Misplaced Pages

Prince Albert Radar Laboratory

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Prince Albert Radar Laboratory (PARL) was a radar research facility operated by the Defence Research Telecommunications Establishment (DRTE), part of the Canadian Defence Research Board . Its primary purpose was to test long-range radio propagation and radar techniques in the presence of the aurora borealis . This was part of a greater ABM effort being carried out in concert with the United States Air Force , and PARL operated along with two similar instruments at the Rome Air Development Centre and MIT Lincoln Laboratory . The site continues to operate today, used as a satellite downlink station known as the Prince Albert Satellite Station (PASS).

#789210

98-476: The original study that led to PARL came about as the side effect of questions about the effects of the aurora on radar systems. There was some concern that the aurora could shield incoming reentry vehicles from observation until they were too low to be effectively attacked by the long range interceptor missiles then being designed ( Nike Zeus ). The United States Air Force sent a request to Peter Forsyth for further information. Forsyth had done extensive research on

196-545: A 19-species model. An important aspect of modelling non-equilibrium real gas effects is radiative heat flux. If a vehicle is entering an atmosphere at very high speed (hyperbolic trajectory, lunar return) and has a large nose radius then radiative heat flux can dominate TPS heating. Radiative heat flux during entry into an air or carbon dioxide atmosphere typically comes from asymmetric diatomic molecules; e.g., cyanogen (CN), carbon monoxide , nitric oxide (NO), single ionized molecular nitrogen etc. These molecules are formed by

294-471: A Gibbs free energy equilibrium program, the iterative process from the originally specified molecular composition to the final calculated equilibrium composition is essentially random and not time accurate. With a non-equilibrium program, the computation process is time accurate and follows a solution path dictated by chemical and reaction rate formulas. The five species model has 17 chemical formulas (34 when counting reverse formulas). The Lighthill-Freeman model

392-492: A challenge. The experimental measurement of radiative heat flux (typically done with shock tubes) along with theoretical calculation through the unsteady Schrödinger equation are among the more esoteric aspects of aerospace engineering. Most of the aerospace research work related to understanding radiative heat flux was done in the 1960s, but largely discontinued after conclusion of the Apollo Program. Radiative heat flux in air

490-459: A complete sphere or a spherical section forebody with a converging conical afterbody. The aerodynamics of a sphere or spherical section are easy to model analytically using Newtonian impact theory. Likewise, the spherical section's heat flux can be accurately modeled with the Fay–Riddell equation . The static stability of a spherical section is assured if the vehicle's center of mass is upstream from

588-435: A converging conical afterbody. It flew a lifting entry with a hypersonic trim angle of attack of −27° (0° is blunt-end first) to yield an average L/D (lift-to-drag ratio) of 0.368. The resultant lift achieved a measure of cross-range control by offsetting the vehicle's center of mass from its axis of symmetry, allowing the lift force to be directed left or right by rolling the capsule on its longitudinal axis . Other examples of

686-779: A country other than the Soviet Union or the United States . Canada was the fourth country to operate a satellite, as the British Ariel 1 , constructed in the United States by NASA , preceded Alouette 1 by five months. The name "Alouette" came from the French for " skylark " and the French-Canadian folk song of the same name . A key device on Alouette were the radio antennas consisting of thin strips of beryllium copper bent into

784-446: A frequency of 448 MHz with a peak design power of 2.5 MW and maximum average power of 100 kW. The output was fed via waveguide to an 84 foot parabolic reflector mounted on an altazimuth mount . It was equipped with a conical scanning feed, providing higher resolution and making automatic tracking easier. Limited operations started in 1959. The official opening was on June 6, 1959, by John Diefenbaker. For this event,

882-451: A gas in equilibrium with fixed pressure and temperature can be determined through the Gibbs free energy method . Gibbs free energy is simply the total enthalpy of the gas minus its total entropy times temperature. A chemical equilibrium program normally does not require chemical formulas or reaction-rate equations. The program works by preserving the original elemental abundances specified for

980-566: A gas that are important to aeronautical engineers who design heat shields: Almost all aeronautical engineers are taught the perfect (ideal) gas model during their undergraduate education. Most of the important perfect gas equations along with their corresponding tables and graphs are shown in NACA Report 1135. Excerpts from NACA Report 1135 often appear in the appendices of thermodynamics textbooks and are familiar to most aeronautical engineers who design supersonic aircraft. The perfect gas theory

1078-563: A heat shield designer must use a real gas model . An entry vehicle's pitching moment can be significantly influenced by real-gas effects. Both the Apollo command module and the Space Shuttle were designed using incorrect pitching moments determined through inaccurate real-gas modelling. The Apollo-CM's trim-angle angle of attack was higher than originally estimated, resulting in a narrower lunar return entry corridor. The actual aerodynamic center of

SECTION 10

#1733106011790

1176-633: A mock-up of the ablative material to be analyzed within a hypersonic wind tunnel. Testing of ablative materials occurs at the Ames Arc Jet Complex. Many spacecraft thermal protection systems have been tested in this facility, including the Apollo, space shuttle, and Orion heat shield materials. Carbon phenolic was originally developed as a rocket nozzle throat material (used in the Space Shuttle Solid Rocket Booster ) and for reentry-vehicle nose tips. The thermal conductivity of

1274-454: A nose radius of 1 meter, i.e., time of travel is about 18 microseconds. This is roughly the time required for shock-wave-initiated chemical dissociation to approach chemical equilibrium in a shock layer for a 7.8 km/s entry into air during peak heat flux. Consequently, as air approaches the entry vehicle's stagnation point, the air effectively reaches chemical equilibrium thus enabling an equilibrium model to be usable. For this case, most of

1372-402: A nose radius of 2.34 cm, a forward-frustum half-angle of 10.4°, an inter-frustum radius of 14.6 cm, aft-frustum half-angle of 6°, and an axial length of 2.079 meters. No accurate diagram or picture of AMaRV has ever appeared in the open literature. However, a schematic sketch of an AMaRV-like vehicle along with trajectory plots showing hairpin turns has been published. AMaRV's attitude

1470-458: A particular TPS material is usually proportional to the material's density. Carbon phenolic is a very effective ablative material, but also has high density which is undesirable. The NASA Galileo Probe used carbon phenolic for its TPS material. If the heat flux experienced by an entry vehicle is insufficient to cause pyrolysis then the TPS material's conductivity could allow heat flux conduction into

1568-421: A perfect gas model, the ratio of specific heats (also called isentropic exponent , adiabatic index , gamma , or kappa ) is assumed to be constant along with the gas constant . For a real gas, the ratio of specific heats can wildly oscillate as a function of temperature. Under a perfect gas model there is an elegant set of equations for determining thermodynamic state along a constant entropy stream line called

1666-556: A recorded message by U.S. President Dwight D. Eisenhower was to be broadcast from the Millstone Hill site, reflected off the Moon , and received at PARL. After some tense debugging prior to the attempt, the "trick" went off without a hitch. The main purpose of the instrument was radar observation of the aurora, which started in January 1960 and were carried out for some time. Rockets fired from

1764-422: A slight U-shape and then rolled up into small disks in a fashion similar to a measuring tape . When triggered, the rotation of the satellite created enough centrifugal force to pull the disk away from the spacecraft body, and the shaping of the metal caused it to unwind into a long spiral. The result was a stiff circular cross-section antenna known as a "STEM", for "storable tubular extendible member". Alouette 1

1862-428: A specific destination on the surface at zero velocity while keeping stresses on the spacecraft and any passengers within acceptable limits. This may be accomplished by propulsive or aerodynamic (vehicle characteristics or parachute ) means, or by some combination. There are several basic shapes used in designing entry vehicles: The simplest axisymmetric shape is the sphere or spherical section. This can either be

1960-407: A sphere-cone shape and were the first American example of a non-munition entry vehicle ( Discoverer-I , launched on 28 February 1959). The sphere-cone was later used for space exploration missions to other celestial bodies or for return from open space; e.g., Stardust probe. Unlike with military RVs, the advantage of the blunt body's lower TPS mass remained with space exploration entry vehicles like

2058-513: A stream of vaporized metal making it very visible to radar . These defects made the Mk-2 overly susceptible to anti-ballistic missile (ABM) systems. Consequently, an alternative sphere-cone RV to the Mk-2 was developed by General Electric. This new RV was the Mk-6 which used a non-metallic ablative TPS, a nylon phenolic. This new TPS was so effective as a reentry heat shield that significantly reduced bluntness

SECTION 20

#1733106011790

2156-411: A trailing vortex behind the entry vehicle. Correctly modelling the flow in the wake of an entry vehicle is very difficult. Thermal protection shield (TPS) heating in the vehicle's afterbody is usually not very high, but the geometry and unsteadiness of the vehicle's wake can significantly influence aerodynamics (pitching moment) and particularly dynamic stability. A thermal protection system , or TPS,

2254-525: Is another entry vehicle geometry and was used with the X-23 PRIME (Precision Recovery Including Maneuvering Entry) vehicle. Objects entering an atmosphere from space at high velocities relative to the atmosphere will cause very high levels of heating . Atmospheric entry heating comes principally from two sources: As velocity increases, both convective and radiative heating increase, but at different rates. At very high speeds, radiative heating will dominate

2352-465: Is at 400,000 feet (122 km), the main heating during controlled entry takes place at altitudes of 65 to 35 kilometres (213,000 to 115,000 ft), peaking at 58 kilometres (190,000 ft). At typical reentry temperatures, the air in the shock layer is both ionized and dissociated . This chemical dissociation necessitates various physical models to describe the shock layer's thermal and chemical properties. There are four basic physical models of

2450-506: Is based upon a single ordinary differential equation and one algebraic equation. The five species model is based upon 5 ordinary differential equations and 17 algebraic equations. Because the 5 ordinary differential equations are tightly coupled, the system is numerically "stiff" and difficult to solve. The five species model is only usable for entry from low Earth orbit where entry velocity is approximately 7.8 km/s (28,000 km/h; 17,000 mph). For lunar return entry of 11 km/s,

2548-448: Is elegant and extremely useful for designing aircraft but assumes that the gas is chemically inert. From the standpoint of aircraft design, air can be assumed to be inert for temperatures less than 550 K (277 °C; 530 °F) at one atmosphere pressure. The perfect gas theory begins to break down at 550 K and is not usable at temperatures greater than 2,000 K (1,730 °C; 3,140 °F). For temperatures greater than 2,000 K,

2646-693: Is likely that gravitational gradients had caused the longest antenna to point towards the Earth. A 2010 technical report by the US Defense Threat Reduction Agency titled "Collateral Damage to Satellites from an EMP Attack" lists Alouette 1 among the satellites damaged by residual radiation from the July 9, 1962, Starfish Prime high-altitude nuclear test conducted by the United States. Another article, titled "Anthropogenic Space Weather", indicates Alouette 1 sustained no significant adverse effects from

2744-461: Is lower than other high-heat-flux-ablative materials, such as conventional carbon phenolics. PICA was patented by NASA Ames Research Center in the 1990s and was the primary TPS material for the Stardust aeroshell. The Stardust sample-return capsule was the fastest man-made object ever to reenter Earth's atmosphere, at 28,000 mph (ca. 12.5 km/s) at 135 km altitude. This was faster than

2842-466: Is operated by Canada Centre for Remote Sensing a branch of Natural Resources Canada as a ground station for the following satellites: Reentry vehicle Atmospheric entry (sometimes listed as V impact or V entry ) is the movement of an object from outer space into and through the gases of an atmosphere of a planet , dwarf planet , or natural satellite . There are two main types of atmospheric entry: uncontrolled entry , such as

2940-528: Is pre-bonded to the aeroshell's structure thus enabling construction of a large heat shield. Phenolic-impregnated carbon ablator (PICA), a carbon fiber preform impregnated in phenolic resin , is a modern TPS material and has the advantages of low density (much lighter than carbon phenolic) coupled with efficient ablative ability at high heat flux. It is a good choice for ablative applications such as high-peak-heating conditions found on sample-return missions or lunar-return missions. PICA's thermal conductivity

3038-446: Is slowly reduced such that chemical reactions can continue then the gas can remain in equilibrium. However, it is possible for gas pressure to be so suddenly reduced that almost all chemical reactions stop. For that situation the gas is considered frozen. The distinction between equilibrium and frozen is important because it is possible for a gas such as air to have significantly different properties (speed-of-sound, viscosity etc.) for

Prince Albert Radar Laboratory - Misplaced Pages Continue

3136-457: Is the barrier that protects a spacecraft during the searing heat of atmospheric reentry. Multiple approaches for the thermal protection of spacecraft are in use, among them ablative heat shields, passive cooling, and active cooling of spacecraft surfaces. In general they can be divided into two categories: ablative TPS and reusable TPS. Ablative TPS are required when space craft reach a relatively low altitude before slowing down. Spacecraft like

3234-412: Is the only way of expending this, as it is highly impractical to use retrorockets for the entire reentry procedure. Ballistic warheads and expendable vehicles do not require slowing at reentry, and in fact, are made streamlined so as to maintain their speed. Furthermore, slow-speed returns to Earth from near-space such as high-altitude parachute jumps from balloons do not require heat shielding because

3332-453: Is typically better than that of a spherical section. The vehicle enters sphere-first. With a sufficiently small half-angle and properly placed center of mass, a sphere-cone can provide aerodynamic stability from Keplerian entry to surface impact. (The half-angle is the angle between the cone's axis of rotational symmetry and its outer surface, and thus half the angle made by the cone's surface edges.) The original American sphere-cone aeroshell

3430-485: The Columbia was upstream from the calculated value due to real-gas effects. On Columbia ' s maiden flight ( STS-1 ), astronauts John Young and Robert Crippen had some anxious moments during reentry when there was concern about losing control of the vehicle. An equilibrium real-gas model assumes that a gas is chemically reactive, but also assumes all chemical reactions have had time to complete and all components of

3528-735: The Churchill Rocket Research Range , often Black Brants , were tracked by PARL at angles similar to those that the BMEWS radar would be tracking over-pole missile launches from its sites in Alaska and Greenland. PARL also tracked Arcas rockets fired from Cold Lake . In order to support this work, an experimental computer built at the DRTE in Ottawa, known only as the DRTE Computer , was adapted to create

3626-558: The Digital Analyzer and Recorder , or DAR. The site was also used as a space radar system, starting a satellite tracking program in February 1960. The radar was used to track the decay of several satellites, including Sputnik 3 , 4 and 5 , Delta 2 , and Epsilon 2 . Sputnik 4 was the first test of the Vostok spacecraft ; after launch its orbital period was 91.27 minutes, but on May 19

3724-628: The G77 Fortran compiler. A non-equilibrium real gas model is the most accurate model of a shock layer's gas physics, but is more difficult to solve than an equilibrium model. The simplest non-equilibrium model is the Lighthill-Freeman model developed in 1958. The Lighthill-Freeman model initially assumes a gas made up of a single diatomic species susceptible to only one chemical formula and its reverse; e.g., N 2 = N + N and N + N = N 2 (dissociation and recombination). Because of its simplicity,

3822-581: The Galileo Probe with a half-angle of 45° or the Viking aeroshell with a half-angle of 70°. Space exploration sphere-cone entry vehicles have landed on the surface or entered the atmospheres of Mars , Venus , Jupiter , and Titan . The biconic is a sphere-cone with an additional frustum attached. The biconic offers a significantly improved L/D ratio. A biconic designed for Mars aerocapture typically has an L/D of approximately 1.0 compared to an L/D of 0.368 for

3920-476: The Soyuz ), or unbounded (e.g., meteors ) trajectories. Various advanced technologies have been developed to enable atmospheric reentry and flight at extreme velocities. An alternative method of controlled atmospheric entry is buoyancy which is suitable for planetary entry where thick atmospheres, strong gravity, or both factors complicate high-velocity hyperbolic entry, such as the atmospheres of Venus , Titan and

4018-602: The V-2 , stabilization and aerodynamic stress were important issues (many V-2s broke apart during reentry), but heating was not a serious problem. Medium-range missiles like the Soviet R-5 , with a 1,200-kilometer (650-nautical-mile) range, required ceramic composite heat shielding on separable reentry vehicles (it was no longer possible for the entire rocket structure to survive reentry). The first ICBMs , with ranges of 8,000 to 12,000 km (4,300 to 6,500 nmi), were only possible with

Prince Albert Radar Laboratory - Misplaced Pages Continue

4116-408: The giant planets . The concept of the ablative heat shield was described as early as 1920 by Robert Goddard : "In the case of meteors, which enter the atmosphere with speeds as high as 30 miles (48 km) per second, the interior of the meteors remains cold, and the erosion is due, to a large extent, to chipping or cracking of the suddenly heated surface. For this reason, if the outer surface of

4214-419: The isentropic chain . For a real gas, the isentropic chain is unusable and a Mollier diagram would be used instead for manual calculation. However, graphical solution with a Mollier diagram is now considered obsolete with modern heat shield designers using computer programs based upon a digital lookup table (another form of Mollier diagram) or a chemistry based thermodynamics program. The chemical composition of

4312-538: The "equivalent" building did not have nearly the same fireproofing as the US design, and the fire proved unstoppable. Some of the equipment was saved, and replacements forthcoming, and the radar was soon in operation again. DAR was one of the instruments lost in the 1961 fire, and a replacement had to be built, arriving in 1962. PARL later served a number of roles. For some time it was the major Canadian ground receiving station for satellite communications, both for US satellites, and

4410-534: The 70° sphere-cone entry vehicles sent by NASA to Mars other than the Mars Science Laboratory (MSL). SLA-561V begins significant ablation at a heat flux of approximately 110 W/cm , but will fail for heat fluxes greater than 300 W/cm . The MSL aeroshell TPS is currently designed to withstand a peak heat flux of 234 W/cm . The peak heat flux experienced by the Viking 1 aeroshell which landed on Mars

4508-667: The Alouette 1 project. Parts used for the construction of Alouette 1 can still be found in the Musée des ondes Emile Berliner in Montreal, Quebec where part of the satellite was worked on. Alouette 1 was launched via Thor-Agena -B two-stage rocket by NASA from the Pacific Missile Range at Vandenberg Air Force Base , California, USA at 06:05 UTC on September 29, 1962, into orbit around Earth. The 145.6 kilograms (321 lb) satellite

4606-619: The Apollo mission capsules and 70% faster than the Shuttle. PICA was critical for the viability of the Stardust mission, which returned to Earth in 2006. Stardust's heat shield (0.81 m base diameter) was made of one monolithic piece sized to withstand a nominal peak heating rate of 1.2 kW/cm . A PICA heat shield was also used for the Mars Science Laboratory entry into the Martian atmosphere . An improved and easier to produce version called PICA-X

4704-754: The Apollo-CM. The higher L/D makes a biconic shape better suited for transporting people to Mars due to the lower peak deceleration. Arguably, the most significant biconic ever flown was the Advanced Maneuverable Reentry Vehicle (AMaRV). Four AMaRVs were made by the McDonnell Douglas Corp. and represented a significant leap in RV sophistication. Three AMaRVs were launched by Minuteman-1 ICBMs on 20 December 1979, 8 October 1980 and 4 October 1981. AMaRV had an entry mass of approximately 470 kg,

4802-663: The Canadian Alouette 1 . The DRTE Computer was used in this role too, calculating the path of the satellite over the PARL site, allowing the radar dish to be steered into the proper location to receive the signals from the quickly moving source. In 1968 the distance from the Algonquin Radio Observatory to the PARL site was measured to 2,143 km +/- 20 m. Today the Prince Albert Satellite Station

4900-647: The DC-X also served as the basis for an unsuccessful proposal for what eventually became the Lockheed Martin X-33 . Non- axisymmetric shapes have been used for crewed entry vehicles. One example is the winged orbit vehicle that uses a delta wing for maneuvering during descent much like a conventional glider. This approach has been used by the American Space Shuttle and the Soviet Buran . The lifting body

4998-498: The Defence Chemical, Biological, and Radiation Laboratory (DCBRL), another branch of DRB, and were partially responsible for the long lifetime of the satellite. The "Storable Tubular Extendable Member" antennas used were the first of DHC's STEM antennas used in space, and at launch were the longest (150 feet tip to tip). Companies such as RCA Victor and Spar Aerospace Limited produced some of their first pieces of space equipment for

SECTION 50

#1733106011790

5096-452: The Earth under the influence of Earth's gravity , and are slowed by friction upon encountering Earth's atmosphere. Meteors are also often travelling quite fast relative to the Earth simply because their own orbital path is different from that of the Earth before they encounter Earth's gravity well . Most objects enter at hypersonic speeds due to their sub-orbital (e.g., intercontinental ballistic missile reentry vehicles), orbital (e.g.,

5194-525: The Lighthill-Freeman model is a useful pedagogical tool, but is too simple for modelling non-equilibrium air. Air is typically assumed to have a mole fraction composition of 0.7812 molecular nitrogen, 0.2095 molecular oxygen and 0.0093 argon. The simplest real gas model for air is the five species model , which is based upon N 2 , O 2 , NO, N, and O. The five species model assumes no ionization and ignores trace species like carbon dioxide. When running

5292-445: The PARL staff noted that the period was 94.26 minutes and it had been joined by seven new objects. It is assumed this was due to an explosion. PARL also used the Echo 1 satellite in a repetition of the earlier Moon-bounce experiments. After being operational only a short time, on January 31, 1961 a major fire broke out that destroyed the buildings. Contrary to the findings of the government,

5390-670: The Prime Minister, John Diefenbaker . After a visit to Millstone Hill Observatory , where the Lincoln Lab was developing what would become the BMEWS radar, a suitable lab for the Prince Albert site was selected. The Millstone Hill site used a prefab steel building, but a Canadian equivalent was selected in its place, and construction on the "silo" for the radar started while the buildings arrived and were assembled. The BMEWS radar operated on

5488-454: The Starfish radiation, most likely due to a very conservative power supply design that allowed for a 40% degradation of solar cell performance. Alouette ' s mission lasted for 10 years before the satellite was deliberately switched off on September 30, 1972. The satellite remains in orbit; in 1966 it was estimated that Alouette 1 would remain in orbit for 1000 years. After Alouette 1

5586-483: The TPS bondline material thus leading to TPS failure. Consequently, for entry trajectories causing lower heat flux, carbon phenolic is sometimes inappropriate and lower-density TPS materials such as the following examples can be better design choices: SLA in SLA-561V stands for super light-weight ablator . SLA-561V is a proprietary ablative made by Lockheed Martin that has been used as the primary TPS material on all of

5684-442: The apparatus were to consist of layers of a very infusible hard substance with layers of a poor heat conductor between, the surface would not be eroded to any considerable extent, especially as the velocity of the apparatus would not be nearly so great as that of the average meteor." Practical development of reentry systems began as the range, and reentry velocity of ballistic missiles increased. For early short-range missiles, like

5782-422: The atmospheric entry returns to the same body that the vehicle had launched from, the event is referred to as reentry (almost always referring to Earth entry). The fundamental design objective in atmospheric entry of a spacecraft is to dissipate the energy of a spacecraft that is traveling at hypersonic speed as it enters an atmosphere such that equipment, cargo, and any passengers are slowed and land near

5880-543: The aurora while earning his PhD at the University of Saskatchewan , Saskatoon , including the first observations using radar. Forsyth was invited to a meeting at Rome, the outcome eventually led to an agreement whereby two radars would be sent to Canada, one would be placed in Churchill, Manitoba where the aurora is often at its maximum, while another would be located a distance away at a lower "grazing angle" in order to compare

5978-634: The backup) were assembled by Defence Research Telecommunications Establishment (DRTE) Electronics Lab in Ottawa, Ontario . The mechanical frame and the deployable STEM antennas were made by Special Products and Applied Research Aerospace ( SPAR Aerospace ), a former division of de Havilland Canada (DHC) in North York, Ontario , in a building which many years later (until 2012) housed the Canadian Air and Space Museum . The batteries used for Alouette were developed by

SECTION 60

#1733106011790

6076-464: The case of the Galileo probe's entry into Jupiter's atmosphere, the shock layer was mostly in equilibrium during peak heat flux due to the very high pressures experienced (this is counterintuitive given the free stream velocity was 39 km/s during peak heat flux). Determining the thermodynamic state of the stagnation point is more difficult under an equilibrium gas model than a perfect gas model. Under

6174-402: The center of curvature (dynamic stability is more problematic). Pure spheres have no lift. However, by flying at an angle of attack , a spherical section has modest aerodynamic lift thus providing some cross-range capability and widening its entry corridor. In the late 1950s and early 1960s, high-speed computers were not yet available and computational fluid dynamics was still embryonic. Because

6272-418: The convective heat fluxes, as radiative heating is proportional to the eighth power of velocity, while convective heating is proportional to the third power of velocity. Radiative heating thus predominates early in atmospheric entry, while convection predominates in the later phases. During certain intensity of ionization, a radio-blackout with the spacecraft is produced. While NASA's Earth entry interface

6370-513: The development of modern ablative heat shields and blunt-shaped vehicles. In the United States, this technology was pioneered by H. Julian Allen and A. J. Eggers Jr. of the National Advisory Committee for Aeronautics (NACA) at Ames Research Center . In 1951, they made the counterintuitive discovery that a blunt shape (high drag) made the most effective heat shield. From simple engineering principles, Allen and Eggers showed that

6468-422: The entry of astronomical objects , space debris , or bolides ; and controlled entry (or reentry ) of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL . Objects entering an atmosphere experience atmospheric drag , which puts mechanical stress on

6566-447: The gas and varying the different molecular combinations of the elements through numerical iteration until the lowest possible Gibbs free energy is calculated (a Newton–Raphson method is the usual numerical scheme). The data base for a Gibbs free energy program comes from spectroscopic data used in defining partition functions . Among the best equilibrium codes in existence is the program Chemical Equilibrium with Applications (CEA) which

6664-432: The gas have the same temperature (this is called thermodynamic equilibrium ). When air is processed by a shock wave, it is superheated by compression and chemically dissociates through many different reactions. Direct friction upon the reentry object is not the main cause of shock-layer heating. It is caused mainly from isentropic heating of the air molecules within the compression wave. Friction based entropy increases of

6762-644: The gravitational acceleration of an object starting at relative rest from within the atmosphere itself (or not far above it) cannot create enough velocity to cause significant atmospheric heating. For Earth, atmospheric entry occurs by convention at the Kármán line at an altitude of 100 km (62 miles; 54 nautical miles) above the surface, while at Venus atmospheric entry occurs at 250 km (160 mi; 130 nmi) and at Mars atmospheric entry at about 80 km (50 mi; 43 nmi). Uncontrolled objects reach high velocities while accelerating through space toward

6860-408: The heat load experienced by an entry vehicle was inversely proportional to the drag coefficient ; i.e., the greater the drag, the less the heat load. If the reentry vehicle is made blunt, air cannot "get out of the way" quickly enough, and acts as an air cushion to push the shock wave and heated shock layer forward (away from the vehicle). Since most of the hot gases are no longer in direct contact with

6958-444: The hot shock layer gas away from the heat shield's outer wall (creating a cooler boundary layer ). The boundary layer comes from blowing of gaseous reaction products from the heat shield material and provides protection against all forms of heat flux. The overall process of reducing the heat flux experienced by the heat shield's outer wall by way of a boundary layer is called blockage . Ablation occurs at two levels in an ablative TPS:

7056-500: The mid-2010s. It was first flight tested on the Crew Dragon spacecraft in 2019 during the flight demonstration mission , in April 2019, and put into regular service on that spacecraft in 2020. Alouette 1 Alouette 1 is a deactivated Canadian satellite that studied the ionosphere . Launched in 1962, it was Canada 's first satellite, and the first satellite constructed by

7154-438: The molecules within the wave also account for some heating. The distance from the shock wave to the stagnation point on the entry vehicle's leading edge is called shock wave stand off . An approximate rule of thumb for shock wave standoff distance is 0.14 times the nose radius. One can estimate the time of travel for a gas molecule from the shock wave to the stagnation point by assuming a free stream velocity of 7.8 km/s and

7252-595: The object, and aerodynamic heating —caused mostly by compression of the air in front of the object, but also by drag. These forces can cause loss of mass ( ablation ) or even complete disintegration of smaller objects, and objects with lower compressive strength can explode. Reentry has been achieved with speeds ranging from 7.8 km/s for low Earth orbit to around 12.5 km/s for the Stardust probe. Crewed space vehicles must be slowed to subsonic speeds before parachutes or air brakes may be deployed. Such vehicles have high kinetic energies, and atmospheric dissipation

7350-481: The outer surface of the TPS material chars, melts, and sublimes , while the bulk of the TPS material undergoes pyrolysis and expels product gases. The gas produced by pyrolysis is what drives blowing and causes blockage of convective and catalytic heat flux. Pyrolysis can be measured in real time using thermogravimetric analysis , so that the ablative performance can be evaluated. Ablation can also provide blockage against radiative heat flux by introducing carbon into

7448-468: The returns from two different locations. Finding a suitable location was not difficult; they wanted a site near Saskatoon so travel from the University would not be onerous, but one that would have line-of-sight visibility of Churchill. At first a site outside Dundurn was considered, but eventually Prince Albert was selected instead. This may have had a lot to do with Prince Albert being in the home riding of

7546-451: The same thermodynamic state; e.g., pressure and temperature. Frozen gas can be a significant issue in the wake behind an entry vehicle. During reentry, free stream air is compressed to high temperature and pressure by the entry vehicle's shock wave. Non-equilibrium air in the shock layer is then transported past the entry vehicle's leading side into a region of rapidly expanding flow that causes freezing. The frozen air can then be entrained into

7644-430: The shock layer between the shock wave and leading edge of an entry vehicle is chemically reacting and not in a state of equilibrium. The Fay–Riddell equation , which is of extreme importance towards modeling heat flux, owes its validity to the stagnation point being in chemical equilibrium. The time required for the shock layer gas to reach equilibrium is strongly dependent upon the shock layer's pressure. For example, in

7742-447: The shock layer contains a significant amount of ionized nitrogen and oxygen. The five-species model is no longer accurate and a twelve-species model must be used instead. Atmospheric entry interface velocities on a Mars–Earth trajectory are on the order of 12 km/s (43,000 km/h; 27,000 mph). Modeling high-speed Mars atmospheric entry—which involves a carbon dioxide, nitrogen and argon atmosphere—is even more complex requiring

7840-578: The shock layer thus making it optically opaque. Radiative heat flux blockage was the primary thermal protection mechanism of the Galileo Probe TPS material (carbon phenolic). Early research on ablation technology in the USA was centered at NASA 's Ames Research Center located at Moffett Field , California. Ames Research Center was ideal, since it had numerous wind tunnels capable of generating varying wind velocities. Initial experiments typically mounted

7938-399: The shock wave dissociating ambient atmospheric gas followed by recombination within the shock layer into new molecular species. The newly formed diatomic molecules initially have a very high vibrational temperature that efficiently transforms the vibrational energy into radiant energy ; i.e., radiative heat flux. The whole process takes place in less than a millisecond which makes modelling

8036-408: The space shuttle are designed to slow down at high altitude so that they can use reuseable TPS. (see: Space Shuttle thermal protection system ). Thermal protection systems are tested in high enthalpy ground testing or plasma wind tunnels that reproduce the combination of high enthalpy and high stagnation pressure using Induction plasma or DC plasma. The ablative heat shield functions by lifting

8134-471: The spherical section geometry in crewed capsules are Soyuz / Zond , Gemini , and Mercury . Even these small amounts of lift allow trajectories that have very significant effects on peak g-force , reducing it from 8–9 g for a purely ballistic (slowed only by drag) trajectory to 4–5 g, as well as greatly reducing the peak reentry heat. The sphere-cone is a spherical section with a frustum or blunted cone attached. The sphere-cone's dynamic stability

8232-477: The spherical section was amenable to closed-form analysis, that geometry became the default for conservative design. Consequently, crewed capsules of that era were based upon the spherical section. Pure spherical entry vehicles were used in the early Soviet Vostok and Voskhod capsules and in Soviet Mars and Venera descent vehicles. The Apollo command module used a spherical section forebody heat shield with

8330-455: The vehicle, the heat energy would stay in the shocked gas and simply move around the vehicle to later dissipate into the atmosphere. The Allen and Eggers discovery, though initially treated as a military secret, was eventually published in 1958. When atmospheric entry is part of a spacecraft landing or recovery, particularly on a planetary body other than Earth, entry is part of a phase referred to as entry, descent, and landing , or EDL. When

8428-402: Was 21 W/cm . For Viking 1 , the TPS acted as a charred thermal insulator and never experienced significant ablation. Viking 1 was the first Mars lander and based upon a very conservative design. The Viking aeroshell had a base diameter of 3.54 meters (the largest used on Mars until Mars Science Laboratory). SLA-561V is applied by packing the ablative material into a honeycomb core that

8526-418: Was controlled through a split body flap (also called a split-windward flap ) along with two yaw flaps mounted on the vehicle's sides. Hydraulic actuation was used for controlling the flaps. AMaRV was guided by a fully autonomous navigation system designed for evading anti-ballistic missile (ABM) interception. The McDonnell Douglas DC-X (also a biconic) was essentially a scaled-up version of AMaRV. AMaRV and

8624-462: Was convinced to participate by the prospect of obtaining data on the ionosphere, and Canada had the additional objective of developing its own space research programme. The United Kingdom also aided the mission by providing support at two ground stations, in Singapore and at Winkfield . Alouette 1 carried four scientific experiments: The satellite did not have a tape recorder to store data. It

8722-643: Was developed by SpaceX in 2006–2010 for the Dragon space capsule . The first reentry test of a PICA-X heat shield was on the Dragon C1 mission on 8 December 2010. The PICA-X heat shield was designed, developed and fully qualified by a small team of a dozen engineers and technicians in less than four years. PICA-X is ten times less expensive to manufacture than the NASA PICA heat shield material. A second enhanced version of PICA—called PICA-3—was developed by SpaceX during

8820-438: Was initially spin-stabilized , rotating 1.4 times per minute. After about 500 days, the rotation had slowed to about 0.6 rpm and the spin-stabilization failed at this point. It was then possible to determine the satellite's orientation only by readings from a magnetometer and from temperature sensors on the upper and lower heat shields . The orientation determinations obtained this way were only accurate to within 10 degrees. It

8918-544: Was just sufficiently understood to ensure Apollo's success. However, radiative heat flux in carbon dioxide (Mars entry) is still barely understood and will require major research. The frozen gas model describes a special case of a gas that is not in equilibrium. The name "frozen gas" can be misleading. A frozen gas is not "frozen" like ice is frozen water. Rather a frozen gas is "frozen" in time (all chemical reactions are assumed to have stopped). Chemical reactions are normally driven by collisions between molecules. If gas pressure

9016-480: Was launched, the upper stage of the rocket used to launch the satellite became a derelict object that would continue to orbit Earth for many years. As of 2024 , the upper stage remains in orbit. The satellite itself became a derelict, remaining in Earth orbit As of 2024 . The Alouette 1 was named an IEEE Milestone in 1993. It is featured on the Amory Adventure Award . Alouette 1 ' s backup

9114-436: Was only possible to obtain data when the satellite was in range of a receiving station. Two satellites were built for redundancy in case of a malfunction; if the first unit failed, the second could be launched with only a couple of months delay. It took 3½ years after Alouette ' s proposal to have it developed and built. The satellites S27-2 (prototype), S27-3 (which became the launched satellite), and S27-4 (which became

9212-421: Was part of a joint Canada-U.S. scientific program. Its purpose was to investigate the properties of the top of the ionosphere, and the dependence of those properties on geographical location, season, and time of day. Alouette 1 was advanced for its time, and NASA initially doubted whether the available technology would be sufficient. Nevertheless, NASA was eager to collaborate with international partners. NASA

9310-472: Was placed into an almost circular orbit with an altitude of 987 kilometres (613 mi) to 1,022 kilometres (635 mi) with an inclination of 80.5°. The launch made Canada the third nation, after the USSR and the United States, to design and construct its own satellite. Alouette was used to study the ionosphere, using over 700 different radio frequencies to investigate its properties from above. The satellite

9408-498: Was possible. However, the Mk-6 was a huge RV with an entry mass of 3,360 kg, a length of 3.1 m and a half-angle of 12.5°. Subsequent advances in nuclear weapon and ablative TPS design allowed RVs to become significantly smaller with a further reduced bluntness ratio compared to the Mk-6. Since the 1960s, the sphere-cone has become the preferred geometry for modern ICBM RVs with typical half-angles being between 10° and 11°. Reconnaissance satellite RVs (recovery vehicles) also used

9506-590: Was the Mk-2 RV (reentry vehicle), which was developed in 1955 by the General Electric Corp. The Mk-2's design was derived from blunt-body theory and used a radiatively cooled thermal protection system (TPS) based upon a metallic heat shield (the different TPS types are later described in this article). The Mk-2 had significant defects as a weapon delivery system, i.e., it loitered too long in the upper atmosphere due to its lower ballistic coefficient and also trailed

9604-478: Was written by Bonnie J. McBride and Sanford Gordon at NASA Lewis (now renamed "NASA Glenn Research Center"). Other names for CEA are the "Gordon and McBride Code" and the "Lewis Code". CEA is quite accurate up to 10,000 K for planetary atmospheric gases, but unusable beyond 20,000 K ( double ionization is not modelled). CEA can be downloaded from the Internet along with full documentation and will compile on Linux under

#789210