Misplaced Pages

OSO 3

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#564435

72-452: OSO 3 ( Orbiting Solar Observatory 3 ), or Third Orbiting Solar Observatory (known as OSO E2 before launch) was launched on March 8, 1967, into a nearly circular orbit of mean altitude 550 km, inclined at 33° to the equatorial plane. Its on-board tape recorder failed on June 28, 1968, allowing only the acquisition of sparse real-time data during station passes thereafter; the last data were received on November 10, 1969. OSO 3 reentered

144-435: A boundary marked in most places by a temperature inversion (i.e. a layer of relatively warm air above a colder one), and in others by a zone that is isothermal with height. Although variations do occur, the temperature usually declines with increasing altitude in the troposphere because the troposphere is mostly heated through energy transfer from the surface. Thus, the lowest part of the troposphere (i.e. Earth's surface)

216-623: A characteristic pressure-temperature curve. As the pressure gets lower, the temperature decreases. The rate of decrease of temperature with elevation is known as the adiabatic lapse rate , which is approximately 9.8 °C per kilometer (or 5.4 °F [3.0 °C] per 1000 feet) of altitude. The presence of water in the atmosphere complicates the process of convection. Water vapor contains latent heat of vaporization . As air rises and cools, it eventually becomes saturated and cannot hold its quantity of water vapor. The water vapor condenses (forming clouds ), and releases heat, which changes

288-505: A factor of 1/ e (0.368) every 7.64 km (25,100 ft), (this is called the scale height ) -- for altitudes out to around 70 km (43 mi; 230,000 ft). However, the atmosphere is more accurately modeled with a customized equation for each layer that takes gradients of temperature, molecular composition, solar radiation and gravity into account. At heights over 100 km, an atmosphere may no longer be well mixed. Then each chemical species has its own scale height. In summary,

360-447: A higher heart rate, and adjusting its blood chemistry. It can take days or weeks to adapt to high altitude. However, above 8,000 metres (26,000 ft), (in the " death zone "), altitude acclimatization becomes impossible. There is a significantly lower overall mortality rate for permanent residents at higher altitudes. Additionally, there is a dose response relationship between increasing elevation and decreasing obesity prevalence in

432-511: A layer in which temperatures rise with increasing altitude. This rise in temperature is caused by the absorption of ultraviolet radiation (UV) from the Sun by the ozone layer, which restricts turbulence and mixing. Although the temperature may be −60 °C (−76 °F; 210 K) at the tropopause, the top of the stratosphere is much warmer, and may be near 0 °C. The stratospheric temperature profile creates very stable atmospheric conditions, so

504-485: A million miles away, were found to be reflected light from ice crystals in the atmosphere. When light passes through Earth's atmosphere, photons interact with it through scattering . If the light does not interact with the atmosphere, it is called direct radiation and is what you see if you were to look directly at the Sun. Indirect radiation is light that has been scattered in the atmosphere. For example, on an overcast day when you cannot see your shadow, there

576-544: Is 14 °C (57 °F; 287 K) or 15 °C (59 °F; 288 K), depending on the reference. The average atmospheric pressure at sea level is defined by the International Standard Atmosphere as 101325 pascals (760.00  Torr ; 14.6959  psi ; 760.00  mmHg ). This is sometimes referred to as a unit of standard atmospheres (atm) . Total atmospheric mass is 5.1480×10 kg (1.135×10 lb), about 2.5% less than would be inferred from

648-408: Is about 1.2 kg/m (1.2 g/L, 0.0012 g/cm ). Density is not measured directly but is calculated from measurements of temperature, pressure and humidity using the equation of state for air (a form of the ideal gas law ). Atmospheric density decreases as the altitude increases. This variation can be approximately modeled using the barometric formula . More sophisticated models are used to predict

720-414: Is about 28.946 or 28.96  g/mol. This is decreased when the air is humid. The relative concentration of gases remains constant until about 10,000 m (33,000 ft). In general, air pressure and density decrease with altitude in the atmosphere. However, temperature has a more complicated profile with altitude and may remain relatively constant or even increase with altitude in some regions (see

792-442: Is because clouds (H 2 O) are strong absorbers and emitters of infrared radiation. This is also why it becomes colder at night at higher elevations. The greenhouse effect is directly related to this absorption and emission effect. Some gases in the atmosphere absorb and emit infrared radiation, but do not interact with sunlight in the visible spectrum. Common examples of these are CO 2 and H 2 O. The refractive index of air

SECTION 10

#1732856135565

864-1429: Is called paleoclimatology . The three major constituents of Earth's atmosphere are nitrogen , oxygen , and argon . Water vapor accounts for roughly 0.25% of the atmosphere by mass. The concentration of water vapor (a greenhouse gas) varies significantly from around 10 ppm by mole fraction in the coldest portions of the atmosphere to as much as 5% by mole fraction in hot, humid air masses, and concentrations of other atmospheric gases are typically quoted in terms of dry air (without water vapor). The remaining gases are often referred to as trace gases, among which are other greenhouse gases , principally carbon dioxide, methane, nitrous oxide, and ozone. Besides argon, other noble gases , neon , helium , krypton , and xenon are also present. Filtered air includes trace amounts of many other chemical compounds . Many substances of natural origin may be present in locally and seasonally variable small amounts as aerosols in an unfiltered air sample, including dust of mineral and organic composition, pollen and spores , sea spray , and volcanic ash . Various industrial pollutants also may be present as gases or aerosols, such as chlorine (elemental or in compounds), fluorine compounds and elemental mercury vapor. Sulfur compounds such as hydrogen sulfide and sulfur dioxide (SO 2 ) may be derived from natural sources or from industrial air pollution. Mole fraction

936-447: Is close to, but just greater than, 1. Systematic variations in the refractive index can lead to the bending of light rays over long optical paths. One example is that, under some circumstances, observers on board ships can see other vessels just over the horizon because light is refracted in the same direction as the curvature of Earth's surface. The refractive index of air depends on temperature, giving rise to refraction effects when

1008-481: Is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage. In aviation, altitude is typically measured relative to mean sea level or above ground level to ensure safe navigation and flight operations. In geometry and geographical surveys, altitude helps create accurate topographic maps and understand the terrain's elevation. For high-altitude trekking and sports, knowing and adapting to altitude

1080-406: Is hot, it tends to expand, which lowers its density. Thus, hot air tends to rise and transfer heat upward. This is the process of convection . Convection comes to equilibrium when a parcel of air at a given altitude has the same density as its surroundings. Air is a poor conductor of heat, so a parcel of air will rise and fall without exchanging heat. This is known as an adiabatic process , which has

1152-477: Is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules including nitrogen, oxygen and carbon dioxide closer to the exobase. The atoms and molecules are so far apart that they can travel hundreds of kilometres without colliding with one another. Thus, the exosphere no longer behaves like a gas, and the particles constantly escape into space . These free-moving particles follow ballistic trajectories and may migrate in and out of

1224-445: Is no direct radiation reaching you, it has all been scattered. As another example, due to a phenomenon called Rayleigh scattering , shorter (blue) wavelengths scatter more easily than longer (red) wavelengths. This is why the sky looks blue; you are seeing scattered blue light. This is also why sunsets are red. Because the Sun is close to the horizon, the Sun's rays pass through more atmosphere than normal before reaching your eye. Much of

1296-513: Is so tenuous that some scientists consider it to be part of interplanetary space rather than part of the atmosphere). It extends from the thermopause (also known as the "exobase") at the top of the thermosphere to a poorly defined boundary with the solar wind and interplanetary medium . The altitude of the exobase varies from about 500 kilometres (310 mi; 1,600,000 ft) to about 1,000 kilometres (620 mi) in times of higher incoming solar radiation. The upper limit varies depending on

1368-403: Is sometimes defined to begin at 2,400 meters (8,000 ft) above sea level. At high altitude, atmospheric pressure is lower than that at sea level. This is due to two competing physical effects: gravity, which causes the air to be as close as possible to the ground; and the heat content of the air, which causes the molecules to bounce off each other and expand. The temperature profile of

1440-481: Is sometimes referred to as volume fraction ; these are identical for an ideal gas only. ppm: parts per million by molecular count The concentration of CO 2 has been increasing in recent decades , as has that of CH 4 . Water vapor is about 0.25% by mass over full atmosphere Water vapor varies significantly locally The average molecular weight of dry air, which can be used to calculate densities or to convert between mole fraction and mass fraction,

1512-456: Is the lowest layer of Earth's atmosphere. It extends from Earth's surface to an average height of about 12 km (7.5 mi; 39,000 ft), although this altitude varies from about 9 km (5.6 mi; 30,000 ft) at the geographic poles to 17 km (11 mi; 56,000 ft) at the Equator , with some variation due to weather. The troposphere is bounded above by the tropopause ,

SECTION 20

#1732856135565

1584-412: Is too low to conduct a significant amount of energy to or from the skin. This layer is completely cloudless and free of water vapor. However, non-hydrometeorological phenomena such as the aurora borealis and aurora australis are occasionally seen in the thermosphere. The International Space Station orbits in this layer, between 350 and 420 km (220 and 260 mi). It is this layer where many of

1656-475: Is typically the warmest section of the troposphere. This promotes vertical mixing (hence, the origin of its name in the Greek word τρόπος, tropos , meaning "turn"). The troposphere contains roughly 80% of the mass of Earth's atmosphere. The troposphere is denser than all its overlying layers because a larger atmospheric weight sits on top of the troposphere and causes it to be most severely compressed. Fifty percent of

1728-417: Is vital for performance and safety. Higher altitudes mean reduced oxygen levels, which can lead to altitude sickness if proper acclimatization measures are not taken. Vertical distance measurements in the "down" direction are commonly referred to as depth . The term altitude can have several meanings, and is always qualified by explicitly adding a modifier (e.g. "true altitude"), or implicitly through

1800-769: The Earth 's planetary surface (both lands and oceans ), known collectively as air , with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes ), all retained by Earth's gravity . The atmosphere serves as a protective buffer between the Earth's surface and outer space , shields the surface from most meteoroids and ultraviolet solar radiation , keeps it warm and reduces diurnal temperature variation (temperature extremes between day and night ) through heat retention ( greenhouse effect ), redistributes heat and moisture among different regions via air currents , and provides

1872-496: The Earth's atmosphere and burned up on April 4, 1982. Like all the American Orbiting Solar Observatory (OSO) series satellites, it had two major segments: one, the "Sail", was stabilized to face the Sun, and carried both solar panels and Sun-pointing experiments for solar physics. The other, "Wheel" section, rotated to provide overall gyroscopic stability and also carried sky scanning instruments that swept

1944-577: The F-layer of the ionosphere where they encounter enough atmospheric drag to require reboosts every few months, otherwise, orbital decay will occur resulting in a return to Earth. Depending on solar activity, satellites can experience noticeable atmospheric drag at altitudes as high as 700–800 km. The division of the atmosphere into layers mostly by reference to temperature is discussed above. Temperature decreases with altitude starting at sea level, but variations in this trend begin above 11 km, where

2016-489: The chemical and climate conditions allowing life to exist and evolve on Earth. By mole fraction (i.e., by quantity of molecules ), dry air contains 78.08% nitrogen , 20.95% oxygen , 0.93% argon , 0.04% carbon dioxide , and small amounts of other trace gases . Air also contains a variable amount of water vapor , on average around 1% at sea level, and 0.4% over the entire atmosphere. Air composition, temperature and atmospheric pressure vary with altitude . Within

2088-420: The evolution of life (particularly the photoautotrophs ). Recently, human activity has also contributed to atmospheric changes , such as climate change (mainly through deforestation and fossil fuel -related global warming ), ozone depletion and acid deposition . The atmosphere has a mass of about 5.15 × 10  kg, three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of

2160-588: The infrared to around 1100 nm. There are also infrared and radio windows that transmit some infrared and radio waves at longer wavelengths. For example, the radio window runs from about one centimetre to about eleven-metre waves. Emission is the opposite of absorption, it is when an object emits radiation. Objects tend to emit amounts and wavelengths of radiation depending on their " black body " emission curves, therefore hotter objects tend to emit more radiation, with shorter wavelengths. Colder objects emit less radiation, with longer wavelengths. For example,

2232-433: The magnetosphere or the solar wind. Every second, the Earth loses about 3 kg of hydrogen, 50 g of helium, and much smaller amounts of other constituents. The exosphere is too far above Earth for meteorological phenomena to be possible. However, Earth's auroras —the aurora borealis (northern lights) and aurora australis (southern lights)—sometimes occur in the lower part of the exosphere, where they overlap into

OSO 3 - Misplaced Pages Continue

2304-402: The mesopause that marks the top of this middle layer of the atmosphere. It is the coldest place on Earth and has an average temperature around −85  °C (−120  °F ; 190  K ). Just below the mesopause, the air is so cold that even the very scarce water vapor at this altitude can condense into polar-mesospheric noctilucent clouds of ice particles. These are the highest clouds in

2376-428: The temperature section). Because the general pattern of the temperature/altitude profile, or lapse rate , is constant and measurable by means of instrumented balloon soundings , the temperature behavior provides a useful metric to distinguish atmospheric layers. This atmospheric stratification divides the Earth's atmosphere into five main layers: The exosphere is the outermost layer of Earth's atmosphere (though it

2448-511: The tropopause . This layer extends from the top of the troposphere at roughly 12 km (7.5 mi; 39,000 ft) above Earth's surface to the stratopause at an altitude of about 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft). The atmospheric pressure at the top of the stratosphere is roughly 1/1000 the pressure at sea level . It contains the ozone layer , which is the part of Earth's atmosphere that contains relatively high concentrations of that gas. The stratosphere defines

2520-435: The troposphere (up to approximately 11 kilometres (36,000 ft) of altitude) in the Earth's atmosphere undergoes notable convection; in the stratosphere , there is little vertical convection. Medicine recognizes that altitudes above 1,500 metres (4,900 ft) start to affect humans, and there is no record of humans living at extreme altitudes above 5,500–6,000 metres (18,000–19,700 ft) for more than two years. As

2592-558: The Kármán line, significant atmospheric effects such as auroras still occur. Meteors begin to glow in this region, though the larger ones may not burn up until they penetrate more deeply. The various layers of Earth's ionosphere , important to HF radio propagation, begin below 100 km and extend beyond 500 km. By comparison, the International Space Station and Space Shuttle typically orbit at 350–400 km, within

2664-459: The Sun is approximately 6,000  K (5,730  °C ; 10,340  °F ), its radiation peaks near 500 nm, and is visible to the human eye. Earth is approximately 290 K (17 °C; 62 °F), so its radiation peaks near 10,000 nm, and is much too long to be visible to humans. Because of its temperature, the atmosphere emits infrared radiation. For example, on clear nights Earth's surface cools down faster than on cloudy nights. This

2736-455: The US, but may be as low as 3,000 feet (910 m) in other jurisdictions). So when the altimeter reads the country-specific flight level on the standard pressure setting the aircraft is said to be at "Flight level XXX/100" (where XXX is the transition altitude). When flying at a flight level, the altimeter is always set to standard pressure (29.92  inHg or 1013.25  hPa ). On the flight deck,

2808-590: The United States. In addition, the recent hypothesis suggests that high altitude could be protective against Alzheimer's disease via action of erythropoietin, a hormone released by kidney in response to hypoxia. However, people living at higher elevations have a statistically significant higher rate of suicide. The cause for the increased suicide risk is unknown so far. For athletes, high altitude produces two contradictory effects on performance. For explosive events (sprints up to 400 metres, long jump , triple jump )

2880-441: The altitude increases, atmospheric pressure decreases, which affects humans by reducing the partial pressure of oxygen . The lack of oxygen above 2,400 metres (8,000 ft) can cause serious illnesses such as altitude sickness , high altitude pulmonary edema , and high altitude cerebral edema . The higher the altitude, the more likely are serious effects. The human body can adapt to high altitude by breathing faster, having

2952-420: The aptly-named thermosphere above 90 km. Because in an ideal gas of constant composition the speed of sound depends only on temperature and not on pressure or density, the speed of sound in the atmosphere with altitude takes on the form of the complicated temperature profile (see illustration to the right), and does not mirror altitudinal changes in density or pressure. The density of air at sea level

OSO 3 - Misplaced Pages Continue

3024-421: The atmosphere also cools by emitting radiation, as discussed below. The combined absorption spectra of the gases in the atmosphere leave "windows" of low opacity , allowing the transmission of only certain bands of light. The optical window runs from around 300 nm ( ultraviolet -C) up into the range humans can see, the visible spectrum (commonly called light), at roughly 400–700 nm and continues to

3096-399: The atmosphere and may be visible to the naked eye if sunlight reflects off them about an hour or two after sunset or similarly before sunrise. They are most readily visible when the Sun is around 4 to 16 degrees below the horizon. Lightning-induced discharges known as transient luminous events (TLEs) occasionally form in the mesosphere above tropospheric thunderclouds . The mesosphere is also

3168-489: The atmosphere based on characteristics such as temperature and composition, namely the troposphere , stratosphere , mesosphere , thermosphere (formally the ionosphere ) and exosphere . The study of Earth's atmosphere and its processes is called atmospheric science (aerology), and includes multiple subfields, such as climatology and atmospheric physics . Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann . The study of historic atmosphere

3240-471: The atmosphere is a result of an interaction between radiation and convection . Sunlight in the visible spectrum hits the ground and heats it. The ground then heats the air at the surface. If radiation were the only way to transfer heat from the ground to space, the greenhouse effect of gases in the atmosphere would keep the ground at roughly 333 K (60 °C; 140 °F), and the temperature would decay exponentially with height. However, when air

3312-404: The atmosphere, air suitable for use in photosynthesis by terrestrial plants and respiration of terrestrial animals is found only within 12 kilometres (7.5 mi) from the ground. Earth's early atmosphere consisted of accreted gases from the solar nebula , but the atmosphere changed significantly over time, affected by many factors such as volcanism , impact events , weathering and

3384-637: The average sea level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather . If the entire mass of the atmosphere had a uniform density equal to sea level density (about 1.2 kg per m ) from sea level upwards, it would terminate abruptly at an altitude of 8.50 km (27,900 ft). Air pressure actually decreases exponentially with altitude, dropping by half every 5.6 km (18,000 ft) or by

3456-414: The blue light has been scattered out, leaving the red light in a sunset. Different molecules absorb different wavelengths of radiation. For example, O 2 and O 3 absorb almost all radiation with wavelengths shorter than 300 nanometres . Water (H 2 O) absorbs at many wavelengths above 700 nm. When a molecule absorbs a photon, it increases the energy of the molecule. This heats the atmosphere, but

3528-414: The context of the communication. Parties exchanging altitude information must be clear which definition is being used. Aviation altitude is measured using either mean sea level (MSL) or local ground level (above ground level, or AGL) as the reference datum. Pressure altitude divided by 100 feet (30 m) is the flight level , and is used above the transition altitude (18,000 feet (5,500 m) in

3600-415: The definition. Various authorities consider it to end at about 10,000 kilometres (6,200 mi) or about 190,000 kilometres (120,000 mi)—about halfway to the moon, where the influence of Earth's gravity is about the same as radiation pressure from sunlight. The geocorona visible in the far ultraviolet (caused by neutral hydrogen) extends to at least 100,000 kilometres (62,000 mi). This layer

3672-505: The definitive instrument for measuring altitude is the pressure altimeter , which is an aneroid barometer with a front face indicating distance (feet or metres) instead of atmospheric pressure . There are several types of altitude in aviation: These types of altitude can be explained more simply as various ways of measuring the altitude: The Earth's atmosphere is divided into several altitude regions. These regions start and finish at varying heights depending on season and distance from

SECTION 50

#1732856135565

3744-412: The first identification of high-energy cosmic gamma rays emanating from both galactic and extra-galactic sources. The content of this article was adapted and expanded from NASA's HEASARC: Observatories OSO 3 [2] and NASA's National Space Science Data Center: OSO 3 [3] (Public Domain) Earth%27s atmosphere The atmosphere of Earth is composed of a layer of gas mixture that surrounds

3816-434: The gas molecules are so far apart that its temperature in the usual sense is not very meaningful. The air is so rarefied that an individual molecule (of oxygen , for example) travels an average of 1 kilometre (0.62 mi; 3300 ft) between collisions with other molecules. Although the thermosphere has a high proportion of molecules with high energy, it would not feel hot to a human in direct contact, because its density

3888-547: The lapse rate from the dry adiabatic lapse rate to the moist adiabatic lapse rate (5.5 °C per kilometer or 3 °F [1.7 °C] per 1000 feet). As an average, the International Civil Aviation Organization (ICAO) defines an international standard atmosphere (ISA) with a temperature lapse rate of 6.49 °C per kilometer (3.56 °F per 1,000 feet). The actual lapse rate can vary by altitude and by location. Finally, only

3960-403: The layer where most meteors burn up upon atmospheric entrance. It is too high above Earth to be accessible to jet-powered aircraft and balloons, and too low to permit orbital spacecraft. The mesosphere is mainly accessed by sounding rockets and rocket-powered aircraft . The stratosphere is the second-lowest layer of Earth's atmosphere. It lies above the troposphere and is separated from it by

4032-907: The letter "A". Athletes also can take advantage of altitude acclimatization to increase their performance. The same changes that help the body cope with high altitude increase performance back at sea level. These changes are the basis of altitude training which forms an integral part of the training of athletes in a number of endurance sports including track and field, distance running, triathlon, cycling and swimming. Decreased oxygen availability and decreased temperature make life at high altitude challenging. Despite these environmental conditions, many species have been successfully adapted at high altitudes . Animals have developed physiological adaptations to enhance oxygen uptake and delivery to tissues which can be used to sustain metabolism. The strategies used by animals to adapt to high altitude depend on their morphology and phylogeny . For example, small mammals face

4104-482: The mass of Earth's atmosphere is distributed approximately as follows: By comparison, the summit of Mount Everest is at 8,848 m (29,029 ft); commercial airliners typically cruise between 10 and 13 km (33,000 and 43,000 ft) where the lower density and temperature of the air improve fuel economy; weather balloons reach 30.4 km (100,000 ft) and above; and the highest X-15 flight in 1963 reached 108.0 km (354,300 ft). Even above

4176-504: The orbital decay of satellites. The average mass of the atmosphere is about 5 quadrillion (5 × 10 ) tonnes or 1/1,200,000 the mass of Earth. According to the American National Center for Atmospheric Research , "The total mean mass of the atmosphere is 5.1480 × 10  kg with an annual range due to water vapor of 1.2 or 1.5 × 10  kg, depending on whether surface pressure or water vapor data are used; somewhat smaller than

4248-520: The poles. The altitudes stated below are averages: The Kármán line , at an altitude of 100 kilometres (62 mi) above sea level , by convention defines represents the demarcation between the atmosphere and space . The thermosphere and exosphere (along with the higher parts of the mesosphere) are regions of the atmosphere that are conventionally defined as space. Regions on the Earth 's surface (or in its atmosphere) that are high above mean sea level are referred to as high altitude . High altitude

4320-523: The previous estimate. The mean mass of water vapor is estimated as 1.27 × 10  kg and the dry air mass as 5.1352 ±0.0003 × 10  kg." Solar radiation (or sunlight) is the energy Earth receives from the Sun . Earth also emits radiation back into space, but at longer wavelengths that humans cannot see. Part of the incoming and emitted radiation is absorbed or reflected by the atmosphere. In May 2017, glints of light, seen as twinkling from an orbiting satellite

4392-619: The reduction in atmospheric pressure signifies less atmospheric resistance, which generally results in improved athletic performance. For endurance events (races of 5,000 metres or more) the predominant effect is the reduction in oxygen which generally reduces the athlete's performance at high altitude. Sports organizations acknowledge the effects of altitude on performance: the International Association of Athletic Federations (IAAF), for example, marks record performances achieved at an altitude greater than 1,000 metres (3,300 ft) with

SECTION 60

#1732856135565

4464-422: The satellites orbiting the Earth are present. The mesosphere is the third highest layer of Earth's atmosphere, occupying the region above the stratosphere and below the thermosphere. It extends from the stratopause at an altitude of about 50 km (31 mi; 160,000 ft) to the mesopause at 80–85 km (50–53 mi; 260,000–280,000 ft) above sea level. Temperatures drop with increasing altitude to

4536-477: The sky as the wheel turned, approximately every 2 seconds. The Sail carried a hard X-ray experiment from UCSD, with a single thin NaI(Tl) scintillation crystal plus phototube enclosed in a howitzer-shaped CsI(Tl) anti-coincidence shield. The energy resolution was 45% at 30 keV. The instrument operated from 7.7 to 210 keV with 6 channels. The Principal Investigator (PI) was Prof. Laurence E. Peterson of UCSD . Also in

4608-447: The stratosphere lacks the weather-producing air turbulence that is so prevalent in the troposphere. Consequently, the stratosphere is almost completely free of clouds and other forms of weather. However, polar stratospheric or nacreous clouds are occasionally seen in the lower part of this layer of the atmosphere where the air is coldest. The stratosphere is the highest layer that can be accessed by jet-powered aircraft . The troposphere

4680-453: The surface. The atmosphere becomes thinner with increasing altitude, with no definite boundary between the atmosphere and outer space . The Kármán line , at 100 km (62 mi) or 1.57% of Earth's radius, is often used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km (75 mi). Several layers can be distinguished in

4752-412: The temperature gradient is large. An example of such effects is the mirage . Altitude Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometry, geographical survey, sport, or atmospheric pressure). Although the term altitude

4824-444: The temperature stabilizes over a large vertical distance through the rest of the troposphere. In the stratosphere , starting above about 20 km, the temperature increases with height, due to heating within the ozone layer caused by the capture of significant ultraviolet radiation from the Sun by the dioxygen and ozone gas in this region. Still another region of increasing temperature with altitude occurs at very high altitudes, in

4896-442: The thermopause varies considerably due to changes in solar activity. Because the thermopause lies at the lower boundary of the exosphere, it is also referred to as the exobase . The lower part of the thermosphere, from 80 to 550 kilometres (50 to 342 mi) above Earth's surface, contains the ionosphere . The temperature of the thermosphere gradually increases with height and can rise as high as 1500 °C (2700 °F), though

4968-429: The thermosphere. The exosphere contains many of the artificial satellites that orbit Earth. The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi; 1,600,000–3,300,000 ft). The height of

5040-419: The total mass of the atmosphere is located in the lower 5.6 km (3.5 mi; 18,000 ft) of the troposphere. Nearly all atmospheric water vapor or moisture is found in the troposphere, so it is the layer where most of Earth's weather takes place. It has basically all the weather-associated cloud genus types generated by active wind circulation, although very tall cumulonimbus thunder clouds can penetrate

5112-430: The tropopause from below and rise into the lower part of the stratosphere. Most conventional aviation activity takes place in the troposphere, and it is the only layer accessible by propeller-driven aircraft . Within the five principal layers above, which are largely determined by temperature, several secondary layers may be distinguished by other properties: The average temperature of the atmosphere at Earth's surface

5184-401: The wheel was a cosmic gamma-ray (>50 MeV ) sky survey instrument contributed by MIT , with PI Prof. William L. Kraushaar. OSO-3 obtained extensive hard X-ray observations of solar flares, the cosmic diffuse X-ray background , and multiple observations of Scorpius X-1 , the first observation of an extrasolar X-ray source by an observatory satellite. The MIT gamma-ray instrument obtained

#564435