The Missile Defense Agency ( MDA ) is a component of the United States government's Department of Defense responsible for developing a comprehensive defense against ballistic missiles . It had its origins in the Strategic Defense Initiative (SDI) which was established in 1983 by Ronald Reagan and which was headed by Lt. General James Alan Abrahamson . Under the Strategic Defense Initiative's Innovative Sciences and Technology Office headed by physicist and engineer Dr. James Ionson, the investment was predominantly made in basic research at national laboratories, universities, and in industry. These programs have continued to be key sources of funding for top research scientists in the fields of high-energy physics, advanced materials, nuclear research, supercomputing/computation, and many other critical science and engineering disciplines—funding which indirectly supports other research work by top scientists, and which was most politically viable to fund from appropriations for national defense. It was renamed the Ballistic Missile Defense Organization in 1993, and then renamed the Missile Defense Agency in 2002. The current director is Lieutenant General Heath A. Collins.
58-573: The Near Field Infrared Experiment (NFIRE) was a satellite that was proposed and developed by the Missile Defense Agency , a division of the United States Department of Defense . It was launched atop a Minotaur rocket , from Wallops Island , at 06:48 GMT on 24 April 2007. Though primarily designed to gather data on exhaust plumes from rockets, the satellite was also intended to contain a kill vehicle similar to kinds intended for
116-416: A countermeasure to hypersonic boost-glide weapons, by using existing data on the adversary hypersonic systems which were gathered from existing US satellite and ground-based sensors. MDA then fed this data into its existing systems models, and concluded that the adversary hypersonic weapon's glide phase offered the best chance for MDA to intercept it. MDA next proffered a request for information (RFI) from
174-657: A combination of warheads and massive amounts of countermeasures designed to defeat anti-missile systems ; it was announced by the Russian military as a response to the US Prompt Global Strike . In July 2023, North Korea fired a suspected intercontinental ballistic missile that landed short of Japanese waters. The launch follows North Korea's threat to retaliate against the US for alleged spy plane incursions. The following flight phases can be distinguished: ICBMs usually use
232-744: A cost of $ 246 billion. They also led the development of numerous other projects, including the Multiple Kill Vehicle and the newer Multi-Object Kill Vehicle, the Kinetic Energy Interceptor and the Airborne Laser . As the inheritor of the SDI and BMDO work, the MDA continues to fund fundamental research in high-energy physics, supercomputing/computation, advanced materials, and many other science and engineering disciplines. The MDA currently publishes
290-437: A different phase of the threat ballistic missile flight regime. Each phase offers different advantages and disadvantages to a missile defense system (see missile defense classified by trajectory phase ), and the geography of each defended area dictates the types of systems which can be employed. The resultant flexible and layered defense approach concept is believed to improve overall defense effectiveness. The more opportunities
348-641: A first test of the hypersonic tracking sensors was imminent. In use: Research and development: Intercontinental ballistic missile#Flight phases An intercontinental ballistic missile ( ICBM ) is a ballistic missile with a range greater than 5,500 kilometres (3,400 mi), primarily designed for nuclear weapons delivery (delivering one or more thermonuclear warheads ). Conventional , chemical , and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicle (MIRVs), allowing
406-455: A minimal independent nuclear deterrent entering its own cold war after an ideological split with the Soviet Union beginning in the early 1960s. After first testing a domestic built nuclear weapon in 1964, it went on to develop various warheads and missiles. Beginning in the early 1970s, the liquid fuelled DF-5 ICBM was developed and used as a satellite launch vehicle in 1975. The DF-5, with
464-641: A network of binary addition circuits that continually recalculate the missile's position. The inputs to the navigation circuit are set by a general-purpose computer according to a navigational input schedule loaded into the missile before launch. One particular weapon developed by the Soviet Union ;– the Fractional Orbital Bombardment System – had a partial orbital trajectory, and unlike most ICBMs its target could not be deduced from its orbital flight path. It
522-611: A range of 10,000 to 12,000 km (6,200 to 7,500 mi)—long enough to strike the Western United States and the Soviet Union—was silo deployed, with the first pair in service by 1981 and possibly twenty missiles in service by the late 1990s. China also deployed the JL-1 Medium-range ballistic missile with a reach of 1,700 kilometres (1,100 mi) aboard the ultimately unsuccessful Type 092 submarine . In 1991,
580-518: A ready state. Failure rates were very high throughout the early years of ICBM technology. Human spaceflight programs ( Vostok , Mercury , Voskhod , Gemini , etc.) served as a highly visible means of demonstrating confidence in reliability, with successes translating directly to national defense implications. The US was well behind the Soviets in the Space Race and so US President John F. Kennedy increased
638-467: A single missile to carry several warheads, each of which can strike a different target. The United States , Russia , China , France , India , the United Kingdom , Israel , and North Korea are the only countries known to have operational ICBMs. Pakistan is the only nuclear-armed state that does not possess ICBMs. Early ICBMs had limited precision , which made them suitable for use only against
SECTION 10
#1732848375630696-580: A system has to neutralize a threat (e.g., by shooting down a missile), the better the chance of success. Activities have also been categorized as fulfilling the goals of one of five "blocks". For example, "block 4.0" was stated as "Defend Allies and Deployed Forces in Europe from Limited Iranian Long-Range Threats and Expand Protection of U.S. Homeland". It included the US missile defense complex in Poland to be constructed, and
754-655: Is believed to have deployed a road mobile nuclear ICBM, the Jericho III , which entered service in 2008; an upgraded version is in development. India successfully test fired Agni V , with a strike range of more than 5,000 km (3,100 mi) on 19 April 2012, claiming entry into the ICBM club. The missile's actual range is speculated by foreign researchers to be up to 8,000 km (5,000 mi) with India having downplayed its capabilities to avoid causing concern to other countries. On 15 December 2022, first night trial of Agni-V
812-526: Is no rocket exhaust or other emissions to mark its position to defenders. The high speeds of the warheads make them difficult to intercept and allow for little warning, striking targets many thousands of kilometers away from the launch site (and due to the possible locations of the submarines: anywhere in the world) within approximately 30 minutes. Many authorities say that missiles also release aluminized balloons, electronic noisemakers, and other decoys intended to confuse interception devices and radars . As
870-446: The Arrow missile in 1998, but it is mainly designed to intercept shorter-ranged theater ballistic missiles, not ICBMs. The Alaska-based United States national missile defense system attained initial operational capability in 2004. ICBMs can be deployed from multiple platforms: The last three kinds are mobile and therefore hard to detect prior to a missile launch. During storage, one of
928-695: The Ballistic Missile Defense Organization , BMDO. With another change to a more global focus made by George W. Bush , in 2002 the organization became the Missile Defense Agency. The Missile Defense Agency is partially or wholly responsible for the development of several ballistic missile defense (BMD) systems, including the Patriot PAC-3 , Aegis BMD , THAAD and the Ground-Based Midcourse Defense system with
986-717: The European Mid-course Radar (EMR), currently located at the Ronald Reagan Ballistic Missile Defense Test Site at Kwajalein Atoll , which was to have been modified and relocated to the Czech Republic . On 17 September 2009, the Obama administration scrapped the "block 4.0" plan, in favor of a new so-called "European Phased Adaptive Approach" (EPAA). Can intercept all ranges of missiles, but
1044-503: The LGM-30 Minuteman , Polaris and Skybolt . Modern ICBMs tend to be smaller than their ancestors, due to increased accuracy and smaller and lighter warheads, and use solid fuels, making them less useful as orbital launch vehicles. The Western view of the deployment of these systems was governed by the strategic theory of mutual assured destruction . In the 1950s and 1960s, development began on anti-ballistic missile systems by both
1102-694: The Strategic Defense Initiative . A missile was then to be fired at and nearly miss the instrumented kill vehicle. This feature was later removed. NFIRE was funded by $ 44 million in FY2004. In 2004, the United States House of Representatives instructed the Missile Defense Agency , MDA, to remove the kill vehicle from the planned 2006 NFIRE launch, approving $ 68 million in FY2005 subject to that condition. The Senate Appropriations Committee reviewing
1160-494: The USSR /Russia preferred ICBM designs that use hypergolic liquid fuels, which can be stored at room temperature for more than a few years. Once the booster falls away, the remaining "bus" releases several warheads, each of which continues on its own unpowered ballistic trajectory , much like an artillery shell or cannonball. The warhead is encased in a cone-shaped reentry vehicle and is difficult to detect in this phase of flight as there
1218-464: The cryogenic fuel liquid oxygen boiled off and caused ice formation, and therefore fueling the rocket was necessary before launch. This procedure was a source of significant operational delay and might allow the missiles to be destroyed by enemy counterparts before they could be used. To resolve this problem Nazi Germany invented the missile silo that protected the missile from Strategic Bombing and also hid fueling operations underground. Although
SECTION 20
#17328483756301276-409: The 32-metre-tall (105 ft) Unha-3 rocket. The United States claimed that the launch was in fact a way to test an ICBM. (See Timeline of first orbital launches by country .) In early July 2017, North Korea claimed for the first time to have tested successfully an ICBM capable of carrying a large thermonuclear warhead. In July 2014, China announced the development of its newest generation of ICBM,
1334-907: The A9/A10 rocket was tested a few times in January and February 1945. After the war, the US executed Operation Paperclip , which took von Braun and hundreds of other leading Nazi scientists to the United States to develop IRBMs , ICBMs, and launchers for the US Army. This technology was predicted by US General of the Army Hap Arnold , who wrote in 1943: Someday, not too distant, there can come streaking out of somewhere – we won't be able to hear it, it will come so fast – some kind of gadget with an explosive so powerful that one projectile will be able to wipe out completely this city of Washington. After World War II,
1392-692: The American missile defense batteries in California and Alaska. New development of ICBM technology are ICBMs able to carry hypersonic glide vehicles as a payload such as RS-28 Sarmat . On 12 March 2024 India announced that it had joined a very limited group of countries, which are capable of firing multiple warheads on a single ICBM. The announcement came after successfully testing multiple independently targetable reentry vehicle (MIRV) technology. [REDACTED] Russia [REDACTED] Russia [REDACTED] Russia [REDACTED] Russia Russia,
1450-646: The Americans and Soviets. Such systems were restricted by the 1972 Anti-Ballistic Missile Treaty . The first successful ABM test was conducted by the Soviets in 1961, which later deployed a fully operational system defending Moscow in the 1970s (see Moscow ABM system ). The 1972 SALT treaty froze the number of ICBM launchers of both the Americans and the Soviets at existing levels and allowed new submarine -based SLBM launchers only if an equal number of land-based ICBM launchers were dismantled. Subsequent talks, called SALT II, were held from 1972 to 1979 and actually reduced
1508-511: The Americans and the Soviets started rocket research programs based on the V-2 and other German wartime designs. Each branch of the US military started its own programs, leading to considerable duplication of effort. In the Soviet Union, rocket research was centrally organized although several teams worked on different designs. The US initiated ICBM research in 1946 with the RTV-A-2 Hiroc project. This
1566-665: The Atlas. Due to the improvements in engine technology and guidance systems the Titan I overtook the Atlas. In the Soviet Union, early development was focused on missiles able to attack European targets. That changed in 1953, when Sergei Korolyov was directed to start development of a true ICBM able to deliver newly developed hydrogen bombs. Given steady funding throughout, the R-7 developed with some speed. The first launch took place on 15 May 1957 and led to an unintended crash 400 km (250 mi) from
1624-509: The Dongfeng-41 ( DF-41 ), which has a range of 12,000 kilometres (7,500 miles), capable of reaching the United States, and which analysts believe is capable of being outfitted with MIRV technology. Most countries in the early stages of developing ICBMs have used liquid propellants, with the known exceptions being the Indian Agni-V , the planned but cancelled South African RSA-4 ICBM, and
1682-515: The NFIRE program, however, urged the MDA to return the missile defense interceptor ( kill vehicle ) to the originally scheduled test, despite the controversial perception of this leading to the deployment of weapons in space. The committee, which approved $ 13.7 million for the NFIRE program in FY06, told the MDA to "complete development and mission integration of the deployable NFIRE Kill Vehicle." The MDA removed
1740-504: The Soviet testing of their first thermonuclear weapon , but it was not until 1954 that the Atlas missile program was given the highest national priority. The Atlas A first flew on 11 June 1957; the flight lasted only about 24 seconds before the rocket exploded. The first successful flight of an Atlas missile to full range occurred 28 November 1958. The first armed version of the Atlas, the Atlas D,
1798-662: The United States and the Soviet Union agreed in the START I treaty to reduce their deployed ICBMs and attributed warheads. As of 2016 , all five of the nations with permanent seats on the United Nations Security Council have fully operational long-range ballistic missile systems; Russia, the United States, and China also have land-based ICBMs (the US missiles are silo-based, while China and Russia have both silo and road-mobile ( DF-31 , RT-2PM2 Topol-M missiles). Israel
Near Field Infrared Experiment - Misplaced Pages Continue
1856-475: The additional warheads; hence, most ABM system proposals have been judged to be impractical. The first operational ABM systems were deployed in the United States during the 1970s. The Safeguard ABM facility, located in North Dakota, was operational from 1975 to 1976. The Soviets deployed their ABM-1 Galosh system around Moscow in the 1970s, which remains in service. Israel deployed a national ABM system based on
1914-423: The atmosphere. Ground-based missile defense systems can defend from long-range and intermediate-range ballistic missiles in this phase. Mobile elements can defend against medium and short ranged missiles in midcourse. This phase is the last chance to intercept the warhead. This contains the least-desirable Interception Point (IP) because there is little room for error and the interception will probably occur close to
1972-439: The defended target. Research and development: One can distinguish disabling the warheads and just disabling the boosting capability. The latter has the risk of "shortfall": damage in countries between the launch site and the target location. See also APS report . Research and development: In use: Research and development: Research and development: By 2021, the Missile Defense Agency (MDA) realized that it almost had
2030-587: The defense community for building interceptors (denoted the GPI —glide phase interceptor) against the glide phase of that hypersonic weapon. GPIs would be guided by Hypersonic and Ballistic Tracking Space Sensors (HBTSS). These GPI interceptors could first be offered to the Navy for Aegis to intercept using the C2BMC , and later to the Army for THAAD to intercept using IBCS . By 2024,
2088-486: The following mission statement: "The Missile Defense Agency's (MDA) mission is to develop and deploy a layered Missile Defense System to defend the United States, its deployed forces, allies, and friends from missile attacks in all phases of flight." The National Defense Authorization Act is cited as the original source of the MDA's mission: "It is the policy of the United States to maintain and improve an effective, robust layered missile defense system capable of defending
2146-514: The kill vehicle portion of the planned test, saying it posed a risk of technical failure, and replaced it with a laser communications payload from Tesat-Spacecom . NFIRE reentered the Earth's atmosphere on November 4, 2015. Missile Defense Agency Rapid changes in the strategic environment due to the rapid dissolution of the Soviet Union led, in 1993, to Bill Clinton focusing on theater ballistic missiles and similar threats, and renaming it
2204-476: The largest targets , such as cities. They were seen as a "safe" basing option, one that would keep the deterrent force close to home where it would be difficult to attack. Attacks against military targets (especially hardened ones) demanded the use of a more precise, crewed bomber . Second- and third-generation designs (such as the LGM-118 Peacekeeper ) dramatically improved accuracy to the point where even
2262-460: The launching nations' territory. This is the phase after powered flight but before the apogee . It is significantly less challenging than boost phase intercepts, less costly, minimizes the potential impact of debris, and reduces the number of interceptors required to defeat a raid of missiles. This phase begins after the booster burns out and begins coasting in space. This can last as long as 20 minutes. Any debris remaining will burn up as it enters
2320-406: The missile boost phase is only from one to five minutes. It is the best time to track the missile because it is bright and hot. The missile defense interceptors and sensors must be in close proximity to the launch, which is not always possible. This is the most desirable interception phase because it destroys the missile early in flight at its most vulnerable point and the debris will typically fall on
2378-573: The most important features of the missile is its serviceability. One of the key features of the first computer-controlled ICBM, the Minuteman missile , was that it could quickly and easily use its computer to test itself. After launch, a booster pushes the missile and then falls away. Most modern boosters are Solid-propellant rocket motors , which can be stored easily for long periods of time. Early missiles used liquid-fueled rocket motors . Many liquid-fueled ICBMs could not be kept fueled at all times as
Near Field Infrared Experiment - Misplaced Pages Continue
2436-710: The nearby detonation of friendly warheads), one neutron-resistant material developed for this purpose in the UK is three-dimensional quartz phenolic . Circular error probable is crucial, because halving the circular error probable decreases the needed warhead energy by a factor of four . Accuracy is limited by the accuracy of the navigation system and the available geodetic information. Strategic missile systems are thought to use custom integrated circuits designed to calculate navigational differential equations thousands to millions of FLOPS in order to reduce navigational errors caused by calculation alone. These circuits are usually
2494-554: The now in service Israeli Jericho III . The RS-28 Sarmat (Russian: РС-28 Сармат; NATO reporting name : SATAN 2), is a Russian liquid-fueled , MIRV -equipped, super-heavy thermonuclear armed intercontinental ballistic missile in development by the Makeyev Rocket Design Bureau from 2009, intended to replace the previous R-36 missile . Its large payload would allow for up to 10 heavy warheads or 15 lighter ones or up to 24 hypersonic glide vehicles Yu-74 , or
2552-474: The nuclear warhead reenters the Earth's atmosphere, its high speed causes compression of the air, leading to a dramatic rise in temperature which would destroy it, if it were not shielded in some way. In one design, warhead components are contained within an aluminium honeycomb substructure , sheathed in a pyrolytic carbon - epoxy synthetic resin composite material heat shield. Warheads are also often radiation-hardened (to protect against nuclear armed ABMs or
2610-555: The number of nuclear warheads held by the US and Soviets. SALT II was never ratified by the US Senate , but its terms were honored by both sides until 1986, when the Reagan administration "withdrew" after it had accused the Soviets of violating the pact. In the 1980s, President Ronald Reagan launched the Strategic Defense Initiative as well as the MX and Midgetman ICBM programs. China developed
2668-466: The site. The first successful test followed on 21 August 1957; the R-7 flew over 6,000 km (3,700 mi) and became the world's first ICBM. The first strategic-missile unit became operational on 9 February 1959 at Plesetsk in north-west Russia. It was the same R-7 launch vehicle that placed the first artificial satellite in space, Sputnik , on 4 October 1957. The first human spaceflight in history
2726-477: The smallest point targets can be successfully attacked. ICBMs are differentiated by having greater range and speed than other ballistic missiles: intermediate-range ballistic missiles (IRBMs), medium-range ballistic missiles (MRBMs), short-range ballistic missiles (SRBMs) and tactical ballistic missiles . The first practical design for an ICBM grew out of Nazi Germany 's V-2 rocket program. The liquid-fueled V-2, designed by Wernher von Braun and his team,
2784-482: The stakes with the Apollo program , which used Saturn rocket technology that had been funded by President Dwight D. Eisenhower . These early ICBMs also formed the basis of many space launch systems. Examples include R-7 , Atlas , Redstone , Titan , and Proton , which was derived from the earlier ICBMs but never deployed as an ICBM. The Eisenhower administration supported the development of solid-fueled missiles such as
2842-438: The territory of the United States, allies, deployed forces, and capabilities against the developing and increasingly complex ballistic missile threat with funding subject to the annual authorization of appropriations and the annual appropriation of funds for National Missile Defense. National Defense Authorization Act (Public Law 114–328)" Ballistic Missile Defense Systems (BMDS) must be capable of operating in different regions of
2900-428: The trajectory which optimizes range for a given amount of payload (the minimum-energy trajectory ); an alternative is a depressed trajectory , which allows less payload, shorter flight time, and has a much lower apogee. Modern ICBMs typically carry multiple independently targetable reentry vehicles ( MIRVs ), each of which carries a separate nuclear warhead , allowing a single missile to hit multiple targets. MIRV
2958-852: The world to ensure the success of the MDA mission. The International Strategy was approved by the MDA Director in 2007. The general strategy for international efforts is: As of 2017 MDA was working on facilities in Germany, Romania, Poland, Japan, Qatar, Saudi Arabia and the United Arab Emirates. Ballistic missile systems using advanced liquid- or solid-propellant propulsion are becoming more mobile, accurate and capable of striking targets over longer distances and are proliferating worldwide. MDA will be using multiple technologies to defend Guam. MDA divides its systems into four phases: boost; ascent; mid-course; and terminal. Each of these corresponds to
SECTION 50
#17328483756303016-432: Was a three-stage effort with the ICBM development not starting until the third stage. However, funding was cut in 1948 after only three partially successful launches of the second stage design, that was used to test variations of the V-2 design. With overwhelming air superiority and truly intercontinental bombers, the newly formed US Air Force did not take the problem of ICBM development seriously. Things changed in 1953 with
3074-509: Was accomplished on a derivative of R-7, Vostok , on 12 April 1961 , by Soviet cosmonaut Yuri Gagarin . A heavily modernized version of the R-7 is still used as the launch vehicle for the Soviet/Russian Soyuz spacecraft , marking more than 60 years of operational history of Sergei Korolyov 's original rocket design. The R-7 and Atlas each required a large launch facility, making them vulnerable to attack, and could not be kept in
3132-520: Was an outgrowth of the rapidly shrinking size and weight of modern warheads and the Strategic Arms Limitation Treaties ( SALT I and SALT II ), which imposed limitations on the number of launch vehicles. It has also proved to be an "easy answer" to proposed deployments of anti-ballistic missile (ABM) systems: It is far less expensive to add more warheads to an existing missile system than to build an ABM system capable of shooting down
3190-418: Was declared operational in January 1959 at Vandenberg, although it had not yet flown. The first test flight was carried out on 9 July 1959, and the missile was accepted for service on 1 September. The Titan I was another US multistage ICBM, with a successful launch February 5, 1959, with Titan I A3. Unlike the Atlas, the Titan I was a two-stage missile, rather than three. The Titan was larger, yet lighter, than
3248-416: Was decommissioned in compliance with arms control agreements, which address the maximum range of ICBMs and prohibit orbital or fractional-orbital weapons. However, according to reports, Russia is working on the new Sarmat ICBM which leverages Fractional Orbital Bombardment concepts to use a Southern polar approach instead of flying over the northern polar regions. Using that approach, it is theorized, avoids
3306-408: Was successfully carried out by SFC from Abdul Kalam Island, Odisha. The missile is now 20 percent lighter because the use of composite materials rather than steel material. The range has been increased to 7,000 km. By 2012 there was speculation by some intelligence agencies that North Korea is developing an ICBM. North Korea successfully put a satellite into space on 12 December 2012 using
3364-464: Was then widely used by Nazi Germany from mid-1944 until March 1945 to bomb British and Belgian cities, particularly Antwerp and London. Under Projekt Amerika, von Braun's team developed the A9/10 ICBM, intended for use in bombing New York and other American cities. Initially intended to be guided by radio, it was changed to be a piloted craft after the failure of Operation Elster . The second stage of
#629370