Misplaced Pages

Nampo Smelting Complex

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#448551

95-467: The Namp'o Smelting Complex was a smelter in Hadaedu-dong, Hanggu-guyŏk , Namp'o Special City, North Korea . Prior to closure, it employed over 700 workers. It was a comprehensive nonferrous metal production facility including smelters for gold , copper and zinc , other metal rolling and alloy production, smelting by-products, and chemical fertiliser production. In 1997, annual production capacity

190-553: A Bessemer converter or by other means including smelting reduction processes such as the Corex Process . Smelting has serious effects on the environment , producing wastewater and slag and releasing such toxic metals as copper , silver, iron, cobalt , and selenium into the atmosphere. Smelters also release gaseous sulfur dioxide , contributing to acid rain , which acidifies soil and water. The smelter in Flin Flon, Canada

285-572: A cascade method, Swiss chemist and physicist Raoul Pierre Pictet evaporated liquid sulfur dioxide in order to liquefy carbon dioxide, which in turn was evaporated to cool oxygen gas enough to liquefy it. He sent a telegram on December 22, 1877, to the French Academy of Sciences in Paris announcing his discovery of liquid oxygen . Just two days later, French physicist Louis Paul Cailletet announced his own method of liquefying molecular oxygen. Only

380-453: A sulfide ), or carbon and oxygen together (as a carbonate ). To extract the metal, workers must make these compounds undergo a chemical reaction . Smelting, therefore, consists of using suitable reducing substances that combine with those oxidizing elements to free the metal. In the case of sulfides and carbonates, a process called " roasting " removes the unwanted carbon or sulfur, leaving an oxide, which can be directly reduced. Roasting

475-477: A chemical element. The name oxygen was coined in 1777 by Antoine Lavoisier , who first recognized oxygen as a chemical element and correctly characterized the role it plays in combustion. Common industrial uses of oxygen include production of steel , plastics and textiles , brazing, welding and cutting of steels and other metals , rocket propellant , oxygen therapy , and life support systems in aircraft , submarines , spaceflight and diving . One of

570-434: A few drops of the liquid were produced in each case and no meaningful analysis could be conducted. Oxygen was liquefied in a stable state for the first time on March 29, 1883, by Polish scientists from Jagiellonian University , Zygmunt Wróblewski and Karol Olszewski . In 1891 Scottish chemist James Dewar was able to produce enough liquid oxygen for study. The first commercially viable process for producing liquid oxygen

665-424: A hammer to produce wrought iron . Some of the earliest evidence to date for the bloomery smelting of iron is found at Tell Hammeh , Jordan, radiocarbon-dated to c.  930 BC . From the medieval period, an indirect process began to replace the direct reduction in bloomeries. This used a blast furnace to make pig iron , which then had to undergo a further process to make forgeable bar iron. Processes for

760-481: A light sky-blue color caused by absorption in the red (in contrast with the blue color of the sky, which is due to Rayleigh scattering of blue light). High-purity liquid O 2 is usually obtained by the fractional distillation of liquefied air. Liquid oxygen may also be condensed from air using liquid nitrogen as a coolant. Liquid oxygen is a highly reactive substance and must be segregated from combustible materials. The spectroscopy of molecular oxygen

855-686: A low concentration of sulfur dioxide that was difficult to capture; a new generation of copper smelting technologies has supplanted them. More recent furnaces exploit bath smelting, top-jetting lance smelting, flash smelting , and blast furnaces. Some examples of bath smelters include the Noranda furnace, the Isasmelt furnace, the Teniente reactor, the Vunyukov smelter, and the SKS technology. Top-jetting lance smelters include

950-560: A major role in absorbing energy from singlet oxygen and converting it to the unexcited ground state before it can cause harm to tissues. The common allotrope of elemental oxygen on Earth is called dioxygen , O 2 , the major part of the Earth's atmospheric oxygen (see Occurrence ). O 2 has a bond length of 121  pm and a bond energy of 498  kJ/mol . O 2 is used by complex forms of life, such as animals, in cellular respiration . Other aspects of O 2 are covered in

1045-438: A part of air that he called spiritus nitroaereus . In one experiment, he found that placing either a mouse or a lit candle in a closed container over water caused the water to rise and replace one-fourteenth of the air's volume before extinguishing the subjects. From this, he surmised that nitroaereus is consumed in both respiration and combustion. Mayow observed that antimony increased in weight when heated, and inferred that

SECTION 10

#1732859274449

1140-404: A process called eutrophication and the decay of these organisms and other biomaterials may reduce the O 2 content in eutrophic water bodies. Scientists assess this aspect of water quality by measuring the water's biochemical oxygen demand , or the amount of O 2 needed to restore it to a normal concentration. Paleoclimatologists measure the ratio of oxygen-18 and oxygen-16 in

1235-481: A range of more complex organic compounds known collectively as polycyclic aromatic hydrocarbons (PAH). Treatment technologies include recycling of wastewater; settling basins , clarifiers and filtration systems for solids removal; oil skimmers and filtration; chemical precipitation and filtration for dissolved metals; carbon adsorption and biological oxidation for organic pollutants; and evaporation. Pollutants generated by other types of smelters varies with

1330-434: A secondary service after the reduction step is complete; they provide a molten cover on the purified metal, preventing contact with oxygen while still hot enough to readily oxidize. This prevents impurities from forming in the metal. The ores of base metals are often sulfides. In recent centuries, reverberatory furnaces have been used to keep the charge being smelted separately from the fuel. Traditionally, they were used for

1425-458: A small proportion of manganese dioxide. Oxygen levels in the atmosphere are trending slightly downward globally, possibly because of fossil-fuel burning. At standard temperature and pressure , oxygen is a colorless, odorless, and tasteless gas with the molecular formula O 2 , referred to as dioxygen. As dioxygen , two oxygen atoms are chemically bound to each other. The bond can be variously described based on level of theory, but

1520-449: A triplet electronic ground state . An electron configuration with two unpaired electrons, as is found in dioxygen orbitals (see the filled π* orbitals in the diagram) that are of equal energy—i.e., degenerate —is a configuration termed a spin triplet state. Hence, the ground state of the O 2 molecule is referred to as triplet oxygen . The highest-energy, partially filled orbitals are antibonding , and so their filling weakens

1615-576: Is the most abundant element in Earth's crust , and the third-most abundant element in the universe after hydrogen and helium . At standard temperature and pressure , two oxygen atoms will bind covalently to form dioxygen , a colorless and odorless diatomic gas with the chemical formula O 2 . Dioxygen gas currently constitutes 20.95% molar fraction of the Earth's atmosphere , though this has changed considerably over long periods of time in Earth's history . Oxygen makes up almost half of

1710-570: Is a corrosive byproduct of smog and thus an air pollutant . Oxygen was isolated by Michael Sendivogius before 1604, but it is commonly believed that the element was discovered independently by Carl Wilhelm Scheele , in Uppsala , in 1773 or earlier, and Joseph Priestley in Wiltshire , in 1774. Priority is often given for Priestley because his work was published first. Priestley, however, called oxygen "dephlogisticated air", and did not recognize it as

1805-477: Is absorbed by specialized respiratory organs called gills , through the skin or via the gut ; in terrestrial animals such as tetrapods , oxygen in air is actively taken into the body via specialized organs known as lungs , where gas exchange takes place to diffuse oxygen into the blood and carbon dioxide out, and the body's circulatory system then transports the oxygen to other tissues where cellular respiration takes place. However in insects ,

1900-508: Is associated with the atmospheric processes of aurora and airglow . The absorption in the Herzberg continuum and Schumann–Runge bands in the ultraviolet produces atomic oxygen that is important in the chemistry of the middle atmosphere. Excited-state singlet molecular oxygen is responsible for red chemiluminescence in solution. Table of thermal and physical properties of oxygen (O 2 ) at atmospheric pressure: Naturally occurring oxygen

1995-469: Is composed of three stable isotopes , O , O , and O , with O being the most abundant (99.762% natural abundance ). Most O is synthesized at the end of the helium fusion process in massive stars but some is made in the neon burning process . O is primarily made by the burning of hydrogen into helium during the CNO cycle , making it a common isotope in the hydrogen burning zones of stars. Most O

SECTION 20

#1732859274449

2090-537: Is easily produced during the heating process, and as a gas comes into intimate contact with the ore. In the Old World , humans learned to smelt metals in prehistoric times, more than 8000 years ago. The discovery and use of the "useful" metals – copper and bronze at first, then iron a few millennia later – had an enormous impact on human society. The impact was so pervasive that scholars traditionally divide ancient history into Stone Age , Bronze Age , and Iron Age . In

2185-408: Is occasionally found in commercially significant quantities. These minerals are primarily carbonates , sulfides , or oxides of the metal, mixed with other components such as silica and alumina . Roasting the carbonate and sulfide minerals in the air converts them to oxides. The oxides, in turn, are smelted into the metal. Carbon monoxide was (and is) the reducing agent of choice for smelting. It

2280-582: Is only marginally harder, and had even less impact by itself. The earliest evidence for iron-making is a small number of iron fragments with the appropriate amounts of carbon admixture found in the Proto-Hittite layers at Kaman-Kalehöyük and dated to 2200–2000 BC. Souckova-Siegolová (2001) shows that iron implements were made in Central Anatolia in very limited quantities around 1800 BC and were in general use by elites, though not by commoners, during

2375-447: Is oxygen as a component of water, the major constituent of lifeforms. Oxygen in Earth's atmosphere is produced by biotic photosynthesis , in which photon energy in sunlight is captured by chlorophyll to split water molecules and then react with carbon dioxide to produce carbohydrates and oxygen is released as a byproduct . Oxygen is too chemically reactive to remain a free element in air without being continuously replenished by

2470-441: Is produced when N (made abundant from CNO burning) captures a He nucleus, making O common in the helium-rich zones of evolved, massive stars . Fifteen radioisotopes have been characterized, ranging from O to O. The most stable are O with a half-life of 122.24 seconds and O with a half-life of 70.606 seconds. All of the remaining radioactive isotopes have half-lives that are less than 27 seconds and

2565-408: Is reasonably and simply described as a covalent double bond that results from the filling of molecular orbitals formed from the atomic orbitals of the individual oxygen atoms, the filling of which results in a bond order of two. More specifically, the double bond is the result of sequential, low-to-high energy, or Aufbau , filling of orbitals, and the resulting cancellation of contributions from

2660-712: Is temperature-dependent, and about twice as much ( 14.6  mg/L ) dissolves at 0 °C than at 20 °C ( 7.6  mg/L ). At 25 °C and 1 standard atmosphere (101.3  kPa ) of air, freshwater can dissolve about 6.04  milliliters  (mL) of oxygen per liter , and seawater contains about 4.95 mL per liter. At 5 °C the solubility increases to 9.0 mL (50% more than at 25 °C) per liter for freshwater and 7.2 mL (45% more) per liter for sea water. Oxygen condenses at 90.20  K (−182.95 °C, −297.31 °F) and freezes at 54.36 K (−218.79 °C, −361.82 °F). Both liquid and solid O 2 are clear substances with

2755-435: Is the result of the oxygen cycle . This biogeochemical cycle describes the movement of oxygen within and between its three main reservoirs on Earth: the atmosphere, the biosphere, and the lithosphere . The main driving factor of the oxygen cycle is photosynthesis , which is responsible for modern Earth's atmosphere. Photosynthesis releases oxygen into the atmosphere, while respiration , decay , and combustion remove it from

2850-562: Is unknown. The first such bronzes may have been a lucky accident from tin-contaminated copper ores. However, by 2000 BC, people were mining tin on purpose to produce bronze—which is remarkable as tin is a semi-rare metal, and even a rich cassiterite ore only has 5% tin. The discovery of copper and bronze manufacture had a significant impact on the history of the Old World . Metals were hard enough to make weapons that were heavier, stronger, and more resistant to impact damage than wood, bone, or stone equivalents. For several millennia, bronze

2945-457: Is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O 2 by volume) and Venus have much less. The O 2 surrounding those planets is produced solely by the action of ultraviolet radiation on oxygen-containing molecules such as carbon dioxide. The unusually high concentration of oxygen gas on Earth

Nampo Smelting Complex - Misplaced Pages Continue

3040-420: Is used to obtain many metals such as iron , copper , silver , tin , lead and zinc . Smelting uses heat and a chemical reducing agent to decompose the ore, driving off other elements as gases or slag and leaving the metal behind. The reducing agent is commonly a fossil-fuel source of carbon , such as carbon monoxide from incomplete combustion of coke —or, in earlier times, of charcoal . The oxygen in

3135-423: Is usually carried out in an oxidizing environment. A few practical examples: Reduction is the final, high-temperature step in smelting, in which the oxide becomes the elemental metal. A reducing environment (often provided by carbon monoxide, made by incomplete combustion in an air-starved furnace) pulls the final oxygen atoms from the raw metal. The carbon source acts as a chemical reactant to remove oxygen from

3230-517: Is usually given priority in the discovery. The French chemist Antoine Laurent Lavoisier later claimed to have discovered the new substance independently. Priestley visited Lavoisier in October 1774 and told him about his experiment and how he liberated the new gas. Scheele had also dispatched a letter to Lavoisier on September 30, 1774, which described his discovery of the previously unknown substance, but Lavoisier never acknowledged receiving it (a copy of

3325-508: The Americas , pre- Inca civilizations of the central Andes in Peru had mastered the smelting of copper and silver at least six centuries before the first Europeans arrived in the 16th century, while never mastering the smelting of metals such as iron for use with weapon craft. Copper was the first metal to be smelted. How the discovery came about is debated. Campfires are about 200 °C short of

3420-608: The Earth , the Moon , Mars , and meteorites , but were long unable to obtain reference values for the isotope ratios in the Sun , believed to be the same as those of the primordial solar nebula . Analysis of a silicon wafer exposed to the solar wind in space and returned by the crashed Genesis spacecraft has shown that the Sun has a higher proportion of oxygen-16 than does the Earth. The measurement implies that an unknown process depleted oxygen-16 from

3515-463: The Earth's crust in the form of various oxides such as water , carbon dioxide , iron oxides and silicates . All eukaryotic organisms , including plants , animals , fungi , algae and most protists , need oxygen for cellular respiration , which extracts chemical energy by the reaction of oxygen with organic molecules derived from food and releases carbon dioxide as a waste product. In aquatic animals , dissolved oxygen in water

3610-556: The Greek roots ὀξύς (oxys) ( acid , literally 'sharp', from the taste of acids) and -γενής (-genēs) (producer, literally begetter), because he mistakenly believed that oxygen was a constituent of all acids. Chemists (such as Sir Humphry Davy in 1812) eventually determined that Lavoisier was wrong in this regard, but by then the name was too well established. Oxygen entered the English language despite opposition by English scientists and

3705-574: The Japanese colonial era . Destroyed during the Pacific War , it was repaired and reopened in January 1946. The complex was closed down in the late 1990s and had been demolished by 2001, reportedly due to pollution issues. Smelter Smelting is a process of applying heat and a chemical reducing agent to an ore to extract a desired base metal product. It is a form of extractive metallurgy that

3800-593: The New Hittite Empire (~1400–1200 BC). Archaeologists have found indications of iron working in Ancient Egypt , somewhere between the Third Intermediate Period and 23rd Dynasty (ca. 1100–750 BC). Significantly though, they have found no evidence of iron ore smelting in any (pre-modern) period. In addition, very early instances of carbon steel were in production around 2000 years ago (around

3895-470: The shells and skeletons of marine organisms to determine the climate millions of years ago (see oxygen isotope ratio cycle ). Seawater molecules that contain the lighter isotope , oxygen-16, evaporate at a slightly faster rate than water molecules containing the 12% heavier oxygen-18, and this disparity increases at lower temperatures. During periods of lower global temperatures, snow and rain from that evaporated water tends to be higher in oxygen-16, and

Nampo Smelting Complex - Misplaced Pages Continue

3990-430: The thermal decomposition of potassium nitrate . In Bugaj's view, the isolation of oxygen and the proper association of the substance to that part of air which is required for life, provides sufficient evidence for the discovery of oxygen by Sendivogius. This discovery of Sendivogius was however frequently denied by the generations of scientists and chemists which succeeded him. It is also commonly claimed that oxygen

4085-553: The 17th and the 18th century but none of them recognized it as a chemical element . This may have been in part due to the prevalence of the philosophy of combustion and corrosion called the phlogiston theory , which was then the favored explanation of those processes. Established in 1667 by the German alchemist J. J. Becher , and modified by the chemist Georg Ernst Stahl by 1731, phlogiston theory stated that all combustible materials were made of two parts. One part, called phlogiston,

4180-531: The 2s electrons, after sequential filling of the low σ and σ orbitals; σ overlap of the two atomic 2p orbitals that lie along the O–O molecular axis and π overlap of two pairs of atomic 2p orbitals perpendicular to the O–O molecular axis, and then cancellation of contributions from the remaining two 2p electrons after their partial filling of the π orbitals. This combination of cancellations and σ and π overlaps results in dioxygen's double-bond character and reactivity, and

4275-527: The American scientist Robert H. Goddard became the first person to develop a rocket engine that burned liquid fuel; the engine used gasoline for fuel and liquid oxygen as the oxidizer . Goddard successfully flew a small liquid-fueled rocket 56 m at 97 km/h on March 16, 1926, in Auburn, Massachusetts , US. In academic laboratories, oxygen can be prepared by heating together potassium chlorate mixed with

4370-536: The Mitsubishi smelting reactor. Flash smelters account for over 50% of the world's copper smelters. There are many more varieties of smelting processes, including the Kivset, Ausmelt, Tamano, EAF, and BF. Of the seven metals known in antiquity , only gold regularly occurs in nature as a native metal . The others – copper , lead , silver , tin , iron , and mercury – occur primarily as minerals, although native copper

4465-478: The Philosopher's Stone drawn from the source of nature and manual experience"] (1604) described a substance contained in air, referring to it as 'cibus vitae' (food of life, ) and according to Polish historian Roman Bugaj, this substance is identical with oxygen. Sendivogius, during his experiments performed between 1598 and 1604, properly recognized that the substance is equivalent to the gaseous byproduct released by

4560-438: The Sun's disk of protoplanetary material prior to the coalescence of dust grains that formed the Earth. Oxygen presents two spectrophotometric absorption bands peaking at the wavelengths 687 and 760  nm . Some remote sensing scientists have proposed using the measurement of the radiance coming from vegetation canopies in those bands to characterize plant health status from a satellite platform. This approach exploits

4655-418: The ancient world. It is too soft to use for structural elements or weapons, though its high density relative to other metals makes it ideal for sling projectiles. However, since it was easy to cast and shape, workers in the classical world of Ancient Greece and Ancient Rome used it extensively to pipe and store water. They also used it as a mortar in stone buildings. Tin was much less common than lead,

4750-493: The atmosphere. In the present equilibrium, production and consumption occur at the same rate. Free oxygen also occurs in solution in the world's water bodies. The increased solubility of O 2 at lower temperatures (see Physical properties ) has important implications for ocean life, as polar oceans support a much higher density of life due to their higher oxygen content. Water polluted with plant nutrients such as nitrates or phosphates may stimulate growth of algae by

4845-461: The base metal ore. For example, aluminum smelters typically generate fluoride , benzo(a)pyrene , antimony and nickel, as well as aluminum. Copper smelters typically discharge cadmium, lead, zinc , arsenic and nickel, in addition to copper. Lead smelters may discharge antimony , asbestos, cadmium, copper and zinc, in addition to lead. Labourers working in the smelting industry have reported respiratory illnesses inhibiting their ability to perform

SECTION 50

#1732859274449

4940-412: The bond order from three to two. Because of its unpaired electrons, triplet oxygen reacts only slowly with most organic molecules, which have paired electron spins; this prevents spontaneous combustion. In the triplet form, O 2 molecules are paramagnetic . That is, they impart magnetic character to oxygen when it is in the presence of a magnetic field, because of the spin magnetic moments of

5035-444: The diatomic elemental molecules in those gases. The first commercial method of producing oxygen was chemical, the so-called Brin process involving a reversible reaction of barium oxide . It was invented in 1852 and commercialized in 1884, but was displaced by newer methods in early 20th century. By the late 19th century scientists realized that air could be liquefied and its components isolated by compressing and cooling it. Using

5130-408: The discovery happened several millennia before the invention of writing, there is no written record of how it was made. However, tin and lead can be smelted by placing the ores in a wood fire, leaving the possibility that the discovery may have occurred by accident. Recent scholarship however has called this find into question. Lead is a common metal, but its discovery had relatively little impact in

5225-466: The electron spins are paired. It is much more reactive with common organic molecules than is normal (triplet) molecular oxygen. In nature, singlet oxygen is commonly formed from water during photosynthesis, using the energy of sunlight. It is also produced in the troposphere by the photolysis of ozone by light of short wavelength and by the immune system as a source of active oxygen. Carotenoids in photosynthetic organisms (and possibly animals) play

5320-508: The establishment of trade networks that spanned large areas of Europe and Asia and had a major effect on the distribution of wealth among individuals and nations. The earliest known cast lead beads were thought to be in the Çatalhöyük site in Anatolia ( Turkey ), and dated from about 6500 BC. However, recent research has discovered that this was not lead, but rather cerussite and galena, minerals rich in, but distinct from, lead. Since

5415-563: The fact that the Englishman Priestley had first isolated the gas and written about it. This is partly due to a poem praising the gas titled "Oxygen" in the popular book The Botanic Garden (1791) by Erasmus Darwin , grandfather of Charles Darwin . John Dalton 's original atomic hypothesis presumed that all elements were monatomic and that the atoms in compounds would normally have the simplest atomic ratios with respect to one another. For example, Dalton assumed that water's formula

5510-399: The first known experiments on the relationship between combustion and air was conducted by the 2nd century BCE Greek writer on mechanics, Philo of Byzantium . In his work Pneumatica , Philo observed that inverting a vessel over a burning candle and surrounding the vessel's neck with water resulted in some water rising into the neck. Philo incorrectly surmised that parts of the air in

5605-429: The first step of smelting: forming two liquids, one an oxide slag containing most of the impurities, and the other a sulfide matte containing the valuable metal sulfide and some impurities. Such "reverb" furnaces are today about 40 meters long, 3 meters high, and 10 meters wide. Fuel is burned at one end to melt the dry sulfide concentrates (usually after partial roasting) which are fed through openings in

5700-450: The first-century .) in northwest Tanzania , based on complex preheating principles. These discoveries are significant for the history of metallurgy. Most early processes in Europe and Africa involved smelting iron ore in a bloomery , where the temperature is kept low enough so that the iron does not melt. This produces a spongy mass of iron called a bloom, which then must be consolidated with

5795-399: The idea; instead, it was based on observations of what happens when something burns, that most common objects appear to become lighter and seem to lose something in the process. Polish alchemist , philosopher , and physician Michael Sendivogius (Michał Sędziwój) in his work De Lapide Philosophorum Tractatus duodecim e naturae fonte et manuali experientia depromti ["Twelve Treatises on

SECTION 60

#1732859274449

5890-499: The letter was found in Scheele's belongings after his death). Lavoisier conducted the first adequate quantitative experiments on oxidation and gave the first correct explanation of how combustion works. He used these and similar experiments, all started in 1774, to discredit the phlogiston theory and to prove that the substance discovered by Priestley and Scheele was a chemical element . In one experiment, Lavoisier observed that there

5985-428: The majority of these have half-lives that are less than 83 milliseconds. The most common decay mode of the isotopes lighter than O is β decay to yield nitrogen, and the most common mode for the isotopes heavier than O is beta decay to yield fluorine . Oxygen is the most abundant chemical element by mass in the Earth's biosphere , air, sea and land. Oxygen is the third most abundant chemical element in

6080-418: The most successful and biodiverse terrestrial clade , oxygen is directly conducted to the internal tissues via a deep network of airways . Many major classes of organic molecules in living organisms contain oxygen atoms, such as proteins , nucleic acids , carbohydrates and fats , as do the major constituent inorganic compounds of animal shells, teeth, and bone. Most of the mass of living organisms

6175-494: The nitroaereus must have combined with it. He also thought that the lungs separate nitroaereus from air and pass it into the blood and that animal heat and muscle movement result from the reaction of nitroaereus with certain substances in the body. Accounts of these and other experiments and ideas were published in 1668 in his work Tractatus duo in the tract "De respiratione". Robert Hooke , Ole Borch , Mikhail Lomonosov , and Pierre Bayen all produced oxygen in experiments in

6270-716: The oldest evidence, now appears to be hammered, native copper. Combining copper with tin and/or arsenic in the right proportions produces bronze , an alloy that is significantly harder than copper. The first copper/arsenic bronzes date from 4200 BC from Asia Minor . The Inca bronze alloys were also of this type. Arsenic is often an impurity in copper ores, so the discovery could have been made by accident. Eventually, arsenic-bearing minerals were intentionally added during smelting. Copper–tin bronzes, harder and more durable, were developed around 3500 BC, also in Asia Minor. How smiths learned to produce copper/tin bronzes

6365-455: The ore and liberating the sulfur as sulfur dioxide gas. Smelting most prominently takes place in a blast furnace to produce pig iron , which is converted into steel . Plants for the electrolytic reduction of aluminium are referred to as aluminium smelters . Smelting involves more than just melting the metal out of its ore. Most ores are the chemical compound of the metal and other elements, such as oxygen (as an oxide ), sulfur (as

6460-430: The ore binds to carbon at high temperatures, as the chemical potential energy of the bonds in carbon dioxide (CO 2 ) is lower than that of the bonds in the ore. Sulfide ores such as those commonly used to obtain copper, zinc or lead, are roasted before smelting in order to convert the sulfides to oxides, which are more readily reduced to the metal. Roasting heats the ore in the presence of oxygen from air, oxidizing

6555-464: The ore during smelting to catalyze the desired reactions and to chemically bind to unwanted impurities or reaction products. Calcium carbonate or calcium oxide in the form of lime are often used for this purpose, since they react with sulfur, phosphorus, and silicon impurities to allow them to be readily separated and discarded, in the form of slag. Fluxes may also serve to control the viscosity and neutralize unwanted acids. Flux and slag can provide

6650-400: The ore, yielding the purified metal element as a product. The carbon source is oxidized in two stages. First, carbon (C) combusts with oxygen (O 2 ) in the air to produce carbon monoxide (CO). Second, the carbon monoxide reacts with the ore (e.g. Fe 2 O 3 ) and removes one of its oxygen atoms, releasing carbon dioxide (CO 2 ). After successive interactions with carbon monoxide, all of

6745-431: The oxygen in the ore will be removed, leaving the raw metal element (e.g. Fe). As most ores are impure, it is often necessary to use flux , such as limestone (or dolomite ), to remove the accompanying rock gangue as slag. This calcination reaction emits carbon dioxide. The required temperature varies both in absolute terms and in terms of the melting point of the base metal. Examples: Fluxes are materials added to

6840-451: The photosynthetic activities of autotrophs such as cyanobacteria , chloroplast -bearing algae and plants. A much rarer triatomic allotrope of oxygen , ozone ( O 3 ), strongly absorbs the UVB and UVC wavelengths and forms a protective ozone layer at the lower stratosphere , which shields the biosphere from ionizing ultraviolet radiation . However, ozone present at the surface

6935-612: The physical tasks demanded by their jobs. In the United States, the Environmental Protection Agency has published pollution control regulations for smelters. Oxygen Oxygen is a chemical element with the symbol   O and atomic number 8. It is a member of the chalcogen group in the periodic table , a highly reactive nonmetal , and a potent oxidizing agent that readily forms oxides with most elements as well as with other compounds . Oxygen

7030-455: The remainder of this article. Trioxygen ( O 3 ) is usually known as ozone and is a very reactive allotrope of oxygen that is damaging to lung tissue. Ozone is produced in the upper atmosphere when O 2 combines with atomic oxygen made by the splitting of O 2 by ultraviolet (UV) radiation. Since ozone absorbs strongly in the UV region of the spectrum , the ozone layer of

7125-401: The roof of the furnace. The slag floats over the heavier matte and is removed and discarded or recycled. The sulfide matte is then sent to the converter . The precise details of the process vary from one furnace to another depending on the mineralogy of the ore body. While reverberatory furnaces produced slags containing very little copper, they were relatively energy inefficient and off-gassed

7220-414: The seawater left behind tends to be higher in oxygen-18. Marine organisms then incorporate more oxygen-18 into their skeletons and shells than they would in a warmer climate. Paleoclimatologists also directly measure this ratio in the water molecules of ice core samples as old as hundreds of thousands of years. Planetary geologists have measured the relative quantities of oxygen isotopes in samples from

7315-565: The second stage include fining in a finery forge . In the 13th century during the High Middle Ages the blast furnace was introduced by China who had been using it since as early as 200 b.c during the Qin dynasty . [1] Puddling was also introduced in the Industrial Revolution . Both processes are now obsolete, and wrought iron is now rarely made. Instead, mild steel is produced from

7410-643: The temperature needed, so some propose that the first smelting of copper may have occurred in pottery kilns . (The development of copper smelting in the Andes, which is believed to have occurred independently of the Old World , may have occurred in the same way. ) The earliest current evidence of copper smelting, dating from between 5500 BC and 5000 BC, has been found in Pločnik and Belovode, Serbia. A mace head found in Turkey and dated to 5000 BC, once thought to be

7505-486: The universe, after hydrogen and helium. About 0.9% of the Sun 's mass is oxygen. Oxygen constitutes 49.2% of the Earth's crust by mass as part of oxide compounds such as silicon dioxide and is the most abundant element by mass in the Earth's crust . It is also the major component of the world's oceans (88.8% by mass). Oxygen gas is the second most common component of the Earth's atmosphere , taking up 20.8% of its volume and 23.1% of its mass (some 10 tonnes). Earth

7600-401: The unpaired electrons in the molecule, and the negative exchange energy between neighboring O 2 molecules. Liquid oxygen is so magnetic that, in laboratory demonstrations, a bridge of liquid oxygen may be supported against its own weight between the poles of a powerful magnet. Singlet oxygen is a name given to several higher-energy species of molecular O 2 in which all

7695-435: The upper atmosphere functions as a protective radiation shield for the planet. Near the Earth's surface, it is a pollutant formed as a by-product of automobile exhaust . At low earth orbit altitudes, sufficient atomic oxygen is present to cause corrosion of spacecraft . The metastable molecule tetraoxygen ( O 4 ) was discovered in 2001, and was assumed to exist in one of the six phases of solid oxygen . It

7790-451: The vessel were converted into the classical element fire and thus were able to escape through pores in the glass. Many centuries later Leonardo da Vinci built on Philo's work by observing that a portion of air is consumed during combustion and respiration . In the late 17th century, Robert Boyle proved that air is necessary for combustion. English chemist John Mayow (1641–1679) refined this work by showing that fire requires only

7885-543: Was 15,000 tons of blister copper , 5,500 tons of refined copper, 7,000 tons of copper wire, 28,000 tons of zinc, and 5,000 tons of lime fertiliser. Concentrates and ores were received from the mines at Taedae-ri and Suan. The facility was served by the Korean State Railway via Tojiri on the Tojiri Line . The Chinnampo Smelter was originally opened in stages between 1913 and 1915 as a privately owned company during

7980-428: Was HO, leading to the conclusion that the atomic mass of oxygen was 8 times that of hydrogen, instead of the modern value of about 16. In 1805, Joseph Louis Gay-Lussac and Alexander von Humboldt showed that water is formed of two volumes of hydrogen and one volume of oxygen; and by 1811 Amedeo Avogadro had arrived at the correct interpretation of water's composition, based on what is now called Avogadro's law and

8075-408: Was first discovered by Swedish pharmacist Carl Wilhelm Scheele . He had produced oxygen gas by heating mercuric oxide (HgO) and various nitrates in 1771–72. Scheele called the gas "fire air" because it was then the only known agent to support combustion. He wrote an account of this discovery in a manuscript titled Treatise on Air and Fire , which he sent to his publisher in 1775. That document

8170-451: Was given off when the substance containing it was burned, while the dephlogisticated part was thought to be its true form, or calx . Highly combustible materials that leave little residue , such as wood or coal, were thought to be made mostly of phlogiston; non-combustible substances that corrode, such as iron, contained very little. Air did not play a role in phlogiston theory, nor were any initial quantitative experiments conducted to test

8265-491: Was independently developed in 1895 by German engineer Carl von Linde and British engineer William Hampson . Both men lowered the temperature of air until it liquefied and then distilled the component gases by boiling them off one at a time and capturing them separately. Later, in 1901, oxyacetylene welding was demonstrated for the first time by burning a mixture of acetylene and compressed O 2 . This method of welding and cutting metal later became common. In 1923,

8360-445: Was no overall increase in weight when tin and air were heated in a closed container. He noted that air rushed in when he opened the container, which indicated that part of the trapped air had been consumed. He also noted that the tin had increased in weight and that increase was the same as the weight of the air that rushed back in. This and other experiments on combustion were documented in his book Sur la combustion en général , which

8455-462: Was not sensibly different from that of common air , but I fancied that my breast felt peculiarly light and easy for some time afterwards." Priestley published his findings in 1775 in a paper titled "An Account of Further Discoveries in Air", which was included in the second volume of his book titled Experiments and Observations on Different Kinds of Air . Because he published his findings first, Priestley

8550-1034: Was one of the largest point sources of mercury in North America in the 20th century. Even after smelter releases were drastically reduced, landscape re-emission continued to be a major regional source of mercury. Lakes will likely receive mercury contamination from the smelter for decades, from both re-emissions returning as rainwater and leaching of metals from the soil. Air pollutants generated by aluminium smelters include carbonyl sulfide , hydrogen fluoride , polycyclic compounds , lead, nickel , manganese , polychlorinated biphenyls , and mercury . Copper smelter emissions include arsenic, beryllium , cadmium , chromium , lead, manganese, and nickel. Lead smelters typically emit arsenic, antimony , cadmium and various lead compounds. Wastewater pollutants discharged by iron and steel mills includes gasification products such as benzene , naphthalene , anthracene , cyanide , ammonia , phenols and cresols , together with

8645-408: Was proven in 2006 that this phase, created by pressurizing O 2 to 20  GPa , is in fact a rhombohedral O 8 cluster . This cluster has the potential to be a much more powerful oxidizer than either O 2 or O 3 and may therefore be used in rocket fuel . A metallic phase was discovered in 1990 when solid oxygen is subjected to a pressure of above 96 GPa and it

8740-499: Was published in 1777. In the meantime, on August 1, 1774, an experiment conducted by the British clergyman Joseph Priestley focused sunlight on mercuric oxide contained in a glass tube, which liberated a gas he named "dephlogisticated air". He noted that candles burned brighter in the gas and that a mouse was more active and lived longer while breathing it. After breathing the gas himself, Priestley wrote: "The feeling of it to my lungs

8835-458: Was published in 1777. In that work, he proved that air is a mixture of two gases; 'vital air', which is essential to combustion and respiration, and azote (Gk. ἄζωτον "lifeless"), which did not support either. Azote later became nitrogen in English, although it has kept the earlier name in French and several other European languages. Lavoisier renamed 'vital air' to oxygène in 1777 from

8930-420: Was shown in 1998 that at very low temperatures, this phase becomes superconducting . Oxygen dissolves more readily in water than nitrogen, and in freshwater more readily than in seawater. Water in equilibrium with air contains approximately 1 molecule of dissolved O 2 for every 2 molecules of N 2 (1:2), compared with an atmospheric ratio of approximately 1:4. The solubility of oxygen in water

9025-526: Was the material of choice for weapons such as swords , daggers , battle axes , and spear and arrow points, as well as protective gear such as shields , helmets , greaves (metal shin guards), and other body armor . Bronze also supplanted stone, wood, and organic materials in tools and household utensils—such as chisels , saws , adzes , nails , blade shears , knives , sewing needles and pins , jugs , cooking pots and cauldrons , mirrors , and horse harnesses . Tin and copper also contributed to

#448551