the human brain. The design became known as the von Neumann architecture . The architecture was simultaneously deployed in the constructions of the EDVAC and EDSAC computers in 1949. The IBM System/360 (1964) was a family of computers, each having

2590-600: The ENIAC took up to two months. Three function tables were on wheels and needed to be rolled to fixed function panels. Function tables were connected to function panels by plugging heavy black cables into plugboards . Each function table had 728 rotating knobs. Programming the ENIAC also involved setting some of the 3,000 switches. Debugging a program took a week. It ran from 1947 until 1955 at Aberdeen Proving Ground , calculating hydrogen bomb parameters, predicting weather patterns, and producing firing tables to aim artillery guns. Instead of plugging in cords and turning switches,

2660-678: The Mellor–Yamada turbulence scheme developed in the early 1970s by George Mellor and Ted Yamada; this turbulence sub-model is widely used by oceanic and atmospheric models. At the time, early computer ocean models such as the Bryan–Cox model (developed in the late 1960s at the Geophysical Fluid Dynamics Laboratory , GFDL, and later became the Modular Ocean Model , MOM)), were aimed mostly at coarse-resolution simulations of

2730-678: The buildup of queues in the simulation of humans evacuating a building. Furthermore, simulation results are often aggregated into static images using various ways of scientific visualization . In debugging, simulating a program execution under test (rather than executing natively) can detect far more errors than the hardware itself can detect and, at the same time, log useful debugging information such as instruction trace, memory alterations and instruction counts. This technique can also detect buffer overflow and similar "hard to detect" errors as well as produce performance information and tuning data. Although sometimes ignored in computer simulations, it

2800-657: The commercial version of POM known as the estuarine and coastal ocean model (ECOM), the navy coastal ocean model (NCOM) and the finite-volume coastal ocean model ( FVCOM ). Recent developments in POM include a generalized coordinate system that combines sigma and z-level grids (Mellor and Ezer), inundation features that allow simulations of wetting and drying (e.g., flood of land area) (Oey), and coupling ocean currents with surface waves (Mellor). Efforts to improve turbulent mixing also continue (Galperin, Kantha, Mellor and others). POM users' meetings were held every few years, and in recent years

2870-476: The computer program onto the chip and named it the Intel 4004 microprocessor . The terms microprocessor and central processing unit (CPU) are now used interchangeably. However, CPUs predate microprocessors. For example, the IBM System/360 (1964) had a CPU made from circuit boards containing discrete components on ceramic substrates . The Intel 4004 (1971) was a 4- bit microprocessor designed to run

Princeton Ocean Model - Misplaced Pages Continue

2940-461: The computer. They follow a set of rules called a syntax . Programming languages get their basis from formal languages . The purpose of defining a solution in terms of its formal language is to generate an algorithm to solve the underlining problem. An algorithm is a sequence of simple instructions that solve a problem. The evolution of programming languages began when the EDSAC (1949) used

3010-610: The construction of the first ocean forecast systems for the Gulf Stream and the U.S. east coast running operationally at the NOAA 's National Weather Service (Frank Aikman and others). Operational forecast system for other regions such as the Great Lakes, the Gulf of Mexico (Oey), the Gulf of Maine (Huijie Xue) and the Hudson River (Blumberg) followed. For more information on applications of

3080-434: The descendants include C , C++ and Java . BASIC (1964) stands for "Beginner's All-Purpose Symbolic Instruction Code". It was developed at Dartmouth College for all of their students to learn. If a student did not go on to a more powerful language, the student would still remember Basic. A Basic interpreter was installed in the microcomputers manufactured in the late 1970s. As the microcomputer industry grew, so did

3150-415: The equations used to capture the behavior of a system. By contrast, computer simulation is the actual running of the program that perform algorithms which solve those equations, often in an approximate manner. Simulation, therefore, is the process of running a model. Thus one would not "build a simulation"; instead, one would "build a model (or a simulator)", and then either "run the model" or equivalently "run

3220-428: The exact stresses being put upon each section of the prototype. Computer graphics can be used to display the results of a computer simulation. Animations can be used to experience a simulation in real-time, e.g., in training simulations . In some cases animations may also be useful in faster than real-time or even slower than real-time modes. For example, faster than real-time animations can be useful in visualizing

3290-643: The first stored computer program in its von Neumann architecture . Programming the EDSAC was in the first generation of programming language . Imperative languages specify a sequential algorithm using declarations , expressions , and statements : FORTRAN (1958) was unveiled as "The IBM Mathematical FORmula TRANslating system". It was designed for scientific calculations, without string handling facilities. Along with declarations , expressions , and statements , it supported: It succeeded because: However, non-IBM vendors also wrote Fortran compilers, but with

3360-539: The halt state. All present-day computers are Turing complete . The Electronic Numerical Integrator And Computer (ENIAC) was built between July 1943 and Fall 1945. It was a Turing complete , general-purpose computer that used 17,468 vacuum tubes to create the circuits . At its core, it was a series of Pascalines wired together. Its 40 units weighed 30 tons, occupied 1,800 square feet (167 m ), and consumed $ 650 per hour ( in 1940s currency ) in electricity when idle. It had 20 base-10 accumulators . Programming

3430-410: The inclusion of ice-ocean coupling by Lakshmi Kantha and Sirpa Hakkinen). In the early 1990s when the web and browsers started to be developed, POM became one of the first ocean model codes that were provided free of charge to users through the web. The establishment of the POM users group and its web support (by Tal Ezer) resulted in a continuous increase in the number of POM users which grew from about

3500-475: The language BCPL was replaced with B , and AT&T Bell Labs called the next version "C". Its purpose was to write the UNIX operating system . C is a relatively small language, making it easy to write compilers. Its growth mirrored the hardware growth in the 1980s. Its growth also was because it has the facilities of assembly language , but uses a high-level syntax . It added advanced features like: C allows

3570-400: The language. Basic pioneered the interactive session . It offered operating system commands within its environment: However, the Basic syntax was too simple for large programs. Recent dialects added structure and object-oriented extensions. Microsoft's Visual Basic is still widely used and produces a graphical user interface . C programming language (1973) got its name because

SECTION 50

#1732852780509

3640-410: The language. If the executable is requested for execution, then the operating system loads it into memory and starts a process . The central processing unit will soon switch to this process so it can fetch, decode, and then execute each machine instruction. If the source code is requested for execution, then the operating system loads the corresponding interpreter into memory and starts

3710-406: The large-scale ocean circulation, so there was a need for a numerical model that can handle high-resolution coastal ocean processes. The Blumberg–Mellor model (which later became POM) thus included new features such as free surface to handle tides, sigma vertical coordinates (i.e., terrain-following) to handle complex topographies and shallow regions, a curvilinear grid to better handle coastlines, and

3780-452: The matrix concept in mathematical models . However, psychologists and others noted that humans could quickly perceive trends by looking at graphs or even moving-images or motion-pictures generated from the data, as displayed by computer-generated-imagery (CGI) animation. Although observers could not necessarily read out numbers or quote math formulas, from observing a moving weather chart they might be able to predict events (and "see that rain

3850-943: The meetings were extended to include other models and renamed the International Workshop on Modeling the Ocean (IWMO). Meeting Pages: List of meetings: Reviewed papers from the IWMO meetings are published by Ocean Dynamics in special issues (IWMO-2009 Part-I, IWMO-2009 Part-II, IWMO-2010, IWMO-2011, IWMO-2012, IWMO-2013, IWMO-2014). Numerical model Computer simulations are realized by running computer programs that can be either small, running almost instantly on small devices, or large-scale programs that run for hours or days on network-based groups of computers. The scale of events being simulated by computer simulations has far exceeded anything possible (or perhaps even imaginable) using traditional paper-and-pencil mathematical modeling. In 1997,

3920-402: The model, see the searchable database of over 1800 POM-related publications. In the late 1990s and the 2000s many other terrain-following community ocean models have been developed; some of their features can be traced back to features included in the original POM, other features are additional numerical and parameterization improvements. Several ocean models are direct descendants of POM such as

3990-478: The operation and the other set inputted the variables. However, the thousands of cogged wheels and gears never fully worked together. Ada Lovelace worked for Charles Babbage to create a description of the Analytical Engine (1843). The description contained Note G which completely detailed a method for calculating Bernoulli numbers using the Analytical Engine. This note is recognized by some historians as

4060-443: The programmer to control which region of memory data is to be stored. Global variables and static variables require the fewest clock cycles to store. The stack is automatically used for the standard variable declarations . Heap memory is returned to a pointer variable from the malloc() function. In the 1970s, software engineers needed language support to break large projects down into modules . One obvious feature

4130-501: The project contributed to the development of the Intel 8080 (1974) instruction set . In 1978, the modern software development environment began when Intel upgraded the Intel 8080 to the Intel 8086 . Intel simplified the Intel 8086 to manufacture the cheaper Intel 8088 . IBM embraced the Intel 8088 when they entered the personal computer market (1981). As consumer demand for personal computers increased, so did Intel's microprocessor development. The succession of development

4200-446: The same instruction set architecture . The Model 20 was the smallest and least expensive. Customers could upgrade and retain the same application software . The Model 195 was the most premium. Each System/360 model featured multiprogramming —having multiple processes in memory at once. When one process was waiting for input/output , another could compute. IBM planned for each model to be programmed using PL/1 . A committee

4270-438: The set of students is a subset of the set of persons. As a result, students inherit all the attributes common to all persons. Additionally, students have unique attributes that other people do not have. Object-oriented languages model subset/superset relationships using inheritance . Object-oriented programming became the dominant language paradigm by the late 1990s. C++ (1985) was originally called "C with Classes". It

SECTION 60

#1732852780509

4340-436: The simulation will still be usefully accurate. Models used for computer simulations can be classified according to several independent pairs of attributes, including: Another way of categorizing models is to look at the underlying data structures. For time-stepped simulations, there are two main classes: For steady-state simulations, equations define the relationships between elements of the modeled system and attempt to find

4410-446: The time at which data is available varies: Because of this variety, and because diverse simulation systems have many common elements, there are a large number of specialized simulation languages . The best-known may be Simula . There are now many others. Systems that accept data from external sources must be very careful in knowing what they are receiving. While it is easy for computers to read in values from text or binary files, what

4480-499: The world's first computer program . In 1936, Alan Turing introduced the Universal Turing machine , a theoretical device that can model every computation. It is a finite-state machine that has an infinitely long read/write tape. The machine can move the tape back and forth, changing its contents as it performs an algorithm . The machine starts in the initial state, goes through a sequence of steps, and halts when it encounters

4550-474: Was designed to expand C's capabilities by adding the object-oriented facilities of the language Simula . An object-oriented module is composed of two files. The definitions file is called the header file . Here is a C++ header file for the GRADE class in a simple school application: A constructor operation is a function with the same name as the class name. It is executed when the calling operation executes

4620-437: Was formed that included COBOL , Fortran and ALGOL programmers. The purpose was to develop a language that was comprehensive, easy to use, extendible, and would replace Cobol and Fortran. The result was a large and complex language that took a long time to compile . Computers manufactured until the 1970s had front-panel switches for manual programming. The computer program was written on paper for reference. An instruction

4690-402: Was headed their way") much faster than by scanning tables of rain-cloud coordinates . Such intense graphical displays, which transcended the world of numbers and formulae, sometimes also led to output that lacked a coordinate grid or omitted timestamps, as if straying too far from numeric data displays. Today, weather forecasting models tend to balance the view of moving rain/snow clouds against

4760-408: Was represented by a configuration of on/off settings. After setting the configuration, an execute button was pressed. This process was then repeated. Computer programs also were automatically inputted via paper tape , punched cards or magnetic-tape . After the medium was loaded, the starting address was set via switches, and the execute button was pressed. A major milestone in software development

4830-531: Was the invention of the Very Large Scale Integration (VLSI) circuit (1964). Following World War II , tube-based technology was replaced with point-contact transistors (1947) and bipolar junction transistors (late 1950s) mounted on a circuit board . During the 1960s , the aerospace industry replaced the circuit board with an integrated circuit chip . Robert Noyce , co-founder of Fairchild Semiconductor (1957) and Intel (1968), achieved

4900-405: Was to decompose large projects physically into separate files . A less obvious feature was to decompose large projects logically into abstract data types . At the time, languages supported concrete (scalar) datatypes like integer numbers, floating-point numbers, and strings of characters . Abstract datatypes are structures of concrete datatypes, with a new name assigned. For example,

#508491