A steam generator (aka nuclear steam raising plant ('NSRP')) is a heat exchanger used to convert water into steam from heat produced in a nuclear reactor core . It is used in pressurized water reactors (PWRs), between the primary and secondary coolant loops. It is also used in liquid metal cooled reactors (LMRs), pressurized heavy-water reactors (PHWRs), and gas-cooled reactors (GCRs).
68-544: Narora Atomic Power Station (NAPS) is a nuclear power plant located in Narora , Dibai Tehsil, Bulandshahar District in Uttar Pradesh , India . The plant houses two reactors, each a pressurized heavy-water reactor (PHWR) capable of producing 220 MW of electricity. Commercial operation of NAPS-1 began on 1 January 1991, NAPS-2 on 1 July 1992. The reactors were not originally under IAEA safeguards . but subsequent to
136-404: A carbon footprint comparable to that of renewable energy such as solar farms and wind farms , and much lower than fossil fuels such as natural gas and coal . Nuclear power plants are among the safest modes of electricity generation, comparable to solar and wind power plants. The first time that heat from a nuclear reactor was used to generate electricity was on December 21, 1951, at
204-498: A nuclear reactor . As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity . As of September 2023 , the International Atomic Energy Agency reported that there were 410 nuclear power reactors in operation in 32 countries around the world, and 57 nuclear power reactors under construction. Building
272-420: A steam generator and heats water to produce steam. The pressurized steam is then usually fed to a multi-stage steam turbine . After the steam turbine has expanded and partially condensed the steam, the remaining vapor is condensed in a condenser. The condenser is a heat exchanger which is connected to a secondary side such as a river or a cooling tower . The water is then pumped back into the steam generator and
340-402: A facility has been completely decommissioned it is released from regulatory control, and the licensee of the station no longer has responsibility for its nuclear safety. Generally speaking, nuclear stations were originally designed for a life of about 30 years. Newer stations are designed for a 40 to 60-year operating life. The Centurion Reactor is a future class of nuclear reactor that
408-431: A mixture of liquid water and steam at saturation conditions, from the turbine-generator exhaust and condenses it back into sub-cooled liquid water so it can be pumped back to the reactor by the condensate and feedwater pumps. In the main condenser, the wet vapor turbine exhaust come into contact with thousands of tubes that have much colder water flowing through them on the other side. The cooling water typically come from
476-404: A natural body of water such as a river or lake. Palo Verde Nuclear Generating Station , located in the desert about 97 kilometres (60 mi) west of Phoenix, Arizona, is the only nuclear facility that does not use a natural body of water for cooling, instead it uses treated sewage from the greater Phoenix metropolitan area. The water coming from the cooling body of water is either pumped back to
544-429: A nuclear power plant often spans five to ten years, which can accrue significant financial costs, depending on how the initial investments are financed. Because of this high construction cost and lower operations, maintenance, and fuel costs, nuclear plants are usually used for base load generation, because this maximizes the hours over which the fixed cost of construction can be amortized. Nuclear power plants have
612-479: A nuclear station is smaller than the fuel cost for operation of coal or gas plants. Since most of the cost of nuclear power plant is capital cost, there is almost no cost saving by running it at less than full capacity. Nuclear power plants are routinely used in load following mode on a large scale in France, although "it is generally accepted that this is not an ideal economic situation for nuclear stations". Unit A at
680-506: A number of long-established projects are struggling to find financing, notably Belene in Bulgaria and the additional reactors at Cernavodă in Romania , and some potential backers have pulled out. Where cheap gas is available and its future supply relatively secure, this also poses a major problem for nuclear projects. Analysis of the economics of nuclear power must take into account who bears
748-444: A previous goal aimed to reduce nuclear electricity generation share to lower than fifty percent by 2025, this target was postponed to 2035 in 2019 and ultimately discarded in 2023. Russia continues to export the most nuclear power plants in the world, with projects across various countries: as of July 2023, Russia was constructing 19 out of 22 reactors constructed by foreign vendors; however, some exporting projects were canceled due to
SECTION 10
#1732855855729816-530: A river, lake, or ocean. This primary, secondary, tertiary cooling scheme is the basis of the pressurized water reactor, which is the most common nuclear power plant design worldwide. In other types of reactors, such as the pressurised heavy water reactors of the CANDU design, the primary fluid is heavy water . Liquid metal cooled reactors such as the Russian BN-600 reactor use a liquid metal, such as sodium, as
884-587: A significantly different evaluation of the economics of new nuclear power stations. Following the 2011 Fukushima nuclear accident in Japan , costs are likely to go up for currently operating and new nuclear power stations, due to increased requirements for on-site spent fuel management and elevated design basis threats. However many designs, such as the currently under construction AP1000, use passive nuclear safety cooling systems, unlike those of Fukushima I which required active cooling systems, which largely eliminates
952-413: A slight decrease from the 2653 TWh produced in 2021. Thirteen countries generated at least one-quarter of their electricity from nuclear sources. Notably, France relies on nuclear energy for about 70% of its electricity needs, while Ukraine , Slovakia , Belgium , and Hungary source around half their power from nuclear. Japan , which previously depended on nuclear for over a quarter of its electricity,
1020-427: A small enough volume to become supercritical. Most reactors require continuous temperature control to prevent a core meltdown , which has occurred on a few occasions through accident or natural disaster, releasing radiation and making the surrounding area uninhabitable. Plants must be defended against theft of nuclear material and attack by enemy military planes or missiles. The most serious accidents to date have been
1088-457: A steam turbine. While theoretically simple, this has a downside for maintenance. While passing through the core, primary coolant water is subjected to high neutron flux. This activates oxygen and dissolved nitrogen in the water. The major reaction is: an atom of oxygen-16 absorbs 1 neutron and emits 1 proton, becoming nitrogen-16. Nitrogen-16 has a 7-second half-life and produces a gamma ray when it decays back to oxygen-16. The 7-second half-life
1156-482: A three-year research study of offshore floating nuclear power generation. In October 2022, NuScale Power and Canadian company Prodigy announced a joint project to bring a North American small modular reactor based floating plant to market. The economics of nuclear power plants is a controversial subject, and multibillion-dollar investments ride on the choice of an energy source. Nuclear power stations typically have high capital costs, but low direct fuel costs, with
1224-580: A worldwide perspective, long-term waste storage costs are uncertain. Construction, or capital cost aside, measures to mitigate global warming such as a carbon tax or carbon emissions trading , increasingly favor the economics of nuclear power. Further efficiencies are hoped to be achieved through more advanced reactor designs, Generation III reactors promise to be at least 17% more fuel efficient, and have lower capital costs, while Generation IV reactors promise further gains in fuel efficiency and significant reductions in nuclear waste. In Eastern Europe,
1292-399: Is a stub . You can help Misplaced Pages by expanding it . This article about an Indian power station is a stub . You can help Misplaced Pages by expanding it . Nuclear power plant A nuclear power plant ( NPP ), also known as a nuclear power station ( NPS ), nuclear generating station ( NGS ) or atomic power station ( APS ) is a thermal power station in which the heat source is
1360-632: Is a major undertaking. Most U.S. PWR plants have had steam generators replaced. The nuclear powered steam generator started as a power plant for the first nuclear submarine , the USS Nautilus (SSN-571) . It was designed and built by the Westinghouse Electric Company power company for the submarine; from there the company started its development and research of nuclear-powered steam generators. Once peaceful nuclear reactors were legalized for use as power plants, power corporations jumped at
1428-411: Is about 1/3 of solar and 1/45 of natural gas and 1/75 of coal . Newer models, like HPR1000 , produce even less carbon dioxide during the whole operating life, as little as 1/8 of power plants using gen II reactors for 1.31g/kWh. Steam generator (nuclear power) In typical PWR designs, the primary coolant is high-purity water, kept under high pressure so it cannot boil. This primary coolant
SECTION 20
#17328558557291496-520: Is anticipated to resume similar levels of nuclear energy utilization. Over the last 15 years, the United States has seen a significant improvement in the operational performance of its nuclear power plants, enhancing their utilization and efficiency, adding the output equivalent to 19 new 1000 MWe reactors without actual construction. In France, nuclear power plants still produce over sixty percent of this country's total power generation in 2022. While
1564-503: Is being designed to last 100 years. One of the major limiting wear factors is the deterioration of the reactor's pressure vessel under the action of neutron bombardment, however in 2018 Rosatom announced it had developed a thermal annealing technique for reactor pressure vessels which ameliorates radiation damage and extends service life by between 15 and 30 years. Nuclear stations are used primarily for base load because of economic considerations. The fuel cost of operations for
1632-439: Is fissile which means that it is easily split and gives off a lot of energy making it ideal for nuclear energy. On the other hand, U-238 does not have that property despite it being the same element. Different isotopes also have different half-lives . U-238 has a longer half-life than U-235, so it takes longer to decay over time. This also means that U-238 is less radioactive than U-235. Since nuclear fission creates radioactivity,
1700-419: Is long enough for the water to circulate out of the reactor. In a BWR, this means that the water may be in the steam turbine when it releases its gamma rays. Although no long-lived radioisotopes are produced by this reaction, the gamma radiation means that humans cannot be present in a BWR's turbine hall during reactor operation and for a short time afterwards. By contrast, in a PWR, the steam generator separates
1768-417: Is maintained at high pressure to prevent boiling, is pumped through the nuclear reactor core . Heat transfer takes place between the reactor core and the circulating water and the coolant is then pumped through the primary tube side of the steam generator by coolant pumps before returning to the reactor core. This is referred to as the primary loop. That water flowing through the steam generator boils water on
1836-445: Is mounted to track the outlet steam of the steam generator. In contrast, boiling water reactors pass radioactive water through the steam turbine, so the turbine is kept as part of the radiologically controlled area of the nuclear power station. The electric generator converts mechanical power supplied by the turbine into electrical power. Low-pole AC synchronous generators of high rated power are used. A cooling system removes heat from
1904-413: Is pumped through the reactor core where it absorbs heat from the fuel rods. It then passes through the steam generator, where it transfers its heat (via conduction through metal) to lower-pressure water which is allowed to boil. Unlike PWRs, boiling water reactors (BWRs) do not use steam generators. The primary coolant is allowed to boil directly in the reactor core, and the steam is simply passed through
1972-802: The Experimental Breeder Reactor I , powering four light bulbs. On June 27, 1954, the world's first nuclear power station to generate electricity for a power grid , the Obninsk Nuclear Power Plant , commenced operations in Obninsk , in the Soviet Union . The world's first full scale power station, Calder Hall in the United Kingdom , opened on October 17, 1956 and was also meant to produce plutonium . The world's first full scale power station solely devoted to electricity production
2040-491: The Russian invasion of Ukraine . Meanwhile, China continues to advance in nuclear energy: having 25 reactors under construction by late 2023, China is the country with the most reactors being built at one time in the world. Nuclear decommissioning is the dismantling of a nuclear power station and decontamination of the site to a state no longer requiring protection from radiation for the general public. The main difference from
2108-656: The UAE launched the Arab region's first-ever nuclear energy plant. Unit 1 of the Barakah plant in the Al Dhafrah region of Abu Dhabi commenced generating heat on the first day of its launch, while the remaining 3 Units are being built. However, Nuclear Consulting Group head, Paul Dorfman, warned the Gulf nation's investment into the plant as a risk "further destabilizing the volatile Gulf region, damaging
Narora Atomic Power Station - Misplaced Pages Continue
2176-424: The 1970s and 1980s, when it "reached an intensity unprecedented in the history of technology controversies," in some countries. Proponents argue that nuclear power is a sustainable energy source which reduces carbon emissions and can increase energy security if its use supplants a dependence on imported fuels. Proponents advance the notion that nuclear power produces virtually no air pollution, in contrast to
2244-485: The 1979 Three Mile Island accident , the 1986 Chernobyl disaster , and the 2011 Fukushima Daiichi nuclear disaster , corresponding to the beginning of the operation of generation II reactors . Professor of sociology Charles Perrow states that multiple and unexpected failures are built into society's complex and tightly coupled nuclear reactor systems. Such accidents are unavoidable and cannot be designed around. An interdisciplinary team from MIT has estimated that given
2312-559: The Brussels supplementary convention, and the Vienna Convention on Civil Liability for Nuclear Damage . However states with a majority of the world's nuclear power stations, including the U.S., Russia, China and Japan, are not party to international nuclear liability conventions. The nuclear power debate about the deployment and use of nuclear fission reactors to generate electricity from nuclear fuel for civilian purposes peaked during
2380-588: The activated primary coolant water from the secondary coolant which passes through the steam turbine. Thus, humans can freely access a PWR's turbines and other steam plant components during operation. This reduces maintenance cost and improves up-time. In commercial power plants, there are two to four steam generators per reactor; each steam generator can measure up to 70 feet (21 m) in height and weigh as much as 800 tons. Each steam generator can contain anywhere from 3,000 to 16,000 tubes, each about .75 inches (19 mm) in diameter. The coolant (treated water), which
2448-552: The chief viable alternative of fossil fuel. Proponents also believe that nuclear power is the only viable course to achieve energy independence for most Western countries. They emphasize that the risks of storing waste are small and can be further reduced by using the latest technology in newer reactors, and the operational safety record in the Western world is excellent when compared to the other major kinds of power plants. Opponents say that nuclear power poses many threats to people and
2516-485: The costs of fuel extraction, processing, use and spent fuel storage internalized costs. Therefore, comparison with other power generation methods is strongly dependent on assumptions about construction timescales and capital financing for nuclear stations. Cost estimates take into account station decommissioning and nuclear waste storage or recycling costs in the United States due to the Price Anderson Act . With
2584-487: The cycle begins again. The water-steam cycle corresponds to the Rankine cycle . The nuclear reactor is the heart of the station. In its central part, the reactor's core produces heat due to nuclear fission. With this heat, a coolant is heated as it is pumped through the reactor and thereby removes the energy from the reactor. The heat from nuclear fission is used to raise steam, which runs through turbines , which in turn power
2652-458: The dismantling of other power stations is the presence of radioactive material that requires special precautions to remove and safely relocate to a waste repository. Decommissioning involves many administrative and technical actions. It includes all clean-up of radioactivity and progressive demolition of the station. Once a facility is decommissioned, there should no longer be any danger of a radioactive accident or to any persons visiting it. After
2720-481: The electrical generators. Nuclear reactors usually rely on uranium to fuel the chain reaction. Uranium is a very heavy metal that is abundant on Earth and is found in sea water as well as most rocks. Naturally occurring uranium is found in two different isotopes : uranium-238 (U-238), accounting for 99.3% and uranium-235 (U-235) accounting for about 0.7%. U-238 has 146 neutrons and U-235 has 143 neutrons. Different isotopes have different behaviors. For instance, U-235
2788-534: The energy-intensive stages of the nuclear fuel chain are considered, from uranium mining to nuclear decommissioning , nuclear power is not a low-carbon electricity source despite the possibility of refinement and long-term storage being powered by a nuclear facility. Those countries that do not contain uranium mines cannot achieve energy independence through existing nuclear power technologies. Actual construction costs often exceed estimates, and spent fuel management costs are difficult to define. On 1 August 2020,
Narora Atomic Power Station - Misplaced Pages Continue
2856-402: The environment and raising the possibility of nuclear proliferation." Nuclear power plants do not produce greenhouse gases during operation. Older nuclear power plants, like ones using second-generation reactors , produce approximately the same amount of carbon dioxide during the whole life cycle of nuclear power plants for an average of about 11g/kWh, as much power generated by wind , which
2924-775: The environment, and that costs do not justify benefits. Threats include health risks and environmental damage from uranium mining , processing and transport, the risk of nuclear weapons proliferation or sabotage, and the problem of radioactive nuclear waste . Another environmental issue is discharge of hot water into the sea. The hot water modifies the environmental conditions for marine flora and fauna. They also contend that reactors themselves are enormously complex machines where many things can and do go wrong, and there have been many serious nuclear accidents . Critics do not believe that these risks can be reduced through new technology , despite rapid advancements in containment procedures and storage methods. Opponents argue that when all
2992-513: The expected growth of nuclear power from 2005 to 2055, at least four serious nuclear accidents would be expected in that period. The MIT study does not take into account improvements in safety since 1970. Nuclear power works under an insurance framework that limits or structures accident liabilities in accordance with the Paris Convention on Third Party Liability in the Field of Nuclear Energy ,
3060-654: The heat and radiation of the reactor. The water tubes also have to be able to resist corrosion from water for an extended period of time. The pipes that are used in American reactors are made of Inconel , either Alloy 600 or Alloy 690. Alloy 690 is made with extra chromium and most facilities heat treat the metal to make it better able to resist heat and corrosion. The high nickel content in Alloy 600 and Alloy 690 make them well suited for resisting acids and high degrees of stress and temperature. The annealed, or heat treated, Alloy 600
3128-503: The inspection frequency using the known rates of corrosion and crack propagation in the material. If an inspection finds that a tube wall is thin enough that it might corrode through before the next scheduled inspection, the tube is plugged. (Plugging a tube is typically easier than attempting to repair it. There are many small heat-exchange tubes, and steam generators are designed with excess tubes to allow some to be plugged.) Entire steam generators are often replaced in plant mid-life, which
3196-586: The need to spend more on redundant back up safety equipment. According to the World Nuclear Association , as of March 2020: The Russian state nuclear company Rosatom is the largest player in international nuclear power market, building nuclear plants around the world. Whereas Russian oil and gas were subject to international sanctions after the Russian full-scale invasion of Ukraine in February 2022, Rosatom
3264-473: The now decommissioned German Biblis Nuclear Power Plant was designed to modulate its output 15% per minute between 40% and 100% of its nominal power. Russia has led in the practical development of floating nuclear power stations , which can be transported to the desired location and occasionally relocated or moved for easier decommissioning. In 2022, the United States Department of Energy funded
3332-467: The nuclear power steam generator. Westinghouse and Combustion Engineering designs have vertical U-tubes with inverted tubes for the primary water. Canadian, Japanese, French, and German PWR suppliers use the vertical configuration as well. Russian VVER reactor designs use horizontal steam generators, which have the tubes mounted horizontally. Babcock & Wilcox plants (e.g., Three Mile Island ) have smaller steam generators that force water through
3400-593: The opportunity to utilize the growing development of nuclear powered steam generators. Westinghouse built one of the first nuclear power plants, the Yankee Rowe nuclear power station (NPS), which also used a nuclear powered steam generator, in 1960. This power plant had a one hundred MWe (mega watt electric) output. By comparison, some modern plants have over 1100 MWe output. Eventually, other international companies such as Babcock & Wilcox and Combustion Engineering began their own programs for research and development of
3468-443: The primary coolant is at higher pressure, a ruptured heat-exchange tube would cause primary coolant to leak into the secondary loop. Typically this would require the plant to shutdown for repair. To avoid such primary-secondary leaks, steam generator tubes are periodically inspected by eddy-current testing , and individual tubes can be plugged to remove them from operation. As with many nuclear components, mechanical engineers determine
SECTION 50
#17328558557293536-539: The primary coolant. These also use heat exchangers between primary metal coolant and the secondary water coolant, and thus their secondary and tertiary cooling is similar to a PWR. A steam generator's heat-exchange tubes have an important safety role, because they separate radioactive and non-radioactive fluid systems. (The primary coolant becomes briefly radioactive from its exposure to the core, and also has trace amounts of longer-lived radioactive isotopes dissolved in it, such as dissolved atoms of iron from pipes.) Because
3604-474: The prospect that all spent nuclear fuel could potentially be recycled by using future reactors, generation IV reactors are being designed to completely close the nuclear fuel cycle . However, up to now, there has not been any actual bulk recycling of waste from a NPP, and on-site temporary storage is still being used at almost all plant sites due to construction problems for deep geological repositories . Only Finland has stable repository plans, therefore from
3672-420: The reactor core and transports it to another area of the station, where the thermal energy can be harnessed to produce electricity or to do other useful work. Typically the hot coolant is used as a heat source for a boiler, and the pressurized steam from that drives one or more steam turbine driven electrical generators . In the event of an emergency, safety valves can be used to prevent pipes from bursting or
3740-435: The reactor core is surrounded by a protective shield. This containment absorbs radiation and prevents radioactive material from being released into the environment. In addition, many reactors are equipped with a dome of concrete to protect the reactor against both internal casualties and external impacts. The purpose of the steam turbine is to convert the heat contained in steam into mechanical energy. The engine house with
3808-466: The reactor from exploding. The valves are designed so that they can derive all of the supplied flow rates with little increase in pressure. In the case of the BWR , the steam is directed into the suppression chamber and condenses there. The chambers on a heat exchanger are connected to the intermediate cooling circuit. The main condenser is a large cross-flow shell and tube heat exchanger that takes wet vapor,
3876-540: The risks of future uncertainties. To date all operating nuclear power stations were developed by state-owned or regulated utilities where many of the risks associated with construction costs, operating performance, fuel price, and other factors were borne by consumers rather than suppliers. Many countries have now liberalized the electricity market where these risks and the risk of cheaper competitors emerging before capital costs are recovered, are borne by station suppliers and operators rather than consumers, which leads to
3944-543: The shell side (which is kept at a lower pressure than the primary side) to produce steam. This is referred to as the secondary loop. The secondary-side steam is delivered to the turbines to make electricity . The steam is subsequently condensed via cooled water from a tertiary loop and returned to the steam generator to be heated once again. The tertiary cooling water may be recirculated to cooling towers where it sheds waste heat before returning to condense more steam. Once-through tertiary cooling may otherwise be provided by
4012-458: The signing of the 1-2-3 agreement, they have been placed under IAEA monitoring with effect from 2014. 31 May 1993 after 28 months of operation two steam turbine blades in NAPS-1 malfunctioned causing a major fire. This in combination with problems in the reactor's cabling system nearly led to a nuclear meltdown . This article about nuclear power and nuclear reactors for power generation
4080-476: The steam generators—in the case of a pressurized water reactor — or directly into the reactor, for boiling water reactors . Continuous power supply to the plant is critical to ensure safe operation. Most nuclear stations require at least two distinct sources of offsite power for redundancy. These are usually provided by multiple transformers that are sufficiently separated and can receive power from multiple transmission lines. In addition, in some nuclear stations,
4148-423: The steam turbine is usually structurally separated from the main reactor building. It is aligned so as to prevent debris from the destruction of a turbine in operation from flying towards the reactor. In the case of a pressurized water reactor, the steam turbine is separated from the nuclear system. To detect a leak in the steam generator and thus the passage of radioactive water at an early stage, an activity meter
SECTION 60
#17328558557294216-452: The top of the OTSGs (once-through steam generators; counter-flow to the feedwater) and out the bottom to be recirculated by the reactor coolant pumps. The horizontal design has proven to be less susceptible to degradation than the vertical U-tube design. The materials that make up the turbine and pipes of a nuclear powered steam generator are specially made and specifically designed to withstand
4284-477: The turbine generator can power the station's loads while the station is online, without requiring external power. This is achieved via station service transformers which tap power from the generator output before they reach the step-up transformer. Nuclear power plants generate approximately 10% of global electricity, sourced from around 440 reactors worldwide. They are recognized as a significant provider of low-carbon electricity , accounting for about one-quarter of
4352-413: The water source at a warmer temperature or returns to a cooling tower where it either cools for more uses or evaporates into water vapor that rises out the top of the tower. The water level in the steam generator and the nuclear reactor is controlled using the feedwater system. The feedwater pump has the task of taking the water from the condensate system, increasing the pressure and forcing it into either
4420-455: The world's supply in this category. As of 2020, nuclear power stood as the second-largest source of low-carbon energy, making up 26% of the total. Nuclear power facilities are active in 32 countries or regions, and their influence extends beyond these nations through regional transmission grids, especially in Europe. In 2022, nuclear power plants generated 2545 terawatt-hours (TWh) of electricity,
4488-477: Was not targeted by sanctions. However, some countries, especially in Europe, scaled back or cancelled planned nuclear power plants that were to be built by Rosatom. Modern nuclear reactor designs have had numerous safety improvements since the first-generation nuclear reactors. A nuclear power plant cannot explode like a nuclear weapon because the fuel for uranium reactors is not enriched enough, and nuclear weapons require precision explosives to force fuel into
4556-431: Was prone to tube denting and thinning due to water chemistry. Plants that used the Alloy 600 in their water tubes therefore had to install new water chemistry controllers and change the chemicals they put in the water. Due to this, pipe thinning has been taken care of, but on rare occasions, tube denting still occurs, causing leaks and ruptures. The only way to prevent this is regular maintenance and check-ups, but this forces
4624-565: Was the Shippingport Atomic Power Station in Pennsylvania , United States, which was connected to the grid on December 18, 1957. The conversion to electrical energy takes place indirectly, as in conventional thermal power stations. The fission in a nuclear reactor heats the reactor coolant. The coolant may be water or gas, or even liquid metal, depending on the type of reactor. The reactor coolant then goes to
#728271