Misplaced Pages

Parkin (protein)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

2KES

#825174

80-403: 1IYF , 2JMO , 4I1F , 4I1H , 4BM9 , 5C1Z , 5C23 , 5C9V 5071 50873 ENSG00000185345 ENSMUSG00000023826 O60260 Q9WVS6 NM_004562 NM_013987 NM_013988 NM_016694 NM_001317726 NP_004553 NP_054642 NP_054643 NP_001304655 NP_057903 Parkin is a 465- amino acid residue E3 ubiquitin ligase , a protein that in humans and mice

160-508: A C-terminal motif that binds PDZ domains . Parkin has been shown to associate in a PDZ dependent manner with the PDZ domain containing proteins CASK and PICK1 . Like other members of the RING-between-RING (RBR) family of E3 ligases, parkin possesses two RING finger domains and an in-between-RING (IBR) region. RING1 forms the binding site for E2 Ub-conjugating enzyme while RING2 contains

240-638: A dose-dependent reduction in transcription and activity of pro-apoptotic factor p53 . Transfection of p53 promoter with truncated versions of parkin into SH-SY5Y neurons revealed that parkin directly binds to the p53 promoter via its RING1 domain. Conversely, parkin may be a transcriptional target of p53 in H460 lung cells, where it mediates the tumour suppressor action of p53. Considering its role in mitochondrial homeostasis , parkin aids p53 in maintaining mitochondrial respiration while limiting glucose uptake and lactate production, thus preventing onset of

320-472: A Brønsted acid. Histidine under these conditions can act both as a Brønsted acid and a base. For amino acids with uncharged side-chains the zwitterion predominates at pH values between the two p K a values, but coexists in equilibrium with small amounts of net negative and net positive ions. At the midpoint between the two p K a values, the trace amount of net negative and trace of net positive ions balance, so that average net charge of all forms present

400-480: A cationic pocket in RING0 formed by lysine and arginine residues Lys161, Arg163 and Lys211 that forms a putative phosphate binding site. Considering that RING0 is unique to parkin and that its hydrophobic interface with RING1 buries Cys431 in inactive parkin, targeting of phosphorylated Ub and/or Ubl towards this binding niche might be critical in dismantling autoinhibitory complexes during parkin activation. Parkin plays

480-412: A crucial role in mitophagy and clearance of reactive oxygen species . Mitophagy is the elimination of damaged mitochondria in autophagosomes , and is dependent on a positive feedback cycle involving synergistic action of parkin and PINK1. Following severe cellular insult, rundown of mitochondrial membrane potential prevents import of PINK1 into the mitochondrial matrix and causes it to aggregate on

560-1089: A four-fold elevation in p53 immunoreactivity , insinuating that failure of parkin-mediated anti-apoptosis might be involved in etiology of PD. Consistent with parkin's potent anti-tumourigenic abilities, negative mutations and deletions have been reported in various tumours. For example, PARK2 copy number was reduced in 85% of glioblastoma samples while lung cancers were associated with heterozygous deletion of PARK2 at 6q25-q27 locus. Parkin deficiency further diminished disease-free survival in infrared-irradiated mice without increasing tumour incidence rate , suggesting that parkin deficiencies increase susceptibility to tumour-promoting events, rather than initiating tumour formation. Similarly, chromosomal breaks in PARK2 suppressed expression of afadin scaffold protein in breast cancer , thereby comprising epithelial integrity, enhancing metastatic potential and worsening overall prognosis . Haploinsufficient PARK2 expression, either due to reduced copy number or DNA hypermethylation ,

640-543: A hydrogen atom. With the exception of glycine, for which the side chain is also a hydrogen atom, the α–carbon is stereogenic . All chiral proteogenic amino acids have the L configuration. They are "left-handed" enantiomers , which refers to the stereoisomers of the alpha carbon. A few D -amino acids ("right-handed") have been found in nature, e.g., in bacterial envelopes , as a neuromodulator ( D - serine ), and in some antibiotics . Rarely, D -amino acid residues are found in proteins, and are converted from

720-458: A modulatory role in synapse function. Finally, parkin protects dopaminergic neurons from cytotoxicity induced by PD-mimetic 6-OHDA , mediated by suppression of neuronal p53 expression and its downstream activation of the apoptotic cascade. Several PD-associated parkin mutations are localised to RING1 and might impair its ability to bind and downregulate the p53 promoter, leading to enhanced p53 expression. Parkin-mutant PD patients also exhibit

800-439: A pK a of 6.0, and is only around 10% protonated at neutral pH. Because histidine is easily found in its basic and conjugate acid forms it often participates in catalytic proton transfers in enzyme reactions. The polar, uncharged amino acids serine (Ser, S), threonine (Thr, T), asparagine (Asn, N) and glutamine (Gln, Q) readily form hydrogen bonds with water and other amino acids. They do not ionize in normal conditions,

880-454: A patch of hydrophobic amino acids on their surface that sticks to the membrane. In a similar fashion, proteins that have to bind to positively charged molecules have surfaces rich in negatively charged amino acids such as glutamate and aspartate , while proteins binding to negatively charged molecules have surfaces rich in positively charged amino acids like lysine and arginine . For example, lysine and arginine are present in large amounts in

SECTION 10

#1732858664826

960-461: A prominent exception being the catalytic serine in serine proteases . This is an example of severe perturbation, and is not characteristic of serine residues in general. Threonine has two chiral centers, not only the L (2 S ) chiral center at the α-carbon shared by all amino acids apart from achiral glycine, but also (3 R ) at the β-carbon. The full stereochemical specification is (2 S ,3 R )- L - threonine . Nonpolar amino acid interactions are

1040-489: A role in the formation of cytoplasmic inclusions and neurodegeneration . A mutation in this gene has been associated with Parkinson's disease . Alternatively spliced transcript variants encoding different isoforms of this gene have been described, but their full-length nature has yet to be determined. The SNCAIP gene provides instructions for making a protein called synphilin-1 and a slightly different version of this protein called synphilin-1A. These proteins are produced in

1120-463: A unique RING0 domain and a repressor (REP) region that tonically suppresses ligase activity. Under resting conditions, the tightly coiled conformation of parkin renders it inactive, as access to the catalytic RING2 residue is sterically blocked by RING0, while the E2 binding domain on RING1 is occluded by Ubl and REP. Activating stimuli disrupt these interdomain interactions and induce parkin to collapse along

1200-805: A voltage-gated anion channel that undergoes a conformational change upon mitochondrial membrane depolarisation, exposing a cytosolic domain for ubiquitination. Silencing of VDAC1 expression in HeLa cells significantly reduced parkin recruitment to depolarised mitochondria and their subsequent clearance, highlighting the critical role of VDAC1 as a selective marker of mitochondrial damage and instigator of mitophagy. Following Ub conjugation, parkin recruits autophagy receptors such as p62, TAX1BP1 and CALCOCO2 , facilitating assembly of autophagosomes that digest defective mitochondria. Through activation of NF-κB signalling, parkin enhances survival and protects cells from stress-induced apoptosis. Upon cellular insult, parkin activates

1280-451: A way unique among amino acids. Selenocysteine (Sec, U) is a rare amino acid not directly encoded by DNA, but is incorporated into proteins via the ribosome. Selenocysteine has a lower redox potential compared to the similar cysteine, and participates in several unique enzymatic reactions. Pyrrolysine (Pyl, O) is another amino acid not encoded in DNA, but synthesized into protein by ribosomes. It

1360-482: Is Pyz –Phe–boroLeu, and MG132 is Z –Leu–Leu–Leu–al. To aid in the analysis of protein structure, photo-reactive amino acid analogs are available. These include photoleucine ( pLeu ) and photomethionine ( pMet ). Amino acids are the precursors to proteins. They join by condensation reactions to form short polymer chains called peptides or longer chains called either polypeptides or proteins. These chains are linear and unbranched, with each amino acid residue within

1440-547: Is a protein that in humans is encoded by the SNCAIP gene . SNCAIP stands for "synuclein, alpha interacting protein" and can be signified by SNCAP_HUMAN, synphilin 1, synuclein, alpha interacting protein (synphilin), and SYPH1. This gene encodes a protein containing several protein-protein interaction domains, including ankyrin -like repeats, a coiled-coil domain, and an ATP/GTP-binding motif. The encoded protein interacts with alpha-synuclein in neuronal tissue and may play

1520-499: Is an OMM protein critical for axonal transport , and may be ubiquitinated and targeted towards proteasomal degradation by parkin. Miro breakdown produced a marked decrease in migration of compromised mitochondria along axons of mouse hippocampal neurons , reinforcing the importance of parkin in segregating defective mitochondria from their functioning counterparts and limiting the spatial spread of mitochondrial dysfunction, prior to autophagy. During mitophagy, parkin targets VDAC1 ,

1600-448: Is encoded by the PARK2 gene . Parkin plays a critical role in ubiquitination – the process whereby molecules are covalently labelled with ubiquitin (Ub) and directed towards degradation in proteasomes or lysosomes . Ubiquitination involves the sequential action of three enzymes. First, an E1 ubiquitin-activating enzyme binds to inactive Ub in eukaryotic cells via a thioester bond and mobilises it in an ATP-dependent process. Ub

1680-421: Is found in archaeal species where it participates in the catalytic activity of several methyltransferases. Amino acids with the structure NH + 3 −CXY−CXY−CO − 2 , such as β-alanine , a component of carnosine and a few other peptides, are β-amino acids. Ones with the structure NH + 3 −CXY−CXY−CXY−CO − 2 are γ-amino acids, and so on, where X and Y are two substituents (one of which

SECTION 20

#1732858664826

1760-499: Is less than 20 (80% vs. 28% with onset over age 40). Patients with parkin mutations (PARK2) do not have Lewy bodies . Such patients develop a syndrome that closely resembles the sporadic form of PD; however, they tend to develop symptoms at a much younger age. In humans, loss-of-function mutations in parkin PARK2 gene have been implicated in 50% of inherited and 15% of juvenile-onset sporadic forms of Parkinson's disease (PD). While PD

1840-407: Is likely, potentiating parkin mobilisation and substrate ubiquitination in a self-reinforcing cycle . Parkin substrates include mitofusins Mfn1 and Mfn2, which are large GTPases that promote mitochondria fusion into dynamic, tubular complexes that maximise efficiency of oxidative phosphorylation . However, upon mitochondrial damage, degradation of fusion proteins is necessary to separate them from

1920-681: Is more usually exploited for peptides and proteins than single amino acids. Zwitterions have minimum solubility at their isoelectric point, and some amino acids (in particular, with nonpolar side chains) can be isolated by precipitation from water by adjusting the pH to the required isoelectric point. The 20 canonical amino acids can be classified according to their properties. Important factors are charge, hydrophilicity or hydrophobicity , size, and functional groups. These properties influence protein structure and protein–protein interactions . The water-soluble proteins tend to have their hydrophobic residues ( Leu , Ile , Val , Phe , and Trp ) buried in

2000-510: Is normally H). The common natural forms of amino acids have a zwitterionic structure, with −NH + 3 ( −NH + 2 − in the case of proline) and −CO − 2 functional groups attached to the same C atom, and are thus α-amino acids, and are the only ones found in proteins during translation in the ribosome. In aqueous solution at pH close to neutrality, amino acids exist as zwitterions , i.e. as dipolar ions with both NH + 3 and CO − 2 in charged states, so

2080-1055: Is postulated to occur in both inherited and idiopathic PD. For example, enhanced oxidative stress in neurons, skeletal muscle and platelets , corresponding with reduced activity of complex I in the electron transport chain were reported in PD patients, while deletions in the mitochondrial genome were found in the SNpc. In accordance with its critical role in mitochondrial quality control, more than 120 pathogenic, PD-inducing mutations have been characterised on parkin. Such mutations may be hereditary or stochastic and are associated with structural instability, reduced catalytic efficiency and aberrant substrate binding and ubiquitination. Mutations can generally be categorised into three groups, depending on their location. Firstly, those clustered around Zn-coordinating residues on RING and IBR might compromise structural integrity and impair catalysis . A second class of mutations, including Thr240Arg, affect residues in and around

2160-403: Is rare. For example, 25 human proteins include selenocysteine in their primary structure, and the structurally characterized enzymes (selenoenzymes) employ selenocysteine as the catalytic moiety in their active sites. Pyrrolysine and selenocysteine are encoded via variant codons. For example, selenocysteine is encoded by stop codon and SECIS element . N -formylmethionine (which is often

2240-527: Is similar to the use of abbreviation codes for degenerate bases . Unk is sometimes used instead of Xaa , but is less standard. Ter or * (from termination) is used in notation for mutations in proteins when a stop codon occurs. It corresponds to no amino acid at all. In addition, many nonstandard amino acids have a specific code. For example, several peptide drugs, such as Bortezomib and MG132 , are artificially synthesized and retain their protecting groups , which have specific codes. Bortezomib

2320-474: Is synthesised from proline . Another example is selenomethionine ). Non-proteinogenic amino acids that are found in proteins are formed by post-translational modification . Such modifications can also determine the localization of the protein, e.g., the addition of long hydrophobic groups can cause a protein to bind to a phospholipid membrane. Examples: Some non-proteinogenic amino acids are not found in proteins. Examples include 2-aminoisobutyric acid and

2400-414: Is then transferred to an E2 ubiquitin-conjugating enzyme before being conjugated to the target protein via an E3 ubiquitin ligase. There exists a multitude of E3 ligases, which differ in structure and substrate specificity to allow selective targeting of proteins to intracellular degradation. In particular, parkin recognises proteins on the outer membrane of mitochondria upon cellular insult and mediates

2480-438: Is these 22 compounds that combine to give a vast array of peptides and proteins assembled by ribosomes . Non-proteinogenic or modified amino acids may arise from post-translational modification or during nonribosomal peptide synthesis. The carbon atom next to the carboxyl group is called the α–carbon . In proteinogenic amino acids, it bears the amine and the R group or side chain specific to each amino acid, as well as

Parkin (protein) - Misplaced Pages Continue

2560-434: Is traditionally regarded a late-onset neurodegenerative condition characterised by alpha-synuclein -enriched Lewy bodies , autosomal recessive PD due to parkin mutations is often early onset and lack the ubiquitinated protein deposits pathognomonic for sporadic PD. Parkin-mutant PD could also involve loss of noradrenergic neurons in the locus coeruleus alongside the hallmark degeneration of dopaminergic neurons in

2640-439: Is used in plants and microorganisms in the synthesis of pantothenic acid (vitamin B 5 ), a component of coenzyme A . Amino acids are not typical component of food: animals eat proteins. The protein is broken down into amino acids in the process of digestion. They are then used to synthesize new proteins, other biomolecules, or are oxidized to urea and carbon dioxide as a source of energy. The oxidation pathway starts with

2720-440: Is useful to avoid various nomenclatural problems but should not be taken to imply that these structures represent an appreciable fraction of the amino-acid molecules. The first few amino acids were discovered in the early 1800s. In 1806, French chemists Louis-Nicolas Vauquelin and Pierre Jean Robiquet isolated a compound from asparagus that was subsequently named asparagine , the first amino acid to be discovered. Cystine

2800-409: Is zero. This pH is known as the isoelectric point p I , so p I = ⁠ 1 / 2 ⁠ (p K a1 + p K a2 ). For amino acids with charged side chains, the p K a of the side chain is involved. Thus for aspartate or glutamate with negative side chains, the terminal amino group is essentially entirely in the charged form −NH + 3 , but this positive charge needs to be balanced by

2880-887: The L -amino acid as a post-translational modification . Five amino acids possess a charge at neutral pH. Often these side chains appear at the surfaces on proteins to enable their solubility in water, and side chains with opposite charges form important electrostatic contacts called salt bridges that maintain structures within a single protein or between interfacing proteins. Many proteins bind metal into their structures specifically, and these interactions are commonly mediated by charged side chains such as aspartate , glutamate and histidine . Under certain conditions, each ion-forming group can be charged, forming double salts. The two negatively charged amino acids at neutral pH are aspartate (Asp, D) and glutamate (Glu, E). The anionic carboxylate groups behave as Brønsted bases in most circumstances. Enzymes in very low pH environments, like

2960-523: The IUPAC - IUBMB Joint Commission on Biochemical Nomenclature in terms of the fictitious "neutral" structure shown in the illustration. For example, the systematic name of alanine is 2-aminopropanoic acid, based on the formula CH 3 −CH(NH 2 )−COOH . The Commission justified this approach as follows: The systematic names and formulas given refer to hypothetical forms in which amino groups are unprotonated and carboxyl groups are undissociated. This convention

3040-452: The Warburg effect during tumourigenesis. Parkin further elevates cytosolic glutathione levels and protects against oxidative stress , characterising it as a critical tumour suppressor with anti- glycolytic and antioxidant capabilities. PARK2 ( OMIM *602544 ) is the parkin gene that may cause a form of autosomal recessive juvenile Parkinson disease ( OMIM 600116 ) due to a mutation in

3120-888: The human body cannot synthesize them from other compounds at the level needed for normal growth, so they must be obtained from food. In addition, cysteine, tyrosine , and arginine are considered semiessential amino acids, and taurine a semi-essential aminosulfonic acid in children. Some amino acids are conditionally essential for certain ages or medical conditions. Essential amino acids may also vary from species to species. The metabolic pathways that synthesize these monomers are not fully developed. Many proteinogenic and non-proteinogenic amino acids have biological functions beyond being precursors to proteins and peptides.In humans, amino acids also have important roles in diverse biosynthetic pathways. Defenses against herbivores in plants sometimes employ amino acids. Examples: Amino acids are sometimes added to animal feed because some of

3200-481: The low-complexity regions of nucleic-acid binding proteins. There are various hydrophobicity scales of amino acid residues. Some amino acids have special properties. Cysteine can form covalent disulfide bonds to other cysteine residues. Proline forms a cycle to the polypeptide backbone, and glycine is more flexible than other amino acids. Glycine and proline are strongly present within low complexity regions of both eukaryotic and prokaryotic proteins, whereas

3280-684: The substantia nigra pars compacta (SNpc). However, its symptoms resembles those of idiopathic PD, with patients presenting with resting tremors , postural instability and bradykinesia . While mitochondria are essential for ATP generation in any eukaryotic cell , catecholaminergic neurons are particularly reliant on their proper function for clearance of reactive oxygen species produced by dopamine metabolism, and to supply high energy requirements of catecholamine synthesis. Their susceptibility to oxidative damage and metabolic stress render catecholaminergic neurons vulnerable to neurotoxicity associated with aberrant regulation of mitochondrial activity, as

Parkin (protein) - Misplaced Pages Continue

3360-563: The E2 binding site and alter autoinhibition of RING1 by REP. Finally, Cys431Phe and Gly430Asp mutations impair ligase activity at the catalytic site and significantly reduce parkin function. The discovery of numerous non-mitochondrial parkin substrates reinforces the importance parkin in neuronal homeostasis, beyond its role in mitochondrial regulation. Potent neuroprotective abilities of parkin in attenuating dopaminergic neurotoxicity, mitochondrial swelling and excitotoxicity were demonstrated in cell cultures over-expressing parkin, although

3440-939: The RING1-RING0 interface. The active site of RING2 is drawn towards E2-Ub bound to RING1, facilitating formation of the Ub-thioester intermediate. Parkin activation requires phosphorylation of serine Ser65 in Ubl by serine/threonine kinase , PINK1 . Addition of a charged phosphate destabilises hydrophobic interactions between Ubl and neighbouring subregions, reducing autoinhibitory effects of this N-terminus domain. Ser65Ala missense mutations were found to ablate Ub-parkin binding whilst inhibiting parkin recruitment to damaged mitochondria. PINK1 also phosphorylates Ub at Ser65, accelerating its discharge from E2 and enhancing its affinity for parkin. Although structural changes following phosphorylation are uncertain, crystallisation of parkin revealed

3520-461: The UGA codon to encode selenocysteine instead of a stop codon. Pyrrolysine is used by some methanogenic archaea in enzymes that they use to produce methane . It is coded for with the codon UAG, which is normally a stop codon in other organisms. Several independent evolutionary studies have suggested that Gly, Ala, Asp, Val, Ser, Pro, Glu, Leu, Thr may belong to a group of amino acids that constituted

3600-401: The amino group of one amino acid with the carboxyl group of another, resulting in a linear structure that Fischer termed " peptide ". 2- , alpha- , or α-amino acids have the generic formula H 2 NCHRCOOH in most cases, where R is an organic substituent known as a " side chain ". Of the many hundreds of described amino acids, 22 are proteinogenic ("protein-building"). It

3680-423: The aspartic protease pepsin in mammalian stomachs, may have catalytic aspartate or glutamate residues that act as Brønsted acids. There are three amino acids with side chains that are cations at neutral pH: arginine (Arg, R), lysine (Lys, K) and histidine (His, H). Arginine has a charged guanidino group and lysine a charged alkyl amino group, and are fully protonated at pH 7. Histidine's imidazole group has

3760-488: The catalytic cysteine residue (Cys431) that cleaves Ub off E2 and transiently binds it to E3 via a thioester bond. Ub transfer is aided by neighbouring residues histidine His433, which accepts a proton from Cys431 to activate it, and glutamate Glu444, which is involved in autoubiquitination. Together these form the catalytic triad , whose assembly is required for parkin activation. Parkin also contains an N-terminal Ub-like domain (Ubl) for specific substrate recognition,

3840-617: The catalytic HOIP subunit of another E3 ligase LUBAC. HOIP triggers assembly of linear Ub polymers on NF-κB essential modulator (NEMO), potentiating transcription of mitochondrial GTPase OPA1 . Increased OPA1 translation maintains cristae structure and reduces cytochrome C release from mitochondria, inhibiting caspase -mediated apoptosis. Importantly, parkin activates HOIP with greater potency than other LUBAC-associated factors HOIL-1 and sharpin, meaning that parkin mobilisation significantly enhances tolerance to moderate stressors . Parkin possesses DNA binding affinity and produces

3920-420: The chain attached to two neighboring amino acids. In nature, the process of making proteins encoded by RNA genetic material is called translation and involves the step-by-step addition of amino acids to a growing protein chain by a ribozyme that is called a ribosome . The order in which the amino acids are added is read through the genetic code from an mRNA template, which is an RNA derived from one of

4000-536: The characteristics of hydrophobic amino acids well. Several side chains are not described well by the charged, polar and hydrophobic categories. Glycine (Gly, G) could be considered a polar amino acid since its small size means that its solubility is largely determined by the amino and carboxylate groups. However, the lack of any side chain provides glycine with a unique flexibility among amino acids with large ramifications to protein folding. Cysteine (Cys, C) can also form hydrogen bonds readily, which would place it in

4080-576: The chemical category was recognized by Wurtz in 1865, but he gave no particular name to it. The first use of the term "amino acid" in the English language dates from 1898, while the German term, Aminosäure , was used earlier. Proteins were found to yield amino acids after enzymatic digestion or acid hydrolysis . In 1902, Emil Fischer and Franz Hofmeister independently proposed that proteins are formed from many amino acids, whereby bonds are formed between

SECTION 50

#1732858664826

4160-451: The clearance of damaged mitochondria via autophagy and proteasomal mechanisms. Parkin also enhances cell survival by suppressing both mitochondria-dependent and -independent apoptosis . Mutations are associated with mitochondrial dysfunction, leading to neuronal death in Parkinson's disease and aberrant metabolism in tumourigenesis . The precise function of parkin is unknown; however,

4240-613: The components of these feeds, such as soybeans , have low levels of some of the essential amino acids , especially of lysine, methionine, threonine, and tryptophan. Likewise amino acids are used to chelate metal cations in order to improve the absorption of minerals from feed supplements. SNCAIP 9627 67847 ENSG00000064692 ENSMUSG00000024534 Q9Y6H5 Q99ME3 NM_001308108 NM_001308109 NM_005460 NM_001199151 NM_001199153 NM_001199154 NM_026408 NP_001295037 NP_001295038 NP_005451 NP_001390576 NP_001390577 Synphilin-1

4320-571: The early genetic code, whereas Cys, Met, Tyr, Trp, His, Phe may belong to a group of amino acids that constituted later additions of the genetic code. The 20 amino acids that are encoded directly by the codons of the universal genetic code are called standard or canonical amino acids. A modified form of methionine ( N -formylmethionine ) is often incorporated in place of methionine as the initial amino acid of proteins in bacteria, mitochondria and plastids (including chloroplasts). Other amino acids are called nonstandard or non-canonical . Most of

4400-629: The existence of such mechanisms at physiological parkin levels in vivo is yet unconfirmed. Another parkin substrate, synphilin-1 (encoded by SNCAIP ), is an alpha-synuclein interacting protein that is enriched in the core of Lewy bodies and ubiquitinated by parkin in a manner abolished by familial PD-associated mutations. Parkin might promote aggregation of alpha-synuclein and synphilin-1 into Lewy bodies, which are conjugated to Lys63-linked poly-Ub chains and directed towards autophagic degradation. Parkin mutations therefore inhibit this mechanism, leading to toxic accumulation of soluble proteins that overloads

4480-423: The form of proteins, amino-acid residues form the second-largest component ( water being the largest) of human muscles and other tissues . Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis . It is thought that they played a key role in enabling life on Earth and its emergence . Amino acids are formally named by

4560-673: The initial amino acid of proteins in bacteria, mitochondria , and chloroplasts ) is generally considered as a form of methionine rather than as a separate proteinogenic amino acid. Codon– tRNA combinations not found in nature can also be used to "expand" the genetic code and form novel proteins known as alloproteins incorporating non-proteinogenic amino acids . Aside from the 22 proteinogenic amino acids , many non-proteinogenic amino acids are known. Those either are not found in proteins (for example carnitine , GABA , levothyroxine ) or are not produced directly and in isolation by standard cellular machinery. For example, hydroxyproline ,

4640-414: The middle of the protein, whereas hydrophilic side chains are exposed to the aqueous solvent. (In biochemistry , a residue refers to a specific monomer within the polymeric chain of a polysaccharide , protein or nucleic acid .) The integral membrane proteins tend to have outer rings of exposed hydrophobic amino acids that anchor them in the lipid bilayer . Some peripheral membrane proteins have

4720-431: The most important are the 22 α-amino acids incorporated into proteins . Only these 22 appear in the genetic code of life. Amino acids can be classified according to the locations of the core structural functional groups ( alpha- (α-) , beta- (β-) , gamma- (γ-) amino acids, etc.); other categories relate to polarity , ionization , and side-chain group type ( aliphatic , acyclic , aromatic , polar , etc.). In

4800-510: The network via mitochondrial fission and prevent the corruption of healthy mitochondria. Parkin is therefore required before mitophagy as it ubiquinates Mfn1/2, labelling it for proteasomal degradation. Proteomic studies identified additional OMM proteins as parkin substrates, including fission protein FIS, its adaptor TBC1D15 and translocase TOMM20 and TOMM70 that facilitate movement of proteins such as PINK1 across OMM. Miro (or RHOT1 / RHOT2 )

4880-409: The neurotransmitter gamma-aminobutyric acid . Non-proteinogenic amino acids often occur as intermediates in the metabolic pathways for standard amino acids – for example, ornithine and citrulline occur in the urea cycle , part of amino acid catabolism (see below). A rare exception to the dominance of α-amino acids in biology is the β-amino acid beta alanine (3-aminopropanoic acid), which

SECTION 60

#1732858664826

4960-573: The nonstandard amino acids are also non-proteinogenic (i.e. they cannot be incorporated into proteins during translation), but two of them are proteinogenic, as they can be incorporated translationally into proteins by exploiting information not encoded in the universal genetic code. The two nonstandard proteinogenic amino acids are selenocysteine (present in many non-eukaryotes as well as most eukaryotes, but not coded directly by DNA) and pyrrolysine (found only in some archaea and at least one bacterium ). The incorporation of these nonstandard amino acids

5040-438: The only one that is useful for chemistry in aqueous solution is that of Brønsted : an acid is a species that can donate a proton to another species, and a base is one that can accept a proton. This criterion is used to label the groups in the above illustration. The carboxylate side chains of aspartate and glutamate residues are the principal Brønsted bases in proteins. Likewise, lysine, tyrosine and cysteine will typically act as

5120-433: The opposite is the case with cysteine, phenylalanine, tryptophan, methionine, valine, leucine, isoleucine, which are highly reactive, or complex, or hydrophobic. Many proteins undergo a range of posttranslational modifications , whereby additional chemical groups are attached to the amino acid residue side chains sometimes producing lipoproteins (that are hydrophobic), or glycoproteins (that are hydrophilic) allowing

5200-424: The organism's genes . Twenty-two amino acids are naturally incorporated into polypeptides and are called proteinogenic or natural amino acids. Of these, 20 are encoded by the universal genetic code. The remaining 2, selenocysteine and pyrrolysine , are incorporated into proteins by unique synthetic mechanisms. Selenocysteine is incorporated when the mRNA being translated includes a SECIS element , which causes

5280-420: The outer mitochondrial membrane (OMM). Parkin is recruited to mitochondria following depolarisation and phosphorylated by PINK1, which simultaneously phosphorylates Ub pre-conjugated to mitochondrial membrane proteins. PINK1 and Ub phosphorylation facilitate parkin activation and further assembly of mono- and poly-Ub chains. Considering the proximity of these chains to PINK1, further phosphorylation of Ub at Ser65

5360-415: The overall structure is NH + 3 −CHR−CO − 2 . At physiological pH the so-called "neutral forms" −NH 2 −CHR−CO 2 H are not present to any measurable degree. Although the two charges in the zwitterion structure add up to zero it is misleading to call a species with a net charge of zero "uncharged". In strongly acidic conditions (pH below 3), the carboxylate group becomes protonated and

5440-447: The parkin protein leads to dopaminergic cell death in this disease is unclear. The prevailing hypothesis is that parkin helps degrade one or more proteins toxic to dopaminergic neurons. Putative substrates of parkin include synphilin-1 , CDC-rel1, cyclin E , p38 tRNA synthase, Pael-R , synaptotagmin XI, sp22 and parkin itself (see also ubiquitin ligase ). Additionally, parkin contains

5520-424: The parkin protein. This form of genetic mutation may be one of the most common known genetic causes of early-onset Parkinson disease . In one study of patients with onset of Parkinson disease prior to age 40 (10% of all PD patients), 18% had parkin mutations, with 5% homozygous mutations. Patients with an autosomal recessive family history of parkinsonism are much more likely to carry parkin mutations if age at onset

5600-536: The polar amino acid category, though it can often be found in protein structures forming covalent bonds, called disulphide bonds , with other cysteines. These bonds influence the folding and stability of proteins, and are essential in the formation of antibodies . Proline (Pro, P) has an alkyl side chain and could be considered hydrophobic, but because the side chain joins back onto the alpha amino group it becomes particularly inflexible when incorporated into proteins. Similar to glycine this influences protein structure in

5680-480: The primary driving force behind the processes that fold proteins into their functional three dimensional structures. None of these amino acids' side chains ionize easily, and therefore do not have pK a s, with the exception of tyrosine (Tyr, Y). The hydroxyl of tyrosine can deprotonate at high pH forming the negatively charged phenolate. Because of this one could place tyrosine into the polar, uncharged amino acid category, but its very low solubility in water matches

5760-656: The proteasome. Protein aggregation triggers neuronal toxicity, whilst accounting for lack of ubiquitinated Lewy bodies in parkin-mutant PD. Similarly, native parkin reduces death of SH-SY5Y neurons by ubiquitinating other Lewy body constituents, such as the p38 subunit of aminoacyl-tRNA synthetase complex and far upstream element-binding protein 1 through addition of Lys48-linked poly-Ub chains and directing them towards proteasomal degradation. Parkin also influences axonal transport and vesicle fusion through ubiquitination of tubulin and synaptotagmin XI ( SYT11 ) respectively, giving it

5840-511: The protein is a component of a multiprotein E3 ubiquitin ligase complex which in turn is part of the ubiquitin-proteasome system that mediates the targeting of proteins for degradation . Mutations in this gene are known to cause a familial form of Parkinson's disease known as autosomal recessive juvenile Parkinson's disease (AR-JP). Moreover, parkin is described to be necessary for mitophagy (autophagy of mitochondria). However, how loss of function of

5920-455: The protein to attach temporarily to a membrane. For example, a signaling protein can attach and then detach from a cell membrane, because it contains cysteine residues that can have the fatty acid palmitic acid added to them and subsequently removed. Although one-letter symbols are included in the table, IUPAC–IUBMB recommend that "Use of the one-letter symbols should be restricted to the comparison of long sequences". The one-letter notation

6000-431: The removal of the amino group by a transaminase ; the amino group is then fed into the urea cycle . The other product of transamidation is a keto acid that enters the citric acid cycle . Glucogenic amino acids can also be converted into glucose, through gluconeogenesis . Of the 20 standard amino acids, nine ( His , Ile , Leu , Lys , Met , Phe , Thr , Trp and Val ) are called essential amino acids because

6080-580: The state with just one C-terminal carboxylate group is negatively charged. This occurs halfway between the two carboxylate p K a values: p I = ⁠ 1 / 2 ⁠ (p K a1 + p K a(R) ), where p K a(R) is the side chain p K a . Similar considerations apply to other amino acids with ionizable side-chains, including not only glutamate (similar to aspartate), but also cysteine, histidine, lysine, tyrosine and arginine with positive side chains. Amino acids have zero mobility in electrophoresis at their isoelectric point, although this behaviour

6160-509: The structure becomes an ammonio carboxylic acid, NH + 3 −CHR−CO 2 H . This is relevant for enzymes like pepsin that are active in acidic environments such as the mammalian stomach and lysosomes , but does not significantly apply to intracellular enzymes. In highly basic conditions (pH greater than 10, not normally seen in physiological conditions), the ammonio group is deprotonated to give NH 2 −CHR−CO − 2 . Although various definitions of acids and bases are used in chemistry,

6240-512: Was chosen by IUPAC-IUB based on the following rules: Two additional amino acids are in some species coded for by codons that are usually interpreted as stop codons : In addition to the specific amino acid codes, placeholders are used in cases where chemical or crystallographic analysis of a peptide or protein cannot conclusively determine the identity of a residue. They are also used to summarize conserved protein sequence motifs. The use of single letters to indicate sets of similar residues

6320-402: Was discovered in 1810, although its monomer, cysteine , remained undiscovered until 1884. Glycine and leucine were discovered in 1820. The last of the 20 common amino acids to be discovered was threonine in 1935 by William Cumming Rose , who also determined the essential amino acids and established the minimum daily requirements of all amino acids for optimal growth. The unity of

6400-485: Was further detected in spontaneous colorectal cancer where it accelerated all stages of intestinal adenoma development in mouse models. Parkin is therefore a potent modulator of tumour progression, without directly instigating tumourigenesis. Parkin (ligase) has been shown to interact with: Amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups . Although over 500 amino acids exist in nature, by far

#825174