Misplaced Pages

Peru–Chile Trench

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Peru–Chile Trench , also known as the Atacama Trench , is an oceanic trench in the eastern Pacific Ocean , about 160 kilometres (99 mi) off the coast of Peru and Chile . It reaches a maximum depth of 8,065 m (26,460 ft) below sea level in Richards Deep ( 23°10′45″S 71°18′41″W  /  23.17917°S 71.31139°W  / -23.17917; -71.31139 ) and is approximately 5,900 km (3,666 mi) long; its mean width is 64 km (40 mi) and it covers an expanse of some 590,000 km (230,000 sq mi).

#860139

101-480: The trench delineates the boundary between the subducting Nazca plate and the overriding South American plate . The trench is a result of a convergent plate boundary , where the eastern edge of the oceanic Nazca plate is being subducted beneath the continental South American plate . The trench is also a part of the Chile Triple Junction , an unusual junction that consists of a mid-oceanic ridge and

202-412: A deformation mechanism map . Permanent deformation is irreversible; the deformation stays even after removal of the applied forces, while the temporary deformation is recoverable as it disappears after the removal of applied forces. Temporary deformation is also called elastic deformation, while the permanent deformation is called plastic deformation. The study of temporary or elastic deformation in

303-500: A reflexive verb . The lower plate itself is the subject. It subducts, in the sense of retreat, or removes itself, and while doing so, is the "subducting plate". Moreover, the word slab is specifically attached to the "subducting plate", even though in English the upper plate is just as much of a slab. The upper plate is left hanging, so to speak. To express it geology must switch to a different verb, typically to override . The upper plate,

404-406: A consequence of the rigidity of the plate. The point where the slab begins to plunge downwards is marked by an oceanic trench . Oceanic trenches are the deepest parts of the ocean floor. Beyond the trench is the forearc portion of the overriding plate. Depending on sedimentation rates, the forearc may include an accretionary wedge of sediments scraped off the subducting slab and accreted to

505-460: A larger portion of Earth's crust to deform in a more brittle fashion than it would in a normal geothermal gradient setting. Because earthquakes can occur only when a rock is deforming in a brittle fashion, subduction zones can cause large earthquakes. If such a quake causes rapid deformation of the sea floor, there is potential for tsunamis . The largest tsunami ever recorded happened due to a mega-thrust earthquake on December 26, 2004 . The earthquake

606-413: A material with a large plastic deformation range is wet chewing gum , which can be stretched to dozens of times its original length. Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture). During strain hardening the material becomes stronger through the movement of atomic dislocations . The necking phase

707-457: A minimum estimate of how far the continent has subducted. The results show at least a minimum of 229 kilometers of subduction of the northern Australian continental plate. Another example may be the continued northward motion of India, which is subducting beneath Asia. The collision between the two continents initiated around 50 my ago, but is still active. Oceanic-Oceanic plate subduction zones comprise roughly 40% of all subduction zone margins on

808-645: A nonlinear fashion. For these materials Hooke's law is inapplicable. This type of deformation is not undone simply by removing the applied force. An object in the plastic deformation range, however, will first have undergone elastic deformation, which is undone simply be removing the applied force, so the object will return part way to its original shape. Soft thermoplastics have a rather large plastic deformation range as do ductile metals such as copper , silver , and gold . Steel does, too, but not cast iron . Hard thermosetting plastics, rubber, crystals, and ceramics have minimal plastic deformation ranges. An example of

909-440: A point defining true stress–strain curve is displaced upwards and to the left to define the equivalent engineering stress–strain curve. The difference between the true and engineering stresses and strains will increase with plastic deformation. At low strains (such as elastic deformation), the differences between the two is negligible. As for the tensile strength point, it is the maximal point in engineering stress–strain curve but

1010-460: A point of no return. Sections of crustal or intraoceanic arc crust greater than 15 km (9.3 mi) in thickness or oceanic plateau greater than 30 km (19 mi) in thickness can disrupt subduction. However, island arcs subducted end-on may cause only local disruption, while an arc arriving parallel to the zone can shut it down. This has happened with the Ontong Java Plateau and

1111-481: A result, the material is forced out laterally. Internal forces (in this case at right angles to the deformation) resist the applied load. Depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. The image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel. Different deformation modes may occur under different conditions, as can be depicted using

SECTION 10

#1732852448861

1212-471: A series of minerals in these slabs such as serpentine can be stable at different pressures within the slab geotherms, and may transport significant amount of water into the Earth's interior. As plates sink and heat up, released fluids can trigger seismicity and induce melting within the subducted plate and in the overlying mantle wedge. This type of melting selectively concentrates volatiles and transports them into

1313-526: A smaller elastic range. Linear elastic deformation is governed by Hooke's law , which states: where This relationship only applies in the elastic range and indicates that the slope of the stress vs. strain curve can be used to find Young's modulus ( E ). Engineers often use this calculation in tensile tests. The area under this elastic region is known as resilience. Note that not all elastic materials undergo linear elastic deformation; some, such as concrete , gray cast iron , and many polymers, respond in

1414-411: A steeper angle is characterized by the formation of back-arc basins . According to the theory of plate tectonics , the Earth's lithosphere , its rigid outer shell, is broken into sixteen larger tectonic plates and several smaller plates. These plates are in slow motion, due mostly to the pull force of subducting lithosphere. Sinking lithosphere at subduction zones are a part of convection cells in

1515-530: A structural element or specimen will increase the compressive stress until it reaches its compressive strength . According to the properties of the material, failure modes are yielding for materials with ductile behavior (most metals , some soils and plastics ) or rupturing for brittle behavior (geomaterials, cast iron , glass , etc.). In long, slender structural elements — such as columns or truss bars — an increase of compressive force F leads to structural failure due to buckling at lower stress than

1616-417: A structure by structural analysis . In the above figure, it can be seen that the compressive loading (indicated by the arrow) has caused deformation in the cylinder so that the original shape (dashed lines) has changed (deformed) into one with bulging sides. The sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. As

1717-510: A zone of shortening and crustal thickening in which there may be extensive folding and thrust faulting . If the angle of subduction steepens or rolls back, the upper plate lithosphere will be put in tension instead, often producing a back-arc basin . The arc-trench complex is the surface expression of a much deeper structure. Though not directly accessible, the deeper portions can be studied using geophysics and geochemistry . Subduction zones are defined by an inclined zone of earthquakes ,

1818-418: Is "consumed", which happens the geological moment the lower plate slips under, even though it may persist for some time until its remelting and dissipation. In this conceptual model, plate is continually being used up. The identity of the subject, the consumer, or agent of consumption, is left unstated. Some sources accept this subject-object construct. Geology makes to subduct into an intransitive verb and

1919-456: Is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at the convergent boundaries between tectonic plates. Where one tectonic plate converges with a second plate, the heavier plate dives beneath the other and sinks into the mantle. A region where this process occurs is known as a subduction zone , and its surface expression

2020-414: Is a measure of a material's work hardening behavior. Materials with a higher n have a greater resistance to necking. Typically, metals at room temperature have n ranging from 0.02 to 0.5. Since we disregard the change of area during deformation above, the true stress and strain curve should be re-derived. For deriving the stress strain curve, we can assume that the volume change is 0 even if we deformed

2121-499: Is accreted to (scraped off) the continent, resulting in exotic terranes . The collision of this oceanic material causes crustal thickening and mountain-building. The accreted material is often referred to as an accretionary wedge or prism. These accretionary wedges can be associated with ophiolites (uplifted ocean crust consisting of sediments, pillow basalts, sheeted dykes, gabbro, and peridotite). Subduction may also cause orogeny without bringing in oceanic material that accretes to

SECTION 20

#1732852448861

2222-488: Is characterized by low geothermal gradients and the associated formation of high-pressure low-temperature rocks such as eclogite and blueschist . Likewise, rock assemblages called ophiolites , associated with modern-style subduction, also indicate such conditions. Eclogite xenoliths found in the North China Craton provide evidence that modern-style subduction occurred at least as early as 1.8  Ga ago in

2323-418: Is currently banned by international agreement. Furthermore, plate subduction zones are associated with very large megathrust earthquakes , making the effects of using any specific site for disposal unpredictable and possibly adverse to the safety of long-term disposal. Deformation (geology) In engineering , deformation (the change in size or shape of an object) may be elastic or plastic . If

2424-493: Is driven mostly by the negative buoyancy of the dense subducting lithosphere. The down-going slab sinks into the mantle largely under its own weight. Earthquakes are common along subduction zones, and fluids released by the subducting plate trigger volcanism in the overriding plate. If the subducting plate sinks at a shallow angle, the overriding plate develops a belt of deformation characterized by crustal thickening, mountain building , and metamorphism . Subduction at

2525-402: Is experiencing a stress defined to be the ratio of the force to the cross sectional area of the bar, as well as an axial elongation: Subscript 0 denotes the original dimensions of the sample. The SI derived unit for stress is newtons per square metre, or pascals (1 pascal = 1 Pa = 1 N/m ), and strain is unitless . The stress–strain curve for this material is plotted by elongating

2626-444: Is fairly well understood, the process by which subduction is initiated remains a matter of discussion and continuing study. Subduction can begin spontaneously if the denser oceanic lithosphere can founder and sink beneath the adjacent oceanic or continental lithosphere through vertical forcing only; alternatively, existing plate motions can induce new subduction zones by horizontally forcing the oceanic lithosphere to rupture and sink into

2727-593: Is found behind the Aleutian Trench subduction zone in Alaska. Volcanoes that occur above subduction zones, such as Mount St. Helens , Mount Etna , and Mount Fuji , lie approximately one hundred kilometers from the trench in arcuate chains called volcanic arcs . Plutons, like Half Dome in Yosemite National Park, generally form 10–50 km below the volcanoes within the volcanic arcs and are only visible on

2828-399: Is indicated by a reduction in cross-sectional area of the specimen. Necking begins after the ultimate strength is reached. During necking, the material can no longer withstand the maximum stress and the strain in the specimen rapidly increases. Plastic deformation ends with the fracture of the material. Usually, compressive stress applied to bars, columns , etc. leads to shortening. Loading

2929-447: Is known as an arc-trench complex . The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year. Subduction is possible because the cold and rigid oceanic lithosphere is slightly denser than the underlying asthenosphere , the hot, ductile layer in the upper mantle . Once initiated, stable subduction

3030-477: Is more buoyant and as a result will rise into the lithosphere, where it forms large magma chambers called diapirs. Some of the magma will make it to the surface of the crust where it will form volcanoes and, if eruptive on earth's surface, will produce andesitic lava. Magma that remains in the lithosphere long enough will cool and form plutonic rocks such as diorite, granodiorite, and sometimes granite. The arc magmatism occurs one hundred to two hundred kilometers from

3131-400: Is not a special point in true stress–strain curve. Because engineering stress is proportional to the force applied along the sample, the criterion for necking formation can be set as δ F = 0. {\displaystyle \delta F=0.} This analysis suggests nature of the ultimate tensile strength (UTS) point. The work strengthening effect is exactly balanced by

Peru–Chile Trench - Misplaced Pages Continue

3232-411: Is old, goes down the subduction zone. As this happens, metamorphic reactions increase the density of the continental crustal rocks, which leads to less buoyancy. One study of the active Banda arc-continent collision claims that by unstacking the layers of rock that once covered the continental basement, but are now thrust over one another in the orogenic wedge, and measuring how long they are, can provide

3333-689: Is ongoing beneath part of the Andes , causing segmentation of the Andean Volcanic Belt into four zones. The flat-slab subduction in northern Peru and the Norte Chico region of Chile is believed to be the result of the subduction of two buoyant aseismic ridges, the Nazca Ridge and the Juan Fernández Ridge , respectively. Around Taitao Peninsula flat-slab subduction is attributed to the subduction of

3434-445: Is related to the resistance toward the necking. Usually, the value of m {\displaystyle m} is at the range of 0-0.1 at room temperature and as high as 0.8 when the temperature is increased. By combining the 1) and 2), we can create the ultimate relation as below: Where K ″ {\displaystyle K''} is the global constant for relating strain, strain rate and stress. 3) Based on

3535-399: Is strain-hardening coefficient. Usually, the value of n {\displaystyle n} has range around 0.02 to 0.5 at room temperature. If n {\displaystyle n} is 1, we can express this material as perfect elastic material. 2) In reality, stress is also highly dependent on the rate of strain variation. Thus, we can induce the empirical equation based on

3636-519: The Cascade Volcanic Arc , that form along the coast of continents. Island arcs (intraoceanic or primitive arcs) are produced by the subduction of oceanic lithosphere beneath another oceanic lithosphere (ocean-ocean subduction) while continental arcs (Andean arcs) form during the subduction of oceanic lithosphere beneath a continental lithosphere (ocean-continent subduction). An example of a volcanic arc having both island and continental arc sections

3737-758: The Chile Rise being subducted under the South American plate at the Peru–Chile Trench. Two seamount ridges within the Nazca plate enter the subduction zone along this trench: the Nazca Ridge and the Juan Fernández Ridge . From the Chile Triple Junction to Juan Fernández Ridge the trench is filled with 2.0–2.5 kilometres (1.2–1.6 mi) of sediments, creating a flat bottom topography. Sediments are mainly turbidites interspersed with oceanic deposits of clay, volcanic ash, and siliceous ooze. The Peru–Chile Trench,

3838-702: The Chile Rise , a spreading ridge . The Laramide Orogeny in the Rocky Mountains of the United States is attributed to flat-slab subduction. During this orogeny, a broad volcanic gap appeared at the southwestern margin of North America, and deformation occurred much farther inland; it was during this time that the basement -cored mountain ranges of Colorado, Utah, Wyoming, South Dakota, and New Mexico came into being. The most massive subduction zone earthquakes, so-called "megaquakes", have been found to occur in flat-slab subduction zones. Although stable subduction

3939-621: The Paleoproterozoic Era . The eclogite itself was produced by oceanic subduction during the assembly of supercontinents at about 1.9–2.0 Ga. Blueschist is a rock typical for present-day subduction settings. The absence of blueschist older than Neoproterozoic reflects more magnesium-rich compositions of Earth's oceanic crust during that period. These more magnesium-rich rocks metamorphose into greenschist at conditions when modern oceanic crust rocks metamorphose into blueschist. The ancient magnesium-rich rocks mean that Earth's mantle

4040-484: The Vitiaz Trench . Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process create and destroy water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding

4141-533: The Wadati–Benioff zone , that dips away from the trench and extends down below the volcanic arc to the 660-kilometer discontinuity . Subduction zone earthquakes occur at greater depths (up to 600 km (370 mi)) than elsewhere on Earth (typically less than 20 km (12 mi) depth); such deep earthquakes may be driven by deep phase transformations , thermal runaway , or dehydration embrittlement . Seismic tomography shows that some slabs can penetrate

Peru–Chile Trench - Misplaced Pages Continue

4242-406: The core–mantle boundary . Here the slabs are heated up by the ambient heat and are not detected anymore ~300 Myr after subduction. Orogeny is the process of mountain building. Subducting plates can lead to orogeny by bringing oceanic islands, oceanic plateaus, sediments and passive continental margins to convergent margins. The material often does not subduct with the rest of the plate but instead

4343-550: The forearc and the western edge of the central Andean plateau (Altiplano), delineate the dramatic "Bolivian Orocline " that defines the Andean slope of southern Peru, northern Chile, and Bolivia . Most of the time, the trade winds drive surface waters offshore near the equator, driving the Humboldt Current from the tip of southern Chile to northern Peru. This current is associated with upwelling of deep, nutrient-rich water off

4444-411: The lower mantle and sink clear to the core–mantle boundary . Here the residue of the slabs may eventually heat enough to rise back to the surface as mantle plumes . Subduction typically occurs at a moderately steep angle by the time it is beneath the volcanic arc. However, anomalous shallower angles of subduction are known to exist as well as some that are extremely steep. Flat-slab subduction

4545-416: The zeolite , prehnite-pumpellyite, blueschist , and eclogite facies stability zones of subducted oceanic crust. Zeolite and prehnite-pumpellyite facies assemblages may or may not be present, thus the onset of metamorphism may only be marked by blueschist facies conditions. Subducting slabs are composed of basaltic crust topped with pelagic sediments ; however, the pelagic sediments may be accreted onto

4646-501: The Alaskan crust. The concept of subduction would play a role in the development of the plate tectonics theory. First geologic attestations of the "subduct" words date to 1970, In ordinary English to subduct , or to subduce (from Latin subducere , "to lead away") are transitive verbs requiring a subject to perform an action on an object not itself, here the lower plate, which has then been subducted ("removed"). The geological term

4747-584: The Alps. The chemistry of the inclusions supports the existence of a carbon-rich fluid in that environment, and additional chemical measurements of lower pressure and temperature facies in the same tectonic complex support a model for carbon dissolution (rather than decarbonation) as a means of carbon transport. Elastic strain caused by plate convergence in subduction zones produces at least three types of earthquakes. These are deep earthquakes, megathrust earthquakes, and outer rise earthquakes. Deep earthquakes happen within

4848-472: The asthenosphere. Both models can eventually yield self-sustaining subduction zones, as the oceanic crust is metamorphosed at great depth and becomes denser than the surrounding mantle rocks. The compilation of subduction zone initiation events back to 100 Ma suggests horizontally-forced subduction zone initiation for most modern subduction zones, which is supported by results from numerical models and geologic studies. Some analogue modeling shows, however,

4949-510: The case of engineering strain is applied to materials used in mechanical and structural engineering, such as concrete and steel , which are subjected to very small deformations. Engineering strain is modeled by infinitesimal strain theory , also called small strain theory , small deformation theory , small displacement theory , or small displacement-gradient theory where strains and rotations are both small. For some materials, e.g. elastomers and polymers, subjected to large deformations,

5050-723: The coast of Peru. At times, El Niño disrupts the usual wind pattern and lessens the upwelling. The consequent loss of nutrient causes fish kills . In 2018, three new species of snailfish were discovered thriving in the depths of the Atacama Trench. The subduction of the Nazca plate below the South American plate along the Chile-Peru Trench is associated with numerous earthquakes. Several of these earthquakes are notable for their size, associated tsunamis, and landslides. 23°S 71°W  /  23°S 71°W  / -23; -71 Subduction Subduction

5151-523: The colder oceanic lithosphere is, on average, more dense. Sediments and some trapped water are carried downwards by the slab and recycled into the deep mantle. Earth is so far the only planet where subduction is known to occur, and subduction zones are its most important tectonic feature. Subduction is the driving force behind plate tectonics , and without it, plate tectonics could not occur. Oceanic subduction zones are located along 55,000 km (34,000 mi) convergent plate margins, almost equal to

SECTION 50

#1732852448861

5252-405: The compressive strength. A break occurs after the material has reached the end of the elastic, and then plastic, deformation ranges. At this point forces accumulate until they are sufficient to cause a fracture. All materials will eventually fracture, if sufficient forces are applied. Engineering stress and engineering strain are approximations to the internal state that may be determined from

5353-435: The continent, away from the trench, and has been described in western North America (i.e. Laramide orogeny, and currently in Alaska, South America, and East Asia. The processes described above allow subduction to continue while mountain building happens concurrently, which is in contrast to continent-continent collision orogeny, which often leads to the termination of subduction. Continents are pulled into subduction zones by

5454-564: The crust would be melted and recycled into the Earth's mantle . In 1964, George Plafker researched the Good Friday earthquake in Alaska . He concluded that the cause of the earthquake was a megathrust reaction in the Aleutian Trench , a result of the Alaskan continental crust overlapping the Pacific oceanic crust. This meant that the Pacific crust was being forced downward, or subducted , beneath

5555-597: The crust, megathrust earthquakes on the subduction interface near the trench, and outer rise earthquakes on the subducting lower plate as it bends near the trench. Anomalously deep events are a characteristic of subduction zones, which produce the deepest quakes on the planet. Earthquakes are generally restricted to the shallow, brittle parts of the crust, generally at depths of less than twenty kilometers. However, in subduction zones quakes occur at depths as great as 700 km (430 mi). These quakes define inclined zones of seismicity known as Wadati–Benioff zones which trace

5656-609: The crust, through hotspot magmatism or extensional rifting, would the crust be able to break from its continent and begin subduction. Subduction can continue as long as the oceanic lithosphere moves into the subduction zone. However, the arrival of buoyant continental lithosphere at a subduction zone can result in increased coupling at the trench and cause plate boundary reorganization. The arrival of continental crust results in continental collision or terrane accretion that may disrupt subduction. Continental crust can subduct to depths of 250 km (160 mi) where it can reach

5757-408: The cumulative plate formation rate 60,000 km (37,000 mi) of mid-ocean ridges. Sea water seeps into oceanic lithosphere through fractures and pores, and reacts with minerals in the crust and mantle to form hydrous minerals (such as serpentine) that store water in their crystal structures. Water is transported into the deep mantle via hydrous minerals in subducting slabs. During subduction,

5858-433: The deformation is negligible, the object is said to be rigid . Occurrence of deformation in engineering applications is based on the following background concepts: The relationship between stress and strain is generally linear and reversible up until the yield point and the deformation is elastic . Elasticity in materials occurs when applied stress does not surpass the energy required to break molecular bonds, allowing

5959-448: The degree of lower plate curvature of the subducting plate in great historical earthquakes such as the 2004 Sumatra-Andaman and the 2011 Tōhoku earthquake, it was determined that the magnitude of earthquakes in subduction zones is inversely proportional to the angle of subduction near the trench, meaning that "the flatter the contact between the two plates, the more likely it is that mega-earthquakes will occur". Outer rise earthquakes on

6060-440: The descending slab. Nine of the ten largest earthquakes of the last 100 years were subduction zone megathrust earthquakes. These included the 1960 Great Chilean earthquake which at M 9.5 was the largest earthquake ever recorded, the 2004 Indian Ocean earthquake and tsunami , and the 2011 Tōhoku earthquake and tsunami . The subduction of cold oceanic lithosphere into the mantle depresses the local geothermal gradient and causes

6161-455: The different regimes present in this setting. The models are as follows: In their 2019 study, Macdonald et al. proposed that arc-continent collision zones and the subsequent obduction of oceanic lithosphere was at least partially responsible for controlling global climate. Their model relies on arc-continent collision in tropical zones, where exposed ophiolites composed mainly of mafic material increase "global weatherability" and result in

SECTION 60

#1732852448861

6262-414: The dimensions are instantaneous values. Assuming volume of the sample conserves and deformation happens uniformly, The true stress and strain can be expressed by engineering stress and strain. For true stress, For the strain, Integrate both sides and apply the boundary condition, So in a tension test , true stress is larger than engineering stress and true strain is less than engineering strain. Thus,

6363-486: The engineering definition of strain is not applicable, e.g. typical engineering strains greater than 1%, thus other more complex definitions of strain are required, such as stretch , logarithmic strain , Green strain , and Almansi strain . Elastomers and shape memory metals such as Nitinol exhibit large elastic deformation ranges, as does rubber . However, elasticity is nonlinear in these materials. Normal metals, ceramics and most crystals show linear elasticity and

6464-416: The external forces and deformations of an object, provided that there is no significant change in size. When there is a significant change in size, the true stress and true strain can be derived from the instantaneous size of the object. Consider a bar of original cross sectional area A 0 being subjected to equal and opposite forces F pulling at the ends so the bar is under tension. The material

6565-420: The forearc-hanging wall and not subducted. Most metamorphic phase transitions that occur within the subducting slab are prompted by the dehydration of hydrous mineral phases. The breakdown of hydrous mineral phases typically occurs at depths greater than 10 km. Each of these metamorphic facies is marked by the presence of a specific stable mineral assemblage, recording the metamorphic conditions undergone but

6666-430: The idea of subduction initiation at passive margins is popular, there is no modern day example for this type of subduction nucleation. This is likely due to the strength of the oceanic or transitional crust at the continental passive margins, suggesting that if the crust did not break in its first 20 million years of life, it is unlikely to break in the future under normal sedimentation loads. Only with additional weaking of

6767-574: The lower plate occur when normal faults oceanward of the subduction zone are activated by flexure of the plate as it bends into the subduction zone. The 2009 Samoa earthquake is an example of this type of event. Displacement of the sea floor caused by this event generated a six-meter tsunami in nearby Samoa. Seismic tomography has helped detect subducted lithospheric slabs deep in the mantle where no earthquakes occur. About one hundred slabs have been described in terms of depth and their timing and location of subduction. The great seismic discontinuities in

6868-415: The mantle and is recycled. They are found at convergent plate boundaries, where the heavier oceanic lithosphere of one plate is overridden by the leading edge of another, less-dense plate. The overridden plate (the slab ) sinks at an angle most commonly between 25 and 75 degrees to Earth's surface. This sinking is driven by the temperature difference between the slab and the surrounding asthenosphere, as

6969-484: The mantle, at 410 km (250 mi) depth and 670 km (420 mi), are disrupted by the descent of cold slabs in deep subduction zones. Some subducted slabs seem to have difficulty penetrating the major discontinuity that marks the boundary between the upper mantle and lower mantle at a depth of about 670 kilometers. Other subducted oceanic plates have sunk to the core–mantle boundary at 2890 km depth. Generally, slabs decelerate during their descent into

7070-463: The mantle, from typically several cm/yr (up to ~10 cm/yr in some cases) at the subduction zone and in the uppermost mantle, to ~1 cm/yr in the lower mantle. This leads to either folding or stacking of slabs at those depths, visible as thickened slabs in seismic tomography. Below ~1700 km, there might be a limited acceleration of slabs due to lower viscosity as a result of inferred mineral phase changes until they approach and finally stall at

7171-410: The material to deform reversibly and return to its original shape once the stress is removed. The linear relationship for a material is known as Young's modulus . Above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation . The determination of the stress and strain throughout a solid object is given by the field of strength of materials and for

7272-437: The materials. We can assume that: Then, the true stress can be expressed as below: Additionally, the true strain ε T can be expressed as below: Then, we can express the value as Thus, we can induce the plot in terms of σ T {\displaystyle \sigma _{T}} and ε E {\displaystyle \varepsilon _{E}} as right figure. Additionally, based on

7373-393: The necking appears. Additionally, we can induce various relation based on true stress-strain curve. 1) True strain and stress curve can be expressed by the approximate linear relationship by taking a log on true stress and strain. The relation can be expressed as below: Where K {\displaystyle K} is stress coefficient and n {\displaystyle n}

7474-484: The ocean floor, studied the Mid-Atlantic Ridge and proposed that hot molten rock was added to the crust at the ridge and expanded the seafloor outward. This theory was to become known as seafloor spreading . Since the Earth's circumference has not changed over geologic time, Hess concluded that older seafloor has to be consumed somewhere else, and suggested that this process takes place at oceanic trenches , where

7575-429: The oldest oceanic lithosphere. Continental lithosphere is up to 200 km (120 mi) thick. The lithosphere is relatively cold and rigid compared with the underlying asthenosphere , and so tectonic plates move as solid bodies atop the asthenosphere. Individual plates often include both regions of the oceanic lithosphere and continental lithosphere. Subduction zones are where cold oceanic lithosphere sinks back into

7676-545: The original cross-section and gauge length is called the engineering stress–strain curve , while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve . Unless stated otherwise, engineering stress–strain is generally used. In the above definitions of engineering stress and strain, two behaviors of materials in tensile tests are ignored: True stress and true strain are defined differently than engineering stress and strain to account for these behaviors. They are given as Here

7777-412: The overlying plate. If an eruption occurs, the cycle then returns the volatiles into the oceans and atmosphere. The surface expressions of subduction zones are arc-trench complexes. On the ocean side of the complex, where the subducting plate first approaches the subduction zone, there is often an outer trench high or outer trench swell . Here the plate shallows slightly before plunging downwards, as

7878-399: The overriding continent. When the lower plate subducts at a shallow angle underneath a continent (something called "flat-slab subduction"), the subducting plate may have enough traction on the bottom of the continental plate to cause the upper plate to contract by folding, faulting, crustal thickening, and mountain building. Flat-slab subduction causes mountain building and volcanism moving into

7979-510: The overriding plate. However, not all arc-trench complexes have an accretionary wedge. Accretionary arcs have a well-developed forearc basin behind the accretionary wedge, while the forearc basin is poorly developed in non-accretionary arcs. Beyond the forearc basin, volcanoes are found in long chains called volcanic arcs . The subducting basalt and sediment are normally rich in hydrous minerals and clays. Additionally, large quantities of water are introduced into cracks and fractures created as

8080-404: The planet. The ocean-ocean plate relationship can lead to subduction zones between oceanic and continental plates, therefore highlighting how important it is to understand this subduction setting. Although it is not fully understood what causes the initiation of subduction of an oceanic plate under another oceanic plate, there are three main models put forth by Baitsch-Ghirardello et al. that explain

8181-582: The possibility of spontaneous subduction from inherent density differences between two plates at specific locations like passive margins and along transform faults . There is evidence this has taken place in the Izu-Bonin-Mariana subduction system. Earlier in Earth's history, subduction is likely to have initiated without horizontal forcing due to the lack of relative plate motion, though a proposal by A. Yin suggests that meteorite impacts may have contributed to subduction initiation on early Earth. Though

8282-520: The pressures and temperatures necessary for this type of metamorphism are much higher than what is observed in most subduction zones. Frezzoti et al. (2011) propose a different mechanism for carbon transport into the overriding plate via dissolution (release of carbon from carbon-bearing minerals into an aqueous solution) instead of decarbonation. Their evidence comes from the close examination of mineral and fluid inclusions in low-temperature (<600 °C) diamonds and garnets found in an eclogite facies in

8383-444: The rocks of the mantle. The mantle-derived magmas (which are initially basaltic in composition) can ultimately reach the Earth's surface, resulting in volcanic eruptions. The chemical composition of the erupting lava depends upon the degree to which the mantle-derived basalt interacts with (melts) Earth's crust or undergoes fractional crystallization . Arc volcanoes tend to produce dangerous eruptions because they are rich in water (from

8484-451: The sample and recording the stress variation with strain until the sample fractures . By convention, the strain is set to the horizontal axis and stress is set to vertical axis. Note that for engineering purposes we often assume the cross-section area of the material does not change during the whole deformation process. This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on

8585-436: The sedimentary and volcanic cover is mostly scraped off to form an orogenic wedge. An orogenic wedge is larger than most accretionary wedges due to the volume of material there is to accrete. The continental basement rocks beneath the weak cover suites are strong and mostly cold, and can be underlain by a >200 km thick layer of dense mantle. After shedding the low density cover units, the continental plate, especially if it

8686-411: The shrinking of section area at UTS point. After the formation of necking, the sample undergoes heterogeneous deformation, so equations above are not valid. The stress and strain at the necking can be expressed as: An empirical equation is commonly used to describe the relationship between true stress and true strain. Here, n is the strain-hardening exponent and K is the strength coefficient. n

8787-450: The sinking oceanic plate they are attached to. Where continents are attached to oceanic plates with no subduction, there is a deep basin that accumulates thick suites of sedimentary and volcanic rocks known as a passive margin. Some passive margins have up to 10 km of sedimentary and volcanic rocks covering the continental crust. As a passive margin is pulled into a subduction zone by the attached and negatively buoyant oceanic lithosphere,

8888-453: The slab and sediments) and tend to be extremely explosive. Krakatoa , Nevado del Ruiz , and Mount Vesuvius are all examples of arc volcanoes. Arcs are also associated with most ore deposits. Beyond the volcanic arc is a back-arc region whose character depends strongly on the angle of subduction of the subducting slab. Where this angle is shallow, the subducting slab drags the overlying continental crust partially with it, which produces

8989-447: The storage of carbon through silicate weathering processes. This storage represents a carbon sink , removing carbon from the atmosphere and resulting in global cooling. Their study correlates several Phanerozoic ophiolite complexes, including active arc-continent subduction, with known global cooling and glaciation periods. This study does not discuss Milankovitch cycles as a driver of global climate cyclicity. Modern-style subduction

9090-481: The strain rate variation. Where K ′ {\displaystyle K'} is constant related to the material flow stress. ε T ˙ {\displaystyle {\dot {\varepsilon _{T}}}} indicates the derivative of strain by the time, which is also known as strain rate. m {\displaystyle m} is the strain-rate sensitivity. Moreover, value of m {\displaystyle m}

9191-481: The stratosphere during violent eruptions can cause rapid cooling of Earth's climate and affect air travel. Arc-magmatism plays a role in Earth's Carbon cycle by releasing subducted carbon through volcanic processes. Older theory states that the carbon from the subducting plate is made available in overlying magmatic systems via decarbonation, where CO 2 is released through silicate-carbonate metamorphism. However, evidence from thermodynamic modeling has shown that

9292-526: The subducting slab bends downward. During the transition from basalt to eclogite, these hydrous materials break down, producing copious quantities of water, which at such great pressure and temperature exists as a supercritical fluid . The supercritical water, which is hot and more buoyant than the surrounding rock, rises into the overlying mantle, where it lowers the melting temperature of the mantle rock, generating magma via flux melting . The magmas, in turn, rise as diapirs because they are less dense than

9393-500: The subducting slab. Transitions between facies cause hydrous minerals to dehydrate at certain pressure-temperature conditions and can therefore be tracked to melting events in the mantle beneath a volcanic arc. Two kinds of arcs are generally observed on Earth: island arcs that form on the oceanic lithosphere (for example, the Mariana and the Tonga island arcs), and continental arcs such as

9494-451: The subject, performs the action of overriding the object, the lower plate, which is overridden. Subduction zones are important for several reasons: Subduction zones have also been considered as possible disposal sites for nuclear waste in which the action of subduction itself would carry the material into the planetary mantle , safely away from any possible influence on humanity or the surface environment. However, that method of disposal

9595-454: The surface once the volcanoes have weathered away. The volcanism and plutonism occur as a consequence of the subducting oceanic slab dehydrating as it reaches higher pressures and temperatures. Once the oceanic slab reaches about 100 km in depth, hydrous minerals become unstable and release fluids into the asthenosphere. The fluids act as a flux for the rock within the asthenosphere and cause it to partially melt. The partially melted material

9696-439: The timing and conditions in which these dehydration reactions occur is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust. A metamorphic facies is characterized by a stable mineral assemblage specific to a pressure-temperature range and specific starting material. Subduction zone metamorphism is characterized by a low temperature, high-ultrahigh pressure metamorphic path through

9797-444: The trench and approximately one hundred kilometers above the subducting slab. Arcs produce about 10% of the total volume of magma produced each year on Earth (approximately 0.75 cubic kilometers), much less than the volume produced at mid-ocean ridges, but they have formed most continental crust . Arc volcanism has the greatest impact on humans because many arc volcanoes lie above sea level and erupt violently. Aerosols injected into

9898-450: The true stress-strain curve, we can estimate the region where necking starts to happen. Since necking starts to appear after ultimate tensile stress where the maximum force applied, we can express this situation as below: so this form can be expressed as below: It indicates that the necking starts to appear where reduction of area becomes much significant compared to the stress change. Then the stress will be localized to specific area where

9999-400: The underlying ductile mantle . This process of convection allows heat generated by radioactive decay to escape from the Earth's interior. The lithosphere consists of the outermost light crust plus the uppermost rigid portion of the mantle . Oceanic lithosphere ranges in thickness from just a few km for young lithosphere created at mid-ocean ridges to around 100 km (62 mi) for

10100-607: Was caused by subduction of the Indo-Australian plate under the Euro-Asian Plate, but the tsunami spread over most of the planet and devastated the areas around the Indian Ocean. Small tremors which cause small, nondamaging tsunamis, also occur frequently. A study published in 2016 suggested a new parameter to determine a subduction zone's ability to generate mega-earthquakes. By examining subduction zone geometry and comparing

10201-563: Was once hotter, but not that subduction conditions were hotter. Previously, the lack of pre-Neoproterozoic blueschist was thought to indicate a different type of subduction. Both lines of evidence refute previous conceptions of modern-style subduction having been initiated in the Neoproterozoic Era 1.0 Ga ago. Harry Hammond Hess , who during World War II served in the United States Navy Reserve and became fascinated in

#860139