PLECS ( Piecewise Linear Electrical Circuit Simulation ) is a software tool for system-level simulations of electrical circuits developed by Plexim . It is especially designed for power electronics but can be used for any electrical network . PLECS includes the possibility to model controls and different physical domains (thermal, magnetic and mechanical) besides the electrical system.
81-465: Most circuit simulation programs model switches as highly nonlinear elements. Due to steep voltage and current transient , the simulation becomes slow when switches are commutated. In most simplistic applications, switches are modelled as variable resistors that alternate between a very small and a very large resistance. In other cases, they are represented by a sophisticated semiconductor model. When simulating complex power electronic systems , however,
162-492: A design flow that engineers use to design, verify, and analyze entire semiconductor chips. Some of the latest EDA tools use artificial intelligence (AI) to help engineers save time and improve chip performance. Integrated circuits can be broadly classified into analog , digital and mixed signal , consisting of analog and digital signaling on the same IC. Digital integrated circuits can contain billions of logic gates , flip-flops , multiplexers , and other circuits in
243-627: A fabrication facility (commonly known as a semiconductor fab ) can cost over US$ 12 billion to construct. The cost of a fabrication facility rises over time because of increased complexity of new products; this is known as Rock's law . Such a facility features: ICs can be manufactured either in-house by integrated device manufacturers (IDMs) or using the foundry model . IDMs are vertically integrated companies (like Intel and Samsung ) that design, manufacture and sell their own ICs, and may offer design and/or manufacturing (foundry) services to other companies (the latter often to fabless companies ). In
324-509: A microchip , computer chip , or simply chip , is a small electronic device made up of multiple interconnected electronic components such as transistors , resistors , and capacitors . These components are etched onto a small piece of semiconductor material, usually silicon . Integrated circuits are used in a wide range of electronic devices, including computers , smartphones , and televisions , to perform various functions such as processing and storing information. They have greatly impacted
405-412: A microprocessor will have memory on the chip. (See the regular array structure at the bottom of the first image. ) Although the structures are intricate – with widths which have been shrinking for decades – the layers remain much thinner than the device widths. The layers of material are fabricated much like a photographic process, although light waves in the visible spectrum cannot be used to "expose"
486-700: A schematic editor , a simulation engine, and an on-screen waveform display (see Figure 1), allowing designers to rapidly modify a simulated circuit and see what effect the changes have on the output. They also typically contain extensive model and device libraries. These models typically include IC specific transistor models such as BSIM, generic components such as resistors , capacitors , inductors and transformers , user defined models (such as controlled current and voltage sources, or models in Verilog-A or VHDL-AMS ). Printed circuit board (PCB) design requires specific models as well, such as transmission lines for
567-488: A 1dB equi-ripple response from 0 to 1GHz, the complex S parameter entries need to be converted to their respective magnitudes, using the standard | S i j | = S i j real 2 + S i j imag 2 {\displaystyle |S_{ij}|={\sqrt {S_{ij{\text{ real}}}^{2}+S_{ij{\text{ imag}}}^{2}}}} . It may be useful to do some quick validity checks at this point. Since
648-466: A common active area, but there was no electrical isolation to separate them from each other. The monolithic integrated circuit chip was enabled by the inventions of the planar process by Jean Hoerni and p–n junction isolation by Kurt Lehovec . Hoerni's invention was built on Carl Frosch and Lincoln Derick's work on surface protection and passivation by silicon dioxide masking and predeposition, as well as Fuller, Ditzenberger's and others work on
729-542: A common substrate in a three-stage amplifier arrangement. Jacobi disclosed small and cheap hearing aids as typical industrial applications of his patent. An immediate commercial use of his patent has not been reported. Another early proponent of the concept was Geoffrey Dummer (1909–2002), a radar scientist working for the Royal Radar Establishment of the British Ministry of Defence . Dummer presented
810-491: A few square millimeters. The small size of these circuits allows high speed, low power dissipation, and reduced manufacturing cost compared with board-level integration. These digital ICs, typically microprocessors , DSPs , and microcontrollers , use boolean algebra to process "one" and "zero" signals . Among the most advanced integrated circuits are the microprocessors or " cores ", used in personal computers, cell-phones, etc. Several cores may be integrated together in
891-632: A frequency of 1GHz is selected. Elements connected to node 0, the ground node, do not need their respective Y12 or Y21 calculated, and are shown as "n/a" in the table. It should be remembered that while Ideal inductor and capacitor modals consist of very simple 2x2 models where Y11 = Y22 = -Y12 = -Y21, most real world elements cannot be modeled so simply. With transmission lines and real world inductor and capacitor models, for example, Y11 != -Y12, and for some more complex passive asymmetric elements Y11 != Y22. For many active linear devices, such as operational amplifiers , Y12 != Y21. Therefore,
SECTION 10
#1732851357373972-408: A layer of material, as they would be too large for the features. Thus photons of higher frequencies (typically ultraviolet ) are used to create the patterns for each layer. Because each feature is so small, electron microscopes are essential tools for a process engineer who might be debugging a fabrication process. Each device is tested before packaging using automated test equipment (ATE), in
1053-428: A number of steps for the p–n junction isolation of transistors on a chip, MOSFETs required no such steps but could be easily isolated from each other. Its advantage for integrated circuits was pointed out by Dawon Kahng in 1961. The list of IEEE milestones includes the first integrated circuit by Kilby in 1958, Hoerni's planar process and Noyce's planar IC in 1959. The earliest experimental MOS IC to be fabricated
1134-811: A port resistance small enough to not introduce any error of significance. For example, a port with a resistance of 1e-09 in a network that is terminated elsewhere by 50 ohms would model an ideal source with sufficient accuracy. Since the example above simulates S parameters, another conversion is necessary to obtain the transfer function from S parameters. The conversion is, V i V j = S i j 2 R j R i , i ≠ j {\displaystyle {\frac {V_{i}}{V_{j}}}={\frac {S_{ij}}{2}}{\sqrt {\frac {R_{j}}{R_{i}}}},{\text{ }}i\neq j} . Concepts: HDL: Lists: Software: Integrated circuits An integrated circuit ( IC ), also known as
1215-420: A process known as wafer testing , or wafer probing. The wafer is then cut into rectangular blocks, each of which is called a die . Each good die (plural dice , dies , or die ) is then connected into a package using aluminium (or gold) bond wires which are thermosonically bonded to pads , usually found around the edge of the die. Thermosonic bonding was first introduced by A. Coucoulas which provided
1296-421: A rate predicted by Moore's law , leading to large-scale integration (LSI) with hundreds of transistors on a single MOS chip by the late 1960s. Following the development of the self-aligned gate (silicon-gate) MOSFET by Robert Kerwin, Donald Klein and John Sarace at Bell Labs in 1967, the first silicon-gate MOS IC technology with self-aligned gates , the basis of all modern CMOS integrated circuits,
1377-407: A reliable means of forming these vital electrical connections to the outside world. After packaging, the devices go through final testing on the same or similar ATE used during wafer probing. Industrial CT scanning can also be used. Test cost can account for over 25% of the cost of fabrication on lower-cost products, but can be negligible on low-yielding, larger, or higher-cost devices. As of 2022 ,
1458-426: A semiconductor to modulate its electronic properties. Doping is the process of adding dopants to a semiconductor material. Since a CMOS device only draws current on the transition between logic states , CMOS devices consume much less current than bipolar junction transistor devices. A random-access memory is the most regular type of integrated circuit; the highest density devices are thus memories; but even
1539-859: A single IC or chip. Digital memory chips and application-specific integrated circuits (ASICs) are examples of other families of integrated circuits. In the 1980s, programmable logic devices were developed. These devices contain circuits whose logical function and connectivity can be programmed by the user, rather than being fixed by the integrated circuit manufacturer. This allows a chip to be programmed to do various LSI-type functions such as logic gates , adders and registers . Programmability comes in various forms – devices that can be programmed only once , devices that can be erased and then re-programmed using UV light , devices that can be (re)programmed using flash memory , and field-programmable gate arrays (FPGAs) which can be programmed at any time, including during operation. Current FPGAs can (as of 2016) implement
1620-532: A single die. A technique has been demonstrated to include microfluidic cooling on integrated circuits, to improve cooling performance as well as peltier thermoelectric coolers on solder bumps, or thermal solder bumps used exclusively for heat dissipation, used in flip-chip . The cost of designing and developing a complex integrated circuit is quite high, normally in the multiple tens of millions of dollars. Therefore, it only makes economic sense to produce integrated circuit products with high production volume, so
1701-495: A single layer on one side of a chip of silicon in a flat two-dimensional planar process . Researchers have produced prototypes of several promising alternatives, such as: As it becomes more difficult to manufacture ever smaller transistors, companies are using multi-chip modules / chiplets , three-dimensional integrated circuits , package on package , High Bandwidth Memory and through-silicon vias with die stacking to increase performance and reduce size, without having to reduce
SECTION 20
#17328513573731782-482: A six-pin device. Radios with the Loewe 3NF were less expensive than other radios, showing one of the advantages of integration over using discrete components , that would be seen decades later with ICs. Early concepts of an integrated circuit go back to 1949, when German engineer Werner Jacobi ( Siemens AG ) filed a patent for an integrated-circuit-like semiconductor amplifying device showing five transistors on
1863-506: A software license of PLECS (Blockset or Standalone) and a PLECS Coder license are required to operate the hardware. Electronic circuit simulation Electronic circuit simulation uses mathematical models to replicate the behavior of an actual electronic device or circuit. Simulation software allows for the modeling of circuit operation and is an invaluable analysis tool. Due to its highly accurate modeling capability, many colleges and universities use this type of software for
1944-505: A year after Kilby, Robert Noyce at Fairchild Semiconductor invented the first true monolithic IC chip. More practical than Kilby's implementation, Noyce's chip was made of silicon , whereas Kilby's was made of germanium , and Noyce's was fabricated using the planar process , developed in early 1959 by his colleague Jean Hoerni and included the critical on-chip aluminum interconnecting lines. Modern IC chips are based on Noyce's monolithic IC, rather than Kilby's. NASA's Apollo Program
2025-488: Is an add-on to PLECS Blockset and PLECS Standalone. It generates ANSI-C code from a PLECS model which can be compiled to execute on the simulation host or a separate target. The target can be an embedded control platform or a real-time digital simulator. The PLECS Coder can also produce embedded code for specific hardware targets. In the Model-based design of control loops, Processor-in-the-Loop (PIL) simulation can accelerate
2106-420: Is confirmed to be correct. Since S parameters require terminations on all nodes being simulated, simulating the S parameter value for unterminated nodes, such as the internal nodes of a network, are technically unsupported. However, placing a resistive termination on unterminated nodes that is large enough to not introduce any error of significance to make the nodes terminated is sufficient to accurately simulate
2187-493: Is high because the IC's components switch quickly and consume comparatively little power because of their small size and proximity. The main disadvantage of ICs is the high initial cost of designing them and the enormous capital cost of factory construction. This high initial cost means ICs are only commercially viable when high production volumes are anticipated. An integrated circuit is defined as: A circuit in which all or some of
2268-681: Is obsolete. An early attempt at combining several components in one device (like modern ICs) was the Loewe 3NF vacuum tube first made in 1926. Unlike ICs, it was designed with the purpose of tax avoidance , as in Germany, radio receivers had a tax that was levied depending on how many tube holders a radio receiver had. It allowed radio receivers to have a single tube holder. One million were manufactured, and were "a first step in integration of radioelectronic devices". The device contained an amplifier , composed of three triodes, two capacitors and four resistors in
2349-460: The Chebyshev Cauar topology and subsequent impedance and frequency scaling produces the elements shown in the table and Micro-cap schematic below. 50 ohms and 1GHz The table above provides a list of ideal elements to model along with a node attachments to simulate. Next, each non-port element must be converted into a 2X2 Y parameter model for each frequency to be simulated. For this example,
2430-476: The dual in-line package (DIP), first in ceramic and later in plastic, which is commonly cresol - formaldehyde - novolac . In the 1980s pin counts of VLSI circuits exceeded the practical limit for DIP packaging, leading to pin grid array (PGA) and leadless chip carrier (LCC) packages. Surface mount packaging appeared in the early 1980s and became popular in the late 1980s, using finer lead pitch with leads formed as either gull-wing or J-lead, as exemplified by
2511-488: The non-recurring engineering (NRE) costs are spread across typically millions of production units. Modern semiconductor chips have billions of components, and are far too complex to be designed by hand. Software tools to help the designer are essential. Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems , including integrated circuits. The tools work together in
PLECS - Misplaced Pages Continue
2592-498: The periodic table of the chemical elements were identified as the most likely materials for a solid-state vacuum tube . Starting with copper oxide , proceeding to germanium , then silicon , the materials were systematically studied in the 1940s and 1950s. Today, monocrystalline silicon is the main substrate used for ICs although some III-V compounds of the periodic table such as gallium arsenide are used for specialized applications like LEDs , lasers , solar cells and
2673-544: The small-outline integrated circuit (SOIC) package – a carrier which occupies an area about 30–50% less than an equivalent DIP and is typically 70% thinner. This package has "gull wing" leads protruding from the two long sides and a lead spacing of 0.050 inches. In the late 1990s, plastic quad flat pack (PQFP) and thin small-outline package (TSOP) packages became the most common for high pin count devices, though PGA packages are still used for high-end microprocessors . Ball grid array (BGA) packages have existed since
2754-416: The switching power consumption per transistor goes down, while the memory capacity and speed go up, through the relationships defined by Dennard scaling ( MOSFET scaling ). Because speed, capacity, and power consumption gains are apparent to the end user, there is fierce competition among the manufacturers to use finer geometries. Over the years, transistor sizes have decreased from tens of microns in
2835-503: The very large-scale integration (VLSI) of more than 10,000 transistors on a single chip. At first, MOS-based computers only made sense when high density was required, such as aerospace and pocket calculators . Computers built entirely from TTL, such as the 1970 Datapoint 2200 , were much faster and more powerful than single-chip MOS microprocessors such as the 1972 Intel 8008 until the early 1980s. Advances in IC technology, primarily smaller features and larger chips, have allowed
2916-413: The 1960s, the size, speed, and capacity of chips have progressed enormously, driven by technical advances that fit more and more transistors on chips of the same size – a modern chip may have many billions of transistors in an area the size of a human fingernail. These advances, roughly following Moore's law , make the computer chips of today possess millions of times the capacity and thousands of times
2997-425: The 1970s. Flip-chip Ball Grid Array packages, which allow for a much higher pin count than other package types, were developed in the 1990s. In an FCBGA package, the die is mounted upside-down (flipped) and connects to the package balls via a package substrate that is similar to a printed-circuit board rather than by wires. FCBGA packages allow an array of input-output signals (called Area-I/O) to be distributed over
3078-482: The 22 nm node (Intel) or 16/14 nm nodes. Mono-crystal silicon wafers are used in most applications (or for special applications, other semiconductors such as gallium arsenide are used). The wafer need not be entirely silicon. Photolithography is used to mark different areas of the substrate to be doped or to have polysilicon, insulators or metal (typically aluminium or copper) tracks deposited on them. Dopants are impurities intentionally introduced to
3159-553: The PLECS product family includes real-time simulation hardware for both hardware-in-the-loop (HIL) testing and rapid control prototyping. The PLECS software is available in two editions: PLECS Blockset for integration with MATLAB®/Simulink®, and PLECS Standalone, a completely independent product. When using PLECS Blockset, the control loops are usually created in Simulink , while the electrical circuits are modelled in PLECS. PLECS Standalone on
3240-544: The analysis of transmission line and signal integrity problems where a close inspection of an IC’s I/O characteristics is needed. Boolean logic expressions are delay-less functions that are used to provide efficient logic signal processing in an analog environment. These two modeling techniques use SPICE to solve a problem while the third method, digital primitives, uses mixed mode capability. Each of these methods has its merits and target applications. In fact, many simulations (particularly those which use A/D technology) call for
3321-595: The appropriate locations. To simulate the filter at 1GHz, or any frequency, the element Y parameters must be converted to numerical entries using Y parameter models appropriate for the element installed. For ideal inductors and capacitors, the well known Y11 = Y22 = -Y12 = -Y21 = j 2 π f L {\displaystyle j2\pi fL} for inductors and Y11 = Y22 = -Y12 = -Y21 = − j / ( 2 π f C ) {\displaystyle -j/(2\pi fC)} for capacitors are sufficient. The numerical conversion are shown in
PLECS - Misplaced Pages Continue
3402-465: The behavior of electronic circuit designs. In particular, for integrated circuits , the tooling ( photomasks ) is expensive, breadboards are impractical, and probing the behavior of internal signals is extremely difficult. Therefore, almost all IC design relies heavily on simulation. The most well known analog simulator is SPICE. Probably the best known digital simulators are those based on Verilog and VHDL . Some electronics simulators integrate
3483-719: The circuit elements are inseparably associated and electrically interconnected so that it is considered to be indivisible for the purposes of construction and commerce. In strict usage, integrated circuit refers to the single-piece circuit construction originally known as a monolithic integrated circuit , which comprises a single piece of silicon. In general usage, circuits not meeting this strict definition are sometimes referred to as ICs, which are constructed using many different technologies, e.g. 3D IC , 2.5D IC , MCM , thin-film transistors , thick-film technologies , or hybrid integrated circuits . The choice of terminology frequently appears in discussions related to whether Moore's Law
3564-489: The combination of all three approaches. No one approach alone is sufficient. Another type of simulation used mainly for power electronics represent piecewise linear algorithms. These algorithms use an analog (linear) simulation until a power electronic switch changes its state. At this time a new analog model is calculated to be used for the next simulation period. This methodology both enhances simulation speed and stability significantly. Process variations occur when
3645-473: The components of the electronic circuit are completely integrated". The first customer for the new invention was the US Air Force . Kilby won the 2000 Nobel Prize in physics for his part in the invention of the integrated circuit. However, Kilby's invention was not a true monolithic integrated circuit chip since it had external gold-wire connections, which would have made it difficult to mass-produce. Half
3726-447: The design is fabricated and circuit simulators often do not take these variations into account. These variations can be small, but taken together, they can change the output of a chip significantly. Temperature variation can also be modeled to simulate the circuit's performance through temperature ranges. A common method of simulating linear circuits systems is with admittance matrices , or Y matrices. The technique involves modeling
3807-473: The desktop Datapoint 2200 were built from bipolar integrated circuits, either TTL or the even faster emitter-coupled logic (ECL). Nearly all modern IC chips are metal–oxide–semiconductor (MOS) integrated circuits, built from MOSFETs (metal–oxide–silicon field-effect transistors). The MOSFET invented at Bell Labs between 1955 and 1960, made it possible to build high-density integrated circuits . In contrast to bipolar transistors which required
3888-499: The development process. It allows engineers to test their control algorithms on the real hardware inside a virtual circuit simulator. As an add-on to PLECS Blockset and PLECS Standalone, PLECS PIL provides that solution. The PLECS RT Box is a real-time simulator specially designed for power electronics applications. It is a processing unit for both real-time hardware-in-the-loop (HIL) testing and rapid control prototyping . A PLECS RT Box can be programmed and operated from PLECS. Thus,
3969-418: The die must pass through the material electrically connecting the die to the package, through the conductive traces (paths) in the package, through the leads connecting the package to the conductive traces on the printed circuit board . The materials and structures used in the path these electrical signals must travel have very different electrical properties, compared to those that travel to different parts of
4050-536: The diffusion of impurities into silicon. A precursor idea to the IC was to create small ceramic substrates (so-called micromodules ), each containing a single miniaturized component. Components could then be integrated and wired into a bidimensional or tridimensional compact grid. This idea, which seemed very promising in 1957, was proposed to the US Army by Jack Kilby and led to the short-lived Micromodule Program (similar to 1951's Project Tinkertoy). However, as
4131-399: The digital models in mixed-mode simulators provide accurate specification of propagation time and rise/fall time delays. The event-driven algorithm provided by mixed-mode simulators is general-purpose and supports non-digital types of data. For example, elements can use real or integer values to simulate DSP functions or sampled data filters. Because the event-driven algorithm is faster than
SECTION 50
#17328513573734212-524: The early 1970s to 10 nanometers in 2017 with a corresponding million-fold increase in transistors per unit area. As of 2016, typical chip areas range from a few square millimeters to around 600 mm , with up to 25 million transistors per mm . The expected shrinking of feature sizes and the needed progress in related areas was forecast for many years by the International Technology Roadmap for Semiconductors (ITRS). The final ITRS
4293-541: The entire die rather than being confined to the die periphery. BGA devices have the advantage of not needing a dedicated socket but are much harder to replace in case of device failure. Intel transitioned away from PGA to land grid array (LGA) and BGA beginning in 2004, with the last PGA socket released in 2014 for mobile platforms. As of 2018 , AMD uses PGA packages on mainstream desktop processors, BGA packages on mobile processors, and high-end desktop and server microprocessors use LGA packages. Electrical signals leaving
4374-580: The equivalent of millions of gates and operate at frequencies up to 1 GHz . Analog ICs, such as sensors , power management circuits , and operational amplifiers (op-amps), process continuous signals , and perform analog functions such as amplification , active filtering , demodulation , and mixing . ICs can combine analog and digital circuits on a chip to create functions such as analog-to-digital converters and digital-to-analog converters . Such mixed-signal circuits offer smaller size and lower cost, but must account for signal interference. Prior to
4455-455: The example Chebyshev filter design requirement is for -1dB attenuation at the cutoff frequency of 1GHz, |S12| at 1 GHz is expected to be -1dB. Furthermore, since all simulation elements are lossless, the well known relation, |S 11 | +|S 12 | = 1 applies at all frequencies, including 1GHz. The final validity test for the example is to simulate the Chebyshev filter frequency response through
4536-440: The example in this section uses independent Y11, Y12, Y21, and Y22 to illustrate the simulation processes that applies to more complex real world devices. Each element Y parameter is inserted into the nodal admittance matrix by summing in them into the nodes they are attached to following the rules below. If the second node is not 0, that is, not a ground: The table below shows the Chebyshev element 2x2 Y parameters summed in at
4617-545: The field of electronics by enabling device miniaturization and enhanced functionality. Integrated circuits are orders of magnitude smaller, faster, and less expensive than those constructed of discrete components, allowing a large transistor count . The IC's mass production capability, reliability, and building-block approach to integrated circuit design have ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized
4698-412: The foundry model, fabless companies (like Nvidia ) only design and sell ICs and outsource all manufacturing to pure play foundries such as TSMC . These foundries may offer IC design services. The earliest integrated circuits were packaged in ceramic flat packs , which continued to be used by the military for their reliability and small size for many years. Commercial circuit packaging quickly moved to
4779-422: The full useful range, which will be taken to be 100 MHz to 5 GHz for this case. This range should permit viewing of the equi-ripple |S12| of the pass band between 0 and -1 dB, somewhat steep stop band |S12| falling off at 1GHz, and an equi-ripple |S12| at the expected peak values of 20log10(.4535...) = -6.86825 dB. Since all simulation outputs conform to the expected results, the Chebyshev filter example simulation
4860-568: The highest-speed integrated circuits. It took decades to perfect methods of creating crystals with minimal defects in semiconducting materials' crystal structure . Semiconductor ICs are fabricated in a planar process which includes three key process steps – photolithography , deposition (such as chemical vapor deposition ), and etching . The main process steps are supplemented by doping and cleaning. More recent or high-performance ICs may instead use multi-gate FinFET or GAAFET transistors instead of planar ones, starting at
4941-579: The idea to the public at the Symposium on Progress in Quality Electronic Components in Washington, D.C. , on 7 May 1952. He gave many symposia publicly to propagate his ideas and unsuccessfully attempted to build such a circuit in 1956. Between 1953 and 1957, Sidney Darlington and Yasuo Tarui ( Electrotechnical Laboratory ) proposed similar chip designs where several transistors could share
SECTION 60
#17328513573735022-499: The individual linear components as an N port admittance matrix, inserting the component Y matrix into a circuits nodal admittance matrix , installing port terminations at nodes that contain ports, eliminating ports without nodes though Kron reduction , converting the final Y matrix to an S or Z matrix as needed, and extracting desired measurements from the Y, Z, and/or S matrix. A fifth order, 50 ohm, Chebyshev filter with 1dB of pass band ripple and cutoff frequency of 1GHz designed using
5103-421: The late 1990s, radios could not be fabricated in the same low-cost CMOS processes as microprocessors. But since 1998, radio chips have been developed using RF CMOS processes. Examples include Intel's DECT cordless phone, or 802.11 ( Wi-Fi ) chips created by Atheros and other companies. Modern electronic component distributors often further sub-categorize integrated circuits: The semiconductors of
5184-436: The next step is to convert the Y parameter matrix to an S parameter matrix, using well known Y matrix to S matrix conversions with the port impedance as the characteristic impedance (or characteristic admittance) for each node. Simulated S parameters also allow for useful post simulation processing for things such as group delay and phase delay . Since the Chebyshev frequency response is expected to be observable in |S12| as
5265-411: The node. For example, the two internal nodes that were eliminated above could alternatively have had a 1e+09 ohm port attached to them, so instead of using Kron reduction to eliminate the nodes, the nodes could be accurately simulated with excessively large resistive ports. If the input source to the network is an ideal voltage source with no resistance, the example above may be made to work by including
5346-623: The non-linear discontinuity that occurs in the equivalent-circuit at the switching instant. Secondly, to handle discontinuities at the switching instants, only two integration steps are required (one for before the instant, and one after). Both of these advantages speed up the simulation considerably, without sacrificing accuracy. Thus the software is ideally suited for modelling and simulation of complex drive systems and modular multilevel converters, for example. In recent years, PLECS has been extended to also support model-based development of controls with automatic code generation. In addition to software,
5427-433: The number of MOS transistors in an integrated circuit to double every two years, a trend known as Moore's law. Moore originally stated it would double every year, but he went on to change the claim to every two years in 1975. This increased capacity has been used to decrease cost and increase functionality. In general, as the feature size shrinks, almost every aspect of an IC's operation improves. The cost per transistor and
5508-473: The other hand can be operated independently from other software and offers an all-in-one solution for modelling electrical circuits and controls in a single environment. Both editions are interoperable with each other. The main difference between the two versions is that PLECS Standalone runs faster than PLECS Blockset due to its optimised engine. A code generator usually converts some intermediate representation of source code into machine code. The PLECS Coder
5589-400: The processes during switching are of little interest. In these situations it is more appropriate to use ideal switches that toggle instantaneously between a closed and an open circuit. This approach, which is implemented in PLECS, has two major advantages: Firstly, it yields systems that are piecewise-linear across switching instants, thus resolving the otherwise difficult problem of simulating
5670-493: The project was gaining momentum, Kilby came up with a new, revolutionary design: the IC. Newly employed by Texas Instruments , Kilby recorded his initial ideas concerning the integrated circuit in July 1958, successfully demonstrating the first working example of an integrated circuit on 12 September 1958. In his patent application of 6 February 1959, Kilby described his new device as "a body of semiconductor material … wherein all
5751-474: The size of the transistors. Such techniques are collectively known as advanced packaging . Advanced packaging is mainly divided into 2.5D and 3D packaging. 2.5D describes approaches such as multi-chip modules while 3D describes approaches where dies are stacked in one way or another, such as package on package and high bandwidth memory. All approaches involve 2 or more dies in a single package. Alternatively, approaches such as 3D NAND stack multiple layers on
5832-427: The speed of the computer chips of the early 1970s. ICs have three main advantages over circuits constructed out of discrete components: size, cost and performance. The size and cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, packaged ICs use much less material than discrete circuits. Performance
5913-493: The standard SPICE matrix solution, simulation time is greatly reduced for circuits that use event-driven models in place of analog models. Mixed-mode simulation is handled on three levels: with primitive digital elements that use timing models and the built-in 12 or 16 state digital logic simulator, with subcircuit models that use the actual transistor topology of the integrated circuit , and finally, with inline Boolean logic expressions. Exact representations are used mainly in
5994-417: The table below. Since ports are only attached to node 1 and node 4, nodes 2 and 3 need to be removed through Kron reduction . The table below shows the reduced Y parameter matrix of the Chebyshev filter example simulation after nodes 2 and 4 are eliminated. The nodes of the reduced table are renumbered to 1 and 2. Since the Chebyshev frequency response is observed from the S parameter matrix, namely |S12|,
6075-516: The teaching of electronics technician and electronics engineering programs. Electronics simulation software engages its users by integrating them into the learning experience. These kinds of interactions actively engage learners to analyze, synthesize , organize, and evaluate content and result in learners constructing their own knowledge. Simulating a circuit’s behavior before actually building it can greatly improve design efficiency by making faulty designs known as such, and providing insight into
6156-415: The traces and IBIS models for driving and receiving electronics. While there are strictly analog electronics circuit simulators, popular simulators often include both analog and event-driven digital simulation capabilities, and are known as mixed-mode or mixed-signal simulators if they can simulate both simultaneously. An entire mixed signal analysis can be driven from one integrated schematic. All
6237-400: The world of electronics . Computers, mobile phones, and other home appliances are now essential parts of the structure of modern societies, made possible by the small size and low cost of ICs such as modern computer processors and microcontrollers . Very-large-scale integration was made practical by technological advancements in semiconductor device fabrication . Since their origins in
6318-401: Was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA in 1962. General Microelectronics later introduced the first commercial MOS integrated circuit in 1964, a 120-transistor shift register developed by Robert Norman. By 1964, MOS chips had reached higher transistor density and lower manufacturing costs than bipolar chips. MOS chips further increased in complexity at
6399-441: Was developed at Fairchild Semiconductor by Federico Faggin in 1968. The application of MOS LSI chips to computing was the basis for the first microprocessors , as engineers began recognizing that a complete computer processor could be contained on a single MOS LSI chip. This led to the inventions of the microprocessor and the microcontroller by the early 1970s. During the early 1970s, MOS integrated circuit technology enabled
6480-505: Was issued in 2016, and it is being replaced by the International Roadmap for Devices and Systems . Initially, ICs were strictly electronic devices. The success of ICs has led to the integration of other technologies, in an attempt to obtain the same advantages of small size and low cost. These technologies include mechanical devices, optics, and sensors. As of 2018 , the vast majority of all transistors are MOSFETs fabricated in
6561-480: Was the largest single consumer of integrated circuits between 1961 and 1965. Transistor–transistor logic (TTL) was developed by James L. Buie in the early 1960s at TRW Inc. TTL became the dominant integrated circuit technology during the 1970s to early 1980s. Dozens of TTL integrated circuits were a standard method of construction for the processors of minicomputers and mainframe computers . Computers such as IBM 360 mainframes, PDP-11 minicomputers and
#372627