Misplaced Pages

Blue Origin NS-16

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Blue Origin NS-22

#215784

59-635: Blue Origin NS-16 was a sub-orbital spaceflight mission operated by Blue Origin which flew on 20 July 2021. The mission was the sixteenth flight of the company's New Shepard integrated launch vehicle and spacecraft, and its first crewed flight. It carried into space American billionaire and Blue Origin founder Jeff Bezos , his brother Mark , pilot and Mercury 13 member Wally Funk , and Dutch student Oliver Daemen . The flight commenced from Blue Origin's Corn Ranch sub-orbital launch site in West Texas aboard

118-404: A > − μ R {\displaystyle \varepsilon =-{\mu \over {2a}}>-{\mu \over {R}}\,\!} where μ {\displaystyle \mu \,\!} is the standard gravitational parameter . Almost always a < R , corresponding to a lower ϵ {\displaystyle \epsilon } than the minimum for

177-543: A "sub-orbital spaceflight". Usually a rocket is used, but some experimental sub-orbital spaceflights have also been achieved via the use of space guns . By definition, a sub-orbital spaceflight reaches an altitude higher than 100 km (62 mi) above sea level . This altitude, known as the Kármán line, was chosen by the Fédération Aéronautique Internationale because it is roughly the point where

236-458: A LEO. The maximum speed at the lower ends of the trajectory are now composed of a horizontal and a vertical component. The higher the horizontal distance covered, the greater the horizontal speed will be. (The vertical velocity will increase with distance for short distances but will decrease with distance at longer distances.) For the V-2 rocket , just reaching space but with a range of about 330 km,

295-467: A crew of two pilots, to an altitude of 200 km (65,000 ft) using captured V-2 . In 2004, a number of companies worked on vehicles in this class as entrants to the Ansari X Prize competition. The Scaled Composites SpaceShipOne was officially declared by Rick Searfoss to have won the competition on October 4, 2004, after completing two flights within a two-week period. In 2005, Sir Richard Branson of

354-439: A full orbit, which is − μ 2 R {\displaystyle -{\mu \over {2R}}\,\!} Thus the net extra specific energy needed compared to just raising the spacecraft into space is between 0 and μ 2 R {\displaystyle \mu \over {2R}\,\!} . To minimize the required delta-v (an astrodynamical measure which strongly determines

413-447: A higher heart rate, and adjusting its blood chemistry. It can take days or weeks to adapt to high altitude. However, above 8,000 metres (26,000 ft), (in the " death zone "), altitude acclimatization becomes impossible. There is a significantly lower overall mortality rate for permanent residents at higher altitudes. Additionally, there is a dose response relationship between increasing elevation and decreasing obesity prevalence in

472-549: A lift off from Texas and a simulated soft touchdown in the Indian Ocean 66 minutes after liftoff. Sub-orbital flights can last from just seconds to days. Pioneer 1 was NASA 's first space probe , intended to reach the Moon . A partial failure caused it to instead follow a sub-orbital trajectory, reentering the Earth's atmosphere 43 hours after launch. To calculate the time of flight for

531-447: A maximum speed of 7 or 8 km/s. The minimum delta-v and the corresponding maximum altitude for a given range can be calculated, d , assuming a spherical Earth of circumference 40 000  km and neglecting the Earth's rotation and atmosphere. Let θ be half the angle that the projectile is to go around the Earth, so in degrees it is 45°× d / 10 000  km . The minimum-delta-v trajectory corresponds to an ellipse with one focus at

590-761: A minimum-delta-v trajectory, according to Kepler's third law , the period for the entire orbit (if it did not go through the Earth) would be: period = ( semi-major axis R ) 3 2 × period of low Earth orbit = ( 1 + sin ⁡ θ 2 ) 3 2 2 π R g {\displaystyle {\text{period}}=\left({\frac {\text{semi-major axis}}{R}}\right)^{\frac {3}{2}}\times {\text{period of low Earth orbit}}=\left({\frac {1+\sin \theta }{2}}\right)^{\frac {3}{2}}2\pi {\sqrt {\frac {R}{g}}}} Using Kepler's second law , we multiply this by

649-478: A quarter of the way around the Earth, and 42 minutes for going halfway around. For short distances, this expression is asymptotic to 2 d / g {\displaystyle {\sqrt {2d/g}}} . From the form involving arccosine, the derivative of the time of flight with respect to d (or θ) goes to zero as d approaches 20 000  km (halfway around the world). The derivative of Δ v also goes to zero here. So if d = 19 000  km ,

SECTION 10

#1732852413216

708-488: A vehicle flying fast enough to support itself with aerodynamic lift from the Earth's atmosphere would be flying faster than orbital speed . The US military and NASA award astronaut wings to those flying above 50 mi (80 km), although the U.S. State Department does not show a distinct boundary between atmospheric flight and spaceflight . During freefall the trajectory is part of an elliptic orbit as given by

767-407: Is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometry, geographical survey, sport, or atmospheric pressure). Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation

826-412: Is a hypersonic suborbital spaceplane concept that could transport 50 passengers from Australia to Europe in 90 minutes or 100 passengers from Europe to California in 60 minutes. The main challenge lies in increasing the reliability of the different components, particularly the engines, in order to make their use for passenger transportation on a daily basis possible. Altitude Altitude

885-423: Is as scientific sounding rockets . Scientific sub-orbital flights began in the 1920s when Robert H. Goddard launched the first liquid fueled rockets, however they did not reach space altitude. In the late 1940s, captured German V-2 ballistic missiles were converted into V-2 sounding rockets which helped lay the foundation for modern sounding rockets. Today there are dozens of different sounding rockets on

944-468: Is defined as a missile that can hit a target at least 5500 km away, and according to the above formula this requires an initial speed of 6.1 km/s. Increasing the speed to 7.9 km/s to attain any point on Earth requires a considerably larger missile because the amount of fuel needed goes up exponentially with delta-v (see Rocket equation ). The initial direction of a minimum-delta-v trajectory points halfway between straight up and straight toward

1003-410: Is due to two competing physical effects: gravity, which causes the air to be as close as possible to the ground; and the heat content of the air, which causes the molecules to bounce off each other and expand. The temperature profile of the atmosphere is a result of an interaction between radiation and convection . Sunlight in the visible spectrum hits the ground and heats it. The ground then heats

1062-472: Is known as the adiabatic lapse rate , which is approximately 9.8 °C per kilometer (or 5.4 °F [3.0 °C] per 1000 feet) of altitude. The presence of water in the atmosphere complicates the process of convection. Water vapor contains latent heat of vaporization . As air rises and cools, it eventually becomes saturated and cannot hold its quantity of water vapor. The water vapor condenses (forming clouds ), and releases heat, which changes

1121-1134: Is maximized (at about 1320 km) for a trajectory going one quarter of the way around the Earth ( 10 000  km ). Longer ranges will have lower apogees in the minimal-delta-v solution. specific kinetic energy at launch = μ R − μ major axis = μ R sin ⁡ θ 1 + sin ⁡ θ {\displaystyle {\text{specific kinetic energy at launch}}={\frac {\mu }{R}}-{\frac {\mu }{\text{major axis}}}={\frac {\mu }{R}}{\frac {\sin \theta }{1+\sin \theta }}} Δ v = speed at launch = 2 μ R sin ⁡ θ 1 + sin ⁡ θ = 2 g R sin ⁡ θ 1 + sin ⁡ θ {\displaystyle \Delta v={\text{speed at launch}}={\sqrt {2{\frac {\mu }{R}}{\frac {\sin \theta }{1+\sin \theta }}}}={\sqrt {2gR{\frac {\sin \theta }{1+\sin \theta }}}}} (where g

1180-580: Is often preferred for this usage. In aviation, altitude is typically measured relative to mean sea level or above ground level to ensure safe navigation and flight operations. In geometry and geographical surveys, altitude helps create accurate topographic maps and understand the terrain's elevation. For high-altitude trekking and sports, knowing and adapting to altitude is vital for performance and safety. Higher altitudes mean reduced oxygen levels, which can lead to altitude sickness if proper acclimatization measures are not taken. Vertical distance measurements in

1239-425: Is similar to an ICBM. ICBMs have delta-v's somewhat less than orbital; and therefore would be somewhat cheaper than the costs for reaching orbit, but the difference is not large. Due to the high cost of spaceflight, suborbital flights are likely to be initially limited to high value, very high urgency cargo deliveries such as courier flights, military fast-response operations or space tourism . The SpaceLiner

SECTION 20

#1732852413216

1298-447: Is the acceleration of gravity at the Earth's surface). The Δ v increases with range, leveling off at 7.9 km/s as the range approaches 20 000  km (halfway around the world). The minimum-delta-v trajectory for going halfway around the world corresponds to a circular orbit just above the surface (of course in reality it would have to be above the atmosphere). See lower for the time of flight. An intercontinental ballistic missile

1357-444: Is the process of convection . Convection comes to equilibrium when a parcel of air at a given altitude has the same density as its surroundings. Air is a poor conductor of heat, so a parcel of air will rise and fall without exchanging heat. This is known as an adiabatic process , which has a characteristic pressure-temperature curve. As the pressure gets lower, the temperature decreases. The rate of decrease of temperature with elevation

1416-508: Is the transition altitude). When flying at a flight level, the altimeter is always set to standard pressure (29.92  inHg or 1013.25  hPa ). On the flight deck, the definitive instrument for measuring altitude is the pressure altimeter , which is an aneroid barometer with a front face indicating distance (feet or metres) instead of atmospheric pressure . There are several types of altitude in aviation: These types of altitude can be explained more simply as various ways of measuring

1475-487: The Ansari X Prize , horizontal motion is not needed. In this case the lowest required delta-v, to reach 100 km altitude, is about 1.4  km/s . Moving slower, with less free-fall, would require more delta-v. Compare this with orbital spaceflights: a low Earth orbit (LEO), with an altitude of about 300 km, needs a speed around 7.7 km/s, requiring a delta-v of about 9.2 km/s. (If there were no atmospheric drag

1534-645: The Virgin Group announced the creation of Virgin Galactic and his plans for a 9-seat capacity SpaceShipTwo named VSS Enterprise . It has since been completed with eight seats (one pilot, one co-pilot and six passengers) and has taken part in captive-carry tests and with the first mother-ship WhiteKnightTwo , or VMS Eve . It has also completed solitary glides, with the movable tail sections in both fixed and "feathered" configurations. The hybrid rocket motor has been fired multiple times in ground-based test stands, and

1593-577: The X-15 and SpaceShipTwo , and uncrewed ones, such as ICBMs and sounding rockets . Flights which attain sufficient velocity to go into low Earth orbit , and then de-orbit before completing their first full orbit, are not considered sub-orbital. Examples of this include flights of the Fractional Orbital Bombardment System . A flight that does not reach space is still sometimes called sub-orbital, but cannot officially be classified as

1652-460: The flight phases before and after the free-fall can vary. For an intercontinental flight the boost phase takes 3 to 5 minutes, the free-fall (midcourse phase) about 25 minutes. For an ICBM the atmospheric reentry phase takes about 2 minutes; this will be longer for any soft landing, such as for a possible future commercial flight. Test flight 4 of the SpaceX 'Starship' performed such a flight with

1711-452: The orbit equation . The perigee distance is less than the radius of the Earth R including atmosphere, hence the ellipse intersects the Earth, and hence the spacecraft will fail to complete an orbit. The major axis is vertical, the semi-major axis a is more than R /2. The specific orbital energy ϵ {\displaystyle \epsilon } is given by: ε = − μ 2

1770-435: The troposphere (up to approximately 11 kilometres (36,000 ft) of altitude) in the Earth's atmosphere undergoes notable convection; in the stratosphere , there is little vertical convection. Medicine recognizes that altitudes above 1,500 metres (4,900 ft) start to affect humans, and there is no record of humans living at extreme altitudes above 5,500–6,000 metres (18,000–19,700 ft) for more than two years. As

1829-455: The "down" direction are commonly referred to as depth . The term altitude can have several meanings, and is always qualified by explicitly adding a modifier (e.g. "true altitude"), or implicitly through the context of the communication. Parties exchanging altitude information must be clear which definition is being used. Aviation altitude is measured using either mean sea level (MSL) or local ground level (above ground level, or AGL) as

Blue Origin NS-16 - Misplaced Pages Continue

1888-502: The Future program was to be the fourth crewmember on RSS First Step . However, the anonymous winner had unspecified scheduling conflicts and was re-manifested for a future New Shepard flight; Oliver Daemen took the vacated position. Oliver's father Joes Daemen, the CEO of private equity firm Somerset Capital Partners, paid for the fourth seat; Joes had come second in the auction for the seat, so after

1947-590: The United States. In addition, the recent hypothesis suggests that high altitude could be protective against Alzheimer's disease via action of erythropoietin, a hormone released by kidney in response to hypoxia. However, people living at higher elevations have a statistically significant higher rate of suicide. The cause for the increased suicide risk is unknown so far. For athletes, high altitude produces two contradictory effects on performance. For explosive events (sprints up to 400 metres, long jump , triple jump )

2006-414: The air at the surface. If radiation were the only way to transfer heat from the ground to space, the greenhouse effect of gases in the atmosphere would keep the ground at roughly 333 K (60 °C; 140 °F), and the temperature would decay exponentially with height. However, when air is hot, it tends to expand, which lowers its density. Thus, hot air tends to rise and transfer heat upward. This

2065-441: The altitude increases, atmospheric pressure decreases, which affects humans by reducing the partial pressure of oxygen . The lack of oxygen above 2,400 metres (8,000 ft) can cause serious illnesses such as altitude sickness , high altitude pulmonary edema , and high altitude cerebral edema . The higher the altitude, the more likely are serious effects. The human body can adapt to high altitude by breathing faster, having

2124-406: The altitude required to qualify as reaching space. The flight path will be either vertical or very steep, with the spacecraft landing back at its take-off site. The spacecraft will shut off its engines well before reaching maximum altitude, and then coast up to its highest point. During a few minutes, from the point when the engines are shut off to the point where the atmosphere begins to slow down

2183-439: The altitude: The Earth's atmosphere is divided into several altitude regions. These regions start and finish at varying heights depending on season and distance from the poles. The altitudes stated below are averages: The Kármán line , at an altitude of 100 kilometres (62 mi) above sea level , by convention defines represents the demarcation between the atmosphere and space . The thermosphere and exosphere (along with

2242-548: The auction winner (Justin Sun) did not take the seat, it was passed onto Joes, who paid for the seat and gave it to Oliver. Sub-orbital spaceflight A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space , but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity . For example,

2301-439: The centre of the Earth and the other at the point halfway between the launch point and the destination point (somewhere inside the Earth). (This is the orbit that minimizes the semi-major axis, which is equal to the sum of the distances from a point on the orbit to the two foci. Minimizing the semi-major axis minimizes the specific orbital energy and thus the delta-v, which is the speed of launch.) Geometrical arguments lead then to

2360-473: The destination point (which is below the horizon). Again, this is the case if the Earth's rotation is ignored. It is not exactly true for a rotating planet unless the launch takes place at a pole. In a vertical flight of not too high altitudes, the time of the free-fall is both for the upward and for the downward part the maximum speed divided by the acceleration of gravity , so with a maximum speed of 1 km/s together 3 minutes and 20 seconds. The duration of

2419-554: The downward acceleration, the passengers will experience weightlessness . Megaroc had been planned for sub-orbital spaceflight by the British Interplanetary Society in the 1940s. In late 1945, a group led by M. Tikhonravov K. and N. G. Chernysheva at the Soviet NII-4 academy (dedicated to rocket artillery science and technology), began work on a stratospheric rocket project, VR-190 , aimed at vertical flight by

Blue Origin NS-16 - Misplaced Pages Continue

2478-1548: The following (with R being the radius of the Earth, about 6370 km): major axis = ( 1 + sin ⁡ θ ) R {\displaystyle {\text{major axis}}=(1+\sin \theta )R} minor axis = R 2 ( sin ⁡ θ + sin 2 ⁡ θ ) = R sin ⁡ ( θ ) semi-major axis {\displaystyle {\text{minor axis}}=R{\sqrt {2\left(\sin \theta +\sin ^{2}\theta \right)}}={\sqrt {R\sin(\theta ){\text{semi-major axis}}}}} distance of apogee from centre of Earth = R 2 ( 1 + sin ⁡ θ + cos ⁡ θ ) {\displaystyle {\text{distance of apogee from centre of Earth}}={\frac {R}{2}}(1+\sin \theta +\cos \theta )} altitude of apogee above surface = ( sin ⁡ θ 2 − sin 2 ⁡ θ 2 ) R = ( 1 2 sin ⁡ ( θ + π 4 ) − 1 2 ) R {\displaystyle {\text{altitude of apogee above surface}}=\left({\frac {\sin \theta }{2}}-\sin ^{2}{\frac {\theta }{2}}\right)R=\left({\frac {1}{\sqrt {2}}}\sin \left(\theta +{\frac {\pi }{4}}\right)-{\frac {1}{2}}\right)R} The altitude of apogee

2537-414: The higher parts of the mesosphere) are regions of the atmosphere that are conventionally defined as space. Regions on the Earth 's surface (or in its atmosphere) that are high above mean sea level are referred to as high altitude . High altitude is sometimes defined to begin at 2,400 meters (8,000 ft) above sea level. At high altitude, atmospheric pressure is lower than that at sea level. This

2596-547: The lapse rate from the dry adiabatic lapse rate to the moist adiabatic lapse rate (5.5 °C per kilometer or 3 °F [1.7 °C] per 1000 feet). As an average, the International Civil Aviation Organization (ICAO) defines an international standard atmosphere (ISA) with a temperature lapse rate of 6.49 °C per kilometer (3.56 °F per 1,000 feet). The actual lapse rate can vary by altitude and by location. Finally, only

2655-475: The length of the minimum-delta-v trajectory will be about 19 500  km , but it will take only a few seconds less time than the trajectory for d = 20 000  km (for which the trajectory is 20 000  km long). While there are a great many possible sub-orbital flight profiles, it is expected that some will be more common than others. The first sub-orbital vehicles which reached space were ballistic missiles . The first ballistic missile to reach space

2714-907: The letter "A". Athletes also can take advantage of altitude acclimatization to increase their performance. The same changes that help the body cope with high altitude increase performance back at sea level. These changes are the basis of altitude training which forms an integral part of the training of athletes in a number of endurance sports including track and field, distance running, triathlon, cycling and swimming. Decreased oxygen availability and decreased temperature make life at high altitude challenging. Despite these environmental conditions, many species have been successfully adapted at high altitudes . Animals have developed physiological adaptations to enhance oxygen uptake and delivery to tissues which can be used to sustain metabolism. The strategies used by animals to adapt to high altitude depend on their morphology and phylogeny . For example, small mammals face

2773-471: The market, from a variety of suppliers in various countries. Typically, researchers wish to conduct experiments in microgravity or above the atmosphere. Research, such as that done for the X-20 Dyna-Soar project suggests that a semi-ballistic sub-orbital flight could travel from Europe to North America in less than an hour. However, the size of rocket, relative to the payload, necessary to achieve this,

2832-434: The maximum speed is about 7 km/s, and the maximum altitude may be more than 1300 km. Any spaceflight that returns to the surface, including sub-orbital ones, will undergo atmospheric reentry . The speed at the start of the reentry is basically the maximum speed of the flight. The aerodynamic heating caused will vary accordingly: it is much less for a flight with a maximum speed of only 1 km/s than for one with

2891-489: The maximum speed was 1.6 km/s. Scaled Composites SpaceShipTwo which is under development will have a similar free-fall orbit but the announced maximum speed is 1.1 km/s (perhaps because of engine shut-off at a higher altitude). For larger ranges, due to the elliptic orbit the maximum altitude can be much more than for a LEO. On a 10,000-kilometer intercontinental flight, such as that of an intercontinental ballistic missile or possible future commercial spaceflight ,

2950-523: The path of an object launched from Earth that reaches the Kármán line (about 83 km [52 mi] – 100 km [62 mi] above sea level ), and then falls back to Earth, is considered a sub-orbital spaceflight. Some sub-orbital flights have been undertaken to test spacecraft and launch vehicles later intended for orbital spaceflight . Other vehicles are specifically designed only for sub-orbital flight; examples include crewed vehicles, such as

3009-1946: The portion of the area of the ellipse swept by the line from the centre of the Earth to the projectile: area fraction = 1 π arcsin ⁡ 2 sin ⁡ θ 1 + sin ⁡ θ + 2 cos ⁡ θ sin ⁡ θ π (major axis)(minor axis) {\displaystyle {\text{area fraction}}={\frac {1}{\pi }}\arcsin {\sqrt {\frac {2\sin \theta }{1+\sin \theta }}}+{\frac {2\cos \theta \sin \theta }{\pi {\text{(major axis)(minor axis)}}}}} time of flight = ( ( 1 + sin ⁡ θ 2 ) 3 2 arcsin ⁡ 2 sin ⁡ θ 1 + sin ⁡ θ + 1 2 cos ⁡ θ sin ⁡ θ ) 2 R g = ( ( 1 + sin ⁡ θ 2 ) 3 2 arccos ⁡ cos ⁡ θ 1 + sin ⁡ θ + 1 2 cos ⁡ θ sin ⁡ θ ) 2 R g {\displaystyle {\begin{aligned}{\text{time of flight}}&=\left(\left({\frac {1+\sin \theta }{2}}\right)^{\frac {3}{2}}\arcsin {\sqrt {\frac {2\sin \theta }{1+\sin \theta }}}+{\frac {1}{2}}\cos \theta {\sqrt {\sin \theta }}\right)2{\sqrt {\frac {R}{g}}}\\&=\left(\left({\frac {1+\sin \theta }{2}}\right)^{\frac {3}{2}}\arccos {\frac {\cos \theta }{1+\sin \theta }}+{\frac {1}{2}}\cos \theta {\sqrt {\sin \theta }}\right)2{\sqrt {\frac {R}{g}}}\\\end{aligned}}} This gives about 32 minutes for going

SECTION 50

#1732852413216

3068-619: The reduction in atmospheric pressure signifies less atmospheric resistance, which generally results in improved athletic performance. For endurance events (races of 5,000 metres or more) the predominant effect is the reduction in oxygen which generally reduces the athlete's performance at high altitude. Sports organizations acknowledge the effects of altitude on performance: the International Association of Athletic Federations (IAAF), for example, marks record performances achieved at an altitude greater than 1,000 metres (3,300 ft) with

3127-454: The reference datum. Pressure altitude divided by 100 feet (30 m) is the flight level , and is used above the transition altitude (18,000 feet (5,500 m) in the US, but may be as low as 3,000 feet (910 m) in other jurisdictions). So when the altimeter reads the country-specific flight level on the standard pressure setting the aircraft is said to be at "Flight level XXX/100" (where XXX

3186-415: The required fuel ), the high-altitude part of the flight is made with the rockets off (this is technically called free-fall even for the upward part of the trajectory). (Compare with Oberth effect .) The maximum speed in a flight is attained at the lowest altitude of this free-fall trajectory, both at the start and at the end of it. If one's goal is simply to "reach space", for example in competing for

3245-459: The theoretical minimum delta-v would be 8.1 km/s to put a craft into a 300-kilometer high orbit starting from a stationary point like the South Pole. The theoretical minimum can be up to 0.46 km/s less if launching eastward from near the equator.) For sub-orbital spaceflights covering a horizontal distance the maximum speed and required delta-v are in between those of a vertical flight and

3304-437: The third flight of New Shepard booster NS4 and the spacecraft RSS First Step , both having previously flown on NS-14 and NS-15 earlier in the year. Blue Origin NS-16 was the first human spaceflight from the U.S. state of Texas . Daemen, aged 18, and Funk, aged 82, became the youngest and oldest people to travel to space, respectively, until William Shatner took the record of oldest in space at age 90 on NS-18 . The flight

3363-515: Was approximately 10 minutes, and crossed the Kármán Line . The mission became the first fully automated flight with civilian passengers, as well as the first multi-person, internationally recognized sub-orbital spaceflight. Four crewmembers flew on Blue Origin NS-16. Originally, the anonymous winner (later revealed as Justin Sun ) of a US$ 28 million auction held by Blue Origin in support of its Club for

3422-492: Was fired in a powered flight for the second time on 5 September 2013. Four additional SpaceShipTwos have been ordered and will operate from the new Spaceport America . Commercial flights carrying passengers were expected in 2014, but became cancelled due to the disaster during SS2 PF04 flight . Branson stated, "[w]e are going to learn from what went wrong, discover how we can improve safety and performance and then move forwards together." A major use of sub-orbital vehicles today

3481-628: Was the German V-2 , the work of the scientists at Peenemünde , on October 3, 1942, which reached an altitude of 53 miles (85 km). Then in the late 1940s the US and USSR concurrently developed missiles all of which were based on the V-2 Rocket, and then much longer range Intercontinental Ballistic Missiles (ICBMs). There are now many countries who possess ICBMs and even more with shorter range Intermediate Range Ballistic Missiles (IRBMs). Sub-orbital tourist flights will initially focus on attaining

#215784