A mid-ocean ridge ( MOR ) is a seafloor mountain system formed by plate tectonics . It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin . This feature is where seafloor spreading takes place along a divergent plate boundary . The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin.
46-472: The Osbourn Trough , is a 900 km (560 mi)-long extinct mid-ocean ridge , that may have stopped spreading as recently as 79 million years ago. It is a west-to-east oriented sea floor feature, located to the east of the present Tonga-Kermadec Ridge where the present Pacific Plate is under going subduction under a micro-plate of the Australian Plate . The Osbourn Trough is key to understanding
92-449: A viscous fluid . Partial melting of the mantle at mid-ocean ridges produces oceanic crust , and partial melting of the mantle at subduction zones produces continental crust . Mercury has a silicate mantle approximately 490 kilometers (300 miles) thick, constituting only 28% of its mass. Venus 's silicate mantle is approximately 2,800 kilometers (1,700 miles) thick, constituting around 70% of its mass. Mars 's silicate mantle
138-464: A common feature at oceanic spreading centers. A feature of the elevated ridges is their relatively high heat flow values, of about 1–10 μcal/cm s, or roughly 0.04–0.4 W/m . Most crust in the ocean basins is less than 200 million years old, which is much younger than the 4.54 billion year age of Earth . This fact reflects the process of lithosphere recycling into the Earth's mantle during subduction . As
184-538: A crustal thickness of 7 km (4.3 mi), this amounts to about 19 km (4.6 cu mi) of new ocean crust formed every year. Mantle (geology) A mantle is a layer inside a planetary body bounded below by a core and above by a crust . Mantles are made of rock or ices , and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone differentiation by density . All terrestrial planets (including Earth ), half of
230-546: A ship of the Lamont–Doherty Earth Observatory of Columbia University , traversed the Atlantic Ocean, recording echo sounder data on the depth of the ocean floor. A team led by Marie Tharp and Bruce Heezen concluded that there was an enormous mountain chain with a rift valley at its crest, running up the middle of the Atlantic Ocean. Scientists named it the 'Mid-Atlantic Ridge'. Other research showed that
276-408: A subduction zone drags the rest of the plate along behind it. The slab pull mechanism is considered to be contributing more than the ridge push. A process previously proposed to contribute to plate motion and the formation of new oceanic crust at mid-ocean ridges is the "mantle conveyor" due to deep convection (see image). However, some studies have shown that the upper mantle ( asthenosphere )
322-420: Is a global scale ion-exchange system. Hydrothermal vents at spreading centers introduce various amounts of iron , sulfur , manganese , silicon , and other elements into the ocean, some of which are recycled into the ocean crust. Helium-3 , an isotope that accompanies volcanism from the mantle, is emitted by hydrothermal vents and can be detected in plumes within the ocean. Fast spreading rates will expand
368-463: Is approximately 1,600 kilometers (990 miles) thick, constituting ~74–88% of its mass, and may be represented by chassignite meteorites. Uranus and Neptune 's ice mantles are approximately 30,000 km thick, composing 80% of both masses. Jupiter 's moons Io , Europa , and Ganymede have silicate mantles; Io's ~1,100 kilometers (680 miles) silicate mantle is overlain by a volcanic crust, Ganymede's ~1,315 kilometers (817 miles) thick silicate mantle
414-443: Is in a constant state of 'renewal' at the mid-ocean ridges by the processes of seafloor spreading and plate tectonics. New magma steadily emerges onto the ocean floor and intrudes into the existing ocean crust at and near rifts along the ridge axes. The rocks making up the crust below the seafloor are youngest along the axis of the ridge and age with increasing distance from that axis. New magma of basalt composition emerges at and near
460-455: Is only relatively thin sediment overlay to this, often less than 70 m (230 ft) thick. The ocean depth ranges between 4 km (2.5 mi) to 6 km (3.7 mi) over the trough which has been characterised as having at least three segments, each of which has an axial valley up to 15 km (9.3 mi) wide bounded by ridges up to 500 m (1,600 ft) high. Its south western aspect intersects and helps separate geographically
506-580: Is overlain by ~835 kilometers (519 miles) of ice, and Europa's ~1,165 kilometers (724 miles) km silicate mantle is overlain by ~85 kilometers (53 miles) of ice and possibly liquid water. The silicate mantle of the Earth's moon is approximately 1300–1400 km thick, and is the source of mare basalts . The lunar mantle might be exposed in the South Pole-Aitken basin or the Crisium basin . The lunar mantle contains
SECTION 10
#1732845566729552-470: Is the result of changes in the volume of the ocean basins which are, in turn, affected by rates of seafloor spreading along the mid-ocean ridges. The 100 to 170 meters higher sea level of the Cretaceous Period (144–65 Ma) is partly attributed to plate tectonics because thermal expansion and the absence of ice sheets only account for some of the extra sea level. Seafloor spreading on mid-ocean ridges
598-440: Is too plastic (flexible) to generate enough friction to pull the tectonic plate along. Moreover, mantle upwelling that causes magma to form beneath the ocean ridges appears to involve only its upper 400 km (250 mi), as deduced from seismic tomography and observations of the seismic discontinuity in the upper mantle at about 400 km (250 mi). On the other hand, some of the world's largest tectonic plates such as
644-451: Is underlain by denser material and is deeper. Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. Rates can be computed by mapping marine magnetic anomalies that span mid-ocean ridges. As crystallized basalt extruded at a ridge axis cools below Curie points of appropriate iron-titanium oxides, magnetic field directions parallel to the Earth's magnetic field are recorded in those oxides. The orientations of
690-513: The Chatham Rise east of New Zealand and this event, which must have been no more distant in time than 101 million years ago, has been dated at 86 million years ago, but is now with Pacific Plate reference frame modelling believed to be up to 7 million years more recent. Mid-ocean ridge The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation. The melt rises as magma at
736-569: The North American plate and South American plate are in motion, yet only are being subducted in restricted locations such as the Lesser Antilles Arc and Scotia Arc , pointing to action by the ridge push body force on these plates. Computer modeling of the plates and mantle motions suggest that plate motion and mantle convection are not connected, and the main plate driving force is slab pull. Increased rates of seafloor spreading (i.e.
782-463: The Southwest Indian Ridge ). The spreading center or axis commonly connects to a transform fault oriented at right angles to the axis. The flanks of mid-ocean ridges are in many places marked by the inactive scars of transform faults called fracture zones . At faster spreading rates the axes often display overlapping spreading centers that lack connecting transform faults. The depth of
828-436: The giant planets , specifically ice giants , a number of asteroids , and some planetary moons have mantles. The Earth's mantle is a layer of silicate rock between the crust and the outer core . Its mass of 4.01 × 10 kg is 67% the mass of the Earth. It has a thickness of 2,900 kilometres (1,800 mi) making up about 84% of Earth's volume. It is predominantly solid, but in geological time it behaves as
874-461: The longest mountain range in the world. The continuous mountain range is 65,000 km (40,400 mi) long (several times longer than the Andes , the longest continental mountain range), and the total length of the oceanic ridge system is 80,000 km (49,700 mi) long. At the spreading center on a mid-ocean ridge, the depth of the seafloor is approximately 2,600 meters (8,500 ft). On
920-730: The East Pacific Rise lack rift valleys. The spreading rate of the North Atlantic Ocean is ~ 25 mm/yr, while in the Pacific region, it is 80–145 mm/yr. The highest known rate is over 200 mm/yr in the Miocene on the East Pacific Rise. Ridges that spread at rates <20 mm/yr are referred to as ultraslow spreading ridges (e.g., the Gakkel Ridge in the Arctic Ocean and
966-686: The Hikurangi Plate and the Gondwana margin to its south. In the current best fit Pacific Plate reference frame tectonics model the Osborne Trough is modelled as a spreading centre between the Manihiki Plate and the Hikurangi Plate which later when spreading ceased became fixed components of today's Pacific Plate. Spreading between the Manihiki and Hikurangi Plateau ceased when Hikurangi LIP collided with
SECTION 20
#17328455667291012-664: The Mid-Atlantic Ridge have spread much less far (showing a steeper profile) than faster ridges such as the East Pacific Rise (gentle profile) for the same amount of time and cooling and consequent bathymetric deepening. Slow-spreading ridges (less than 40 mm/yr) generally have large rift valleys , sometimes as wide as 10–20 km (6.2–12.4 mi), and very rugged terrain at the ridge crest that can have relief of up to 1,000 m (3,300 ft). By contrast, fast-spreading ridges (greater than 90 mm/yr) such as
1058-427: The asthenosphere at ocean trenches . Two processes, ridge-push and slab pull , are thought to be responsible for spreading at mid-ocean ridges. Ridge push refers to the gravitational sliding of the ocean plate that is raised above the hotter asthenosphere, thus creating a body force causing sliding of the plate downslope. In slab pull the weight of a tectonic plate being subducted (pulled) below an overlying plate at
1104-478: The axis because of decompression melting in the underlying Earth's mantle . The isentropic upwelling solid mantle material exceeds the solidus temperature and melts. The crystallized magma forms a new crust of basalt known as MORB for mid-ocean ridge basalt, and gabbro below it in the lower oceanic crust . Mid-ocean ridge basalt is a tholeiitic basalt and is low in incompatible elements . Hydrothermal vents fueled by magmatic and volcanic heat are
1150-490: The axis changes in a systematic way with shallower depths between offsets such as transform faults and overlapping spreading centers dividing the axis into segments. One hypothesis for different along-axis depths is variations in magma supply to the spreading center. Ultra-slow spreading ridges form both magmatic and amagmatic (currently lack volcanic activity) ridge segments without transform faults. Mid-ocean ridges exhibit active volcanism and seismicity . The oceanic crust
1196-407: The discovery of the worldwide extent of the mid-ocean ridge in the 1950s, geologists faced a new task: explaining how such an enormous geological structure could have formed. In the 1960s, geologists discovered and began to propose mechanisms for seafloor spreading . The discovery of mid-ocean ridges and the process of seafloor spreading allowed for Wegener's theory to be expanded so that it included
1242-541: The east the trough finishes at the Wishbone–East Manihiki scarp . The Osbourn Trough was active during the period of the Cretaceous Normal Superchron ( C34 normal magnetic polarity period, Chron 34n ) which lasted for almost 40 million years. This means that the trough has uniform magnetic polarity unlike most spreading centres which have evidence of geomagnetic reversal in parallel to the axis of
1288-483: The field preserved in the oceanic crust comprise a record of directions of the Earth's magnetic field with time. Because the field has reversed directions at known intervals throughout its history, the pattern of geomagnetic reversals in the ocean crust can be used as an indicator of age; given the crustal age and distance from the ridge axis, spreading rates can be calculated. Spreading rates range from approximately 10–200 mm/yr. Slow-spreading ridges such as
1334-469: The floor of the Atlantic, as it keeps spreading, is continuously tearing open and making space for fresh, relatively fluid and hot sima [rising] from depth". However, Wegener did not pursue this observation in his later works and his theory was dismissed by geologists because there was no mechanism to explain how continents could plow through ocean crust , and the theory became largely forgotten. Following
1380-478: The globe are linked by plate tectonic boundaries and the trace of the ridges across the ocean floor appears similar to the seam of a baseball . The mid-ocean ridge system thus is the longest mountain range on Earth, reaching about 65,000 km (40,000 mi). The mid-ocean ridges of the world are connected and form the Ocean Ridge, a single global mid-oceanic ridge system that is part of every ocean , making it
1426-600: The linear weakness between the separating plates, and emerges as lava , creating new oceanic crust and lithosphere upon cooling. The first discovered mid-ocean ridge was the Mid-Atlantic Ridge , which is a spreading center that bisects the North and South Atlantic basins; hence the origin of the name 'mid-ocean ridge'. Most oceanic spreading centers are not in the middle of their hosting ocean basis but regardless, are traditionally called mid-ocean ridges. Mid-ocean ridges around
Osbourn Trough - Misplaced Pages Continue
1472-532: The mid-ocean ridge causing basalt reactions with seawater to happen more rapidly. The magnesium/calcium ratio will be lower because more magnesium ions are being removed from seawater and consumed by the rock, and more calcium ions are being removed from the rock and released into seawater. Hydrothermal activity at the ridge crest is efficient in removing magnesium. A lower Mg/Ca ratio favors the precipitation of low-Mg calcite polymorphs of calcium carbonate ( calcite seas ). Slow spreading at mid-ocean ridges has
1518-535: The mid-ocean ridge from the South Atlantic into the Indian Ocean early in the twentieth century. Although the first-discovered section of the ridge system runs down the middle of the Atlantic Ocean, it was found that most mid-ocean ridges are located away from the center of other ocean basins. Alfred Wegener proposed the theory of continental drift in 1912. He stated: "the Mid-Atlantic Ridge ... zone in which
1564-402: The movement of oceanic crust as well as the continents. Plate tectonics was a suitable explanation for seafloor spreading, and the acceptance of plate tectonics by the majority of geologists resulted in a major paradigm shift in geological thinking. It is estimated that along Earth's mid-ocean ridges every year 2.7 km (1.0 sq mi) of new seafloor is formed by this process. With
1610-403: The oceanic crust and lithosphere moves away from the ridge axis, the peridotite in the underlying mantle lithosphere cools and becomes more rigid. The crust and the relatively rigid peridotite below it make up the oceanic lithosphere , which sits above the less rigid and viscous asthenosphere . The oceanic lithosphere is formed at an oceanic ridge, while the lithosphere is subducted back into
1656-451: The opposite effect and will result in a higher Mg/Ca ratio favoring the precipitation of aragonite and high-Mg calcite polymorphs of calcium carbonate ( aragonite seas ). Experiments show that most modern high-Mg calcite organisms would have been low-Mg calcite in past calcite seas, meaning that the Mg/Ca ratio in an organism's skeleton varies with the Mg/Ca ratio of the seawater in which it
1702-572: The postulated breakup mechanism of the historic massive Ontong Java -Manihiki-Hikurangi large igneous province (LIP), as it has been shown to be the spreading centre that lead to the separation of the Manihiki Plateau to its north and the Hikurangi Plateau to its south close to New Zealand . Its basement is known to be oceanic basaltic crust with compositional affinity with a Pacific mid-ocean ridge basalt ( MORB ) mantle source. There
1748-574: The rate of expansion of the mid-ocean ridge) have caused the global ( eustatic ) sea level to rise over very long timescales (millions of years). Increased seafloor spreading means that the mid-ocean ridge will then expand and form a broader ridge with decreased average depth, taking up more space in the ocean basin. This displaces the overlying ocean and causes sea levels to rise. Sealevel change can be attributed to other factors ( thermal expansion , ice melting, and mantle convection creating dynamic topography ). Over very long timescales, however, it
1794-440: The ridge crest was seismically active and fresh lavas were found in the rift valley. Also, crustal heat flow was higher here than elsewhere in the Atlantic Ocean basin. At first, the ridge was thought to be a feature specific to the Atlantic Ocean. However, as surveys of the ocean floor continued around the world, it was discovered that every ocean contains parts of the mid-ocean ridge system. The German Meteor expedition traced
1840-416: The ridge flanks, the depth of the seafloor (or the height of a location on a mid-ocean ridge above a base-level) is correlated with its age (age of the lithosphere where depth is measured). The depth-age relation can be modeled by the cooling of a lithosphere plate or mantle half-space. A good approximation is that the depth of the seafloor at a location on a spreading mid-ocean ridge is proportional to
1886-431: The seafloor were analyzed by oceanographers Matthew Fontaine Maury and Charles Wyville Thomson and revealed a prominent rise in the seafloor that ran down the Atlantic basin from north to south. Sonar echo sounders confirmed this in the early twentieth century. It was not until after World War II , when the ocean floor was surveyed in more detail, that the full extent of mid-ocean ridges became known. The Vema ,
Osbourn Trough - Misplaced Pages Continue
1932-505: The spreading ridge. Further the Osbourn Trough is a more prominent feature in gravity anomaly studies than in bathymetric data . This uniformity over such a large area of ocean floor lead to its first description as a possible spreading center in 1997 and means spreading stopped by end of the Chron 34n. The Glomar Challenger had surveyed part of the area by 1987 but the global magnetism data
1978-439: The square root of the age of the seafloor. The overall shape of ridges results from Pratt isostasy : close to the ridge axis, there is a hot, low-density mantle supporting the oceanic crust. As the oceanic plate cools, away from the ridge axis, the oceanic mantle lithosphere (the colder, denser part of the mantle that, together with the crust, comprises the oceanic plates) thickens, and the density increases. Thus older seafloor
2024-734: The very deep Tonga Trench to the north from the Kermadec Trench which is also where presently the Louisville Ridge at the Osbourn Seamount is subducting under the Kermadec Plate . It is located at about near 26°S about midway between the two large oceanic plateau. The Manihiki Plateau is now 1,750 km (1,090 mi) to the north and to its south is the Hikurangi Plateau, 1,550 km (960 mi) away, near New Zealand . To
2070-534: Was grown. The mineralogy of reef-building and sediment-producing organisms is thus regulated by chemical reactions occurring along the mid-ocean ridge, the rate of which is controlled by the rate of sea-floor spreading. The first indications that a ridge bisects the Atlantic Ocean basin came from the results of the British Challenger expedition in the nineteenth century. Soundings from lines dropped to
2116-570: Was not available to allow an understanding that a large undersea feature existed. The precise timing of the Osborne Trough formation has been a matter of some debate as it is important to dating geological events in the South Pacific region, in particular subduction cessation. The first rifting must have occurred prior to 115 million years ago. The spreading took place over about 21 million years and resulted in between 1,500 km (930 mi) to 2,000 km (1,200 mi) of plate convergence along
#728271