Misplaced Pages

NOAA-18

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Infrared spectroscopy ( IR spectroscopy or vibrational spectroscopy ) is the measurement of the interaction of infrared radiation with matter by absorption , emission , or reflection . It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify and verify known and unknown samples. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum . An IR spectrum can be visualized in a graph of infrared light absorbance (or transmittance ) on the vertical axis vs. frequency , wavenumber or wavelength on the horizontal axis. Typical units of wavenumber used in IR spectra are reciprocal centimeters , with the symbol cm . Units of IR wavelength are commonly given in micrometers (formerly called "microns"), symbol μm, which are related to the wavenumber in a reciprocal way. A common laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) spectrometer . Two-dimensional IR is also possible as discussed below .

#585414

103-570: NOAA-18 , also known as NOAA-N before launch, is an operational, polar orbiting, weather satellite series (NOAA K-N) operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over

206-402: A monochromator . Alternatively, the entire wavelength range is measured using a Fourier transform instrument and then a transmittance or absorbance spectrum is extracted. This technique is commonly used for analyzing samples with covalent bonds . The number of bands roughly correlates with symmetry and molecular complexity. A variety of devices are used to hold the sample in the path of

309-401: A "two-beam" setup (see figure), can correct for these types of effects to give very accurate results. The Standard addition method can be used to statistically cancel these errors. Nevertheless, among different absorption-based techniques which are used for gaseous species detection, Cavity ring-down spectroscopy (CRDS) can be used as a calibration-free method. The fact that CRDS is based on

412-426: A bond between atoms is stretched, for instance, there comes a point at which the bond breaks and the molecule dissociates into atoms. Thus real molecules deviate from perfect harmonic motion and their molecular vibrational motion is anharmonic . An empirical expression that fits the energy curve of a diatomic molecule undergoing anharmonic extension and compression to a good approximation was derived by P.M. Morse , and

515-747: A convenient stand-off method to sort plastic of different polymers ( PET , HDPE , ...). Other developments include a miniature IR-spectrometer that's linked to a cloud based database and suitable for personal everyday use, and NIR-spectroscopic chips that can be embedded in smartphones and various gadgets. In catalysis research it is a very useful tool to characterize the catalyst, as well as to detect intermediates Infrared spectroscopy coupled with machine learning and artificial intelligence also has potential for rapid, accurate and non-invasive sensing of bacteria. The complex chemical composition of bacteria, including nucleic acids, proteins, carbohydrates and fatty acids, results in high-dimensional datasets where

618-452: A function of infrared wavelength (or equivalently, wavenumber ). As described above, the sample's spectrum is always compared to a reference. An alternate method for acquiring spectra is the "dispersive" or "scanning monochromator " method. In this approach, the sample is irradiated sequentially with various single wavelengths. The dispersive method is more common in UV-Vis spectroscopy , but

721-581: A more intense storm). Infrared pictures depict ocean eddies or vortices and map currents such as the Gulf Stream which are valuable to the shipping industry. Fishermen and farmers are interested in knowing land and water temperatures to protect their crops against frost or increase their catch from the sea. Even El Niño phenomena can be spotted. Using color-digitized techniques, the gray shaded thermal images can be converted to color for easier identification of desired information. Each meteorological satellite

824-761: A much better resolution than their geostationary counterparts due their closeness to the Earth. The United States has the NOAA series of polar orbiting meteorological satellites, presently NOAA-15, NOAA-18 and NOAA-19 ( POES ) and NOAA-20 and NOAA-21 ( JPSS ). Europe has the Metop -A, Metop -B and Metop -C satellites operated by EUMETSAT . Russia has the Meteor and RESURS series of satellites. China has FY -3A, 3B and 3C. India has polar orbiting satellites as well. The United States Department of Defense 's Meteorological Satellite ( DMSP ) can "see"

927-447: A number of changes over its predecessors in support of its mission to gather data for weather forecasting and climate monitoring. The MTG satellites are three-axis stabilised rather than spin stabilised, giving greater flexibility in satellite and instrument design. The MTG system features separate Imager and Sounder satellite models that share the same satellite bus, with a baseline of three satellites - two Imagers and one Sounder - forming

1030-403: A number of other salts such as potassium bromide or calcium fluoride are also used). The plates are transparent to the infrared light and do not introduce any lines onto the spectra. With increasing technology in computer filtering and manipulation of the results, samples in solution can now be measured accurately (water produces a broad absorbance across the range of interest, and thus renders

1133-443: A reduced resolution of 4 km. The AVHRR/3 scans 55.4° per scan line on either side of the orbital track and scans 360 lines per minute. The six channels are: 1) channel 1, visible (0.58-0.68 μm); 2) channel 2, near-IR (0.725-1.0 μm); 3) channel 3A, near-IR (1.58-1.64 μm); 4) channel 3B, infrared (3.55-3.93 μm; 5) channel 4, infrared (10.3-11.3 μm); and 6) channel 5 (11.5-12.5 μm). The improved HIRS/4 on

SECTION 10

#1732851407586

1236-794: A sample to be "IR active", it must be associated with changes in the molecular dipole moment. A permanent dipole is not necessary, as the rule requires only a change in dipole moment. A molecule can vibrate in many ways, and each way is called a vibrational mode . For molecules with N number of atoms, geometrically linear molecules have 3 N  – 5 degrees of vibrational modes, whereas nonlinear molecules have 3 N  – 6 degrees of vibrational modes (also called vibrational degrees of freedom). As examples linear carbon dioxide (CO 2 ) has 3 × 3 – 5 = 4, while non-linear water (H 2 O) , has only 3 × 3 – 6 = 3. Simple diatomic molecules have only one bond and only one vibrational band. If

1339-705: A scatterometer and a radio-occultation instrument. The satellite service module is based on the SPOT-5 bus, while the payload suite is a combination of new and heritage instruments from both Europe and the US under the Initial Joint Polar System agreement between EUMETSAT and NOAA. A second generation of Metop satellites ( MetOp-SG ) is in advanced development with launch of the first satellite foreseen in 2025. As with MTG, Metop-SG will launch on Ariane-6 and comprise two satellite models to be operated in pairs in replacement of

1442-515: A second imager satellite will operate from 9.5-deg East to perform a Rapid Scanning mission over Europe. MTG continues Meteosat support to the ARGOS and Search and Rescue missions. MTG-I1 launched in one of the last Ariane-5 launches, with the subsequent satellites planned to launch in Ariane-6 when it enters service. In 2006, the first European low-Earth orbit operational meteorological satellite, Metop -A

1545-887: A sixth channel and is a cross-track scanning instrument providing imaging and radiometric data in the visible , near-IR and infrared of the same area on the Earth . Data from the visible and near-IR channels provide information on vegetation, clouds, snow, and ice. Data from the near-IR and thermal channels provide information on the land and ocean surface temperature and radiative properties of clouds. Only five channels can be transmitted simultaneously with channels 3A and 3B being switched for day/night operation. The instrument produces data in High Resolution Picture Transmission (HRPT) mode at 1.1 km resolution or in Automatic Picture Transmission (APT) mode at

1648-622: A technique for performing vibrational spectroscopy in a transmission electron microscope (TEM). In combination with the high spatial resolution of the TEM, unprecedented experiments have been performed, such as nano-scale temperature measurements, mapping of isotopically labeled molecules, mapping of phonon modes in position- and momentum-space, vibrational surface and bulk mode mapping on nanocubes, and investigations of polariton modes in van der Waals crystals. Analysis of vibrational modes that are IR-inactive but appear in inelastic neutron scattering

1751-502: A trained analyst to determine cloud heights and types, to calculate land and surface water temperatures, and to locate ocean surface features. Infrared satellite imagery can be used effectively for tropical cyclones with a visible eye pattern, using the Dvorak technique , where the difference between the temperature of the warm eye and the surrounding cold cloud tops can be used to determine its intensity (colder cloud tops generally indicate

1854-462: A valuable asset in such situations. Nighttime photos also show the burn-off in gas and oil fields. Atmospheric temperature and moisture profiles have been taken by weather satellites since 1969. Not all weather satellites are direct imagers . Some satellites are sounders that take measurements of a single pixel at a time. They have no horizontal spatial resolution but often are capable or resolving vertical atmospheric layers . Soundings along

1957-409: Is 137.9125 MHz (NOAA-18 changed frequencies with NOAA-19 on 23 June 2009). Weather satellite A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or geostationary (hovering over the same spot on

2060-428: Is a total power system having a field of view (FOV) of 3.3° at half-power points. The antenna provides cross track scan 50° on either side of the orbital track at nadir with a total of 30 IFOVs per scan line. The AMSU-A is calibrated on-board using a blackbody and space as references. The AMSU-A is physically divided into two separate modules which interface independently with the spacecraft. The AMSU-A1 contains all of

2163-570: Is also possible at high spatial resolution using EELS. Although the spatial resolution of HREELs is very high, the bands are extremely broad compared to other techniques. By using computer simulations and normal mode analysis it is possible to calculate theoretical frequencies of molecules. IR spectroscopy is often used to identify structures because functional groups give rise to characteristic bands both in terms of intensity and position (frequency). The positions of these bands are summarized in correlation tables as shown below. A spectrograph

SECTION 20

#1732851407586

2266-463: Is also used in forensic analysis in both criminal and civil cases, for example in identifying polymer degradation . It can be used in determining the blood alcohol content of a suspected drunk driver. IR spectroscopy has been used in identification of pigments in paintings and other art objects such as illuminated manuscripts . Infrared spectroscopy is also useful in measuring the degree of polymerization in polymer manufacture. Changes in

2369-752: Is based on the Defense Meteorological Satellite Program (DMSP Block 5D) spacecraft and is a modified version of the ATN spacecraft (NOAA 6-11, 13-17) to accommodate the new instrumentation, supporting antennas and electrical subsystems. The spacecraft structure consists of four components: 1° the Reaction System Support (RSS); 2° the Equipment Support Module (ESM); 3° the Instrument Mounting Platform (IMP); and 4°

2472-511: Is called the Morse function . Using the Schrödinger equation leads to the selection rule for the system undergoing vibrational changes : △ v = ± 1 , ± 2 , ± 3 , ⋅ ⋅ ⋅ {\displaystyle \bigtriangleup v=\pm 1,\pm 2,\pm 3,\cdot \cdot \cdot } In order for a vibrational mode in

2575-509: Is classified in accordance with ITU Radio Regulations (article 1) as follows: Fixed service (article 1.20) The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012). In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which

2678-446: Is designed to use one of two different classes of orbit: geostationary and polar orbiting . Geostationary weather satellites orbit the Earth above the equator at altitudes of 35,880 km (22,300 miles). Because of this orbit , they remain stationary with respect to the rotating Earth and thus can record or transmit images of the entire hemisphere below continuously with their visible-light and infrared sensors. The news media use

2781-504: Is generally used to study the fundamental vibrations and associated rotational–vibrational structure. The far-infrared, approximately 400–10 cm (25–1,000 μm) has low energy and may be used for rotational spectroscopy and low frequency vibrations. The region from 2–130 cm , bordering the microwave region, is considered the terahertz region and may probe intermolecular vibrations. The names and classifications of these subregions are conventions, and are only loosely based on

2884-456: Is guided through an interferometer and then through the sample (or vice versa). A moving mirror inside the apparatus alters the distribution of infrared light that passes through the interferometer. The signal directly recorded, called an "interferogram", represents light output as a function of mirror position. A data-processing technique called Fourier transform turns this raw data into the desired result (the sample's spectrum): light output as

2987-423: Is important for many clinical settings where faster susceptibility testing would decrease unnecessary blind-treatment with broad-spectrum antibiotics. The main limitation of this technique for clinical applications is the high sensitivity to technical equipment and sample preparation techniques, which makes it difficult to construct large-scale databases. Attempts in this direction have however been made by Bruker with

3090-560: Is in an afternoon equator -crossing orbit and has replaced the NOAA-17 as the prime afternoon spacecraft. The goal of the NOAA/NESS polar orbiting program is to provide output products used in meteorological prediction and warning, oceanographic and hydrologic services, and space environment monitoring. The polar orbiting system complements the NOAA/NESS geostationary meteorological satellite program ( GOES ). The NOAA-18 Advanced TIROS-N spacecraft

3193-465: Is in the food industry to measure the concentration of various compounds in different food products. Infrared spectroscopy is also used in gas leak detection devices such as the DP-IR and EyeCGAs. These devices detect hydrocarbon gas leaks in the transportation of natural gas and crude oil. Infrared spectroscopy is an important analysis method in the recycling process of household waste plastics , and

NOAA-18 - Misplaced Pages Continue

3296-855: Is less practical in the infrared than the FTIR method. One reason that FTIR is favored is called " Fellgett's advantage " or the "multiplex advantage": The information at all frequencies is collected simultaneously, improving both speed and signal-to-noise ratio . Another is called "Jacquinot's Throughput Advantage": A dispersive measurement requires detecting much lower light levels than an FTIR measurement. There are other advantages, as well as some disadvantages, but virtually all modern infrared spectrometers are FTIR instruments. Various forms of infrared microscopy exist. These include IR versions of sub-diffraction microscopy such as IR NSOM , photothermal microspectroscopy , Nano-FTIR and atomic force microscope based infrared spectroscopy (AFM-IR). Infrared spectroscopy

3399-424: Is more useful. For example, if the sample is a dilute solute dissolved in water in a beaker, then a good reference measurement might be to measure pure water in the same beaker. Then the reference measurement would cancel out not only all the instrumental properties (like what light source is used), but also the light-absorbing and light-reflecting properties of the water and beaker, and the final result would just show

3502-458: Is not the only method of studying molecular vibrational spectra. Raman spectroscopy involves an inelastic scattering process in which only part of the energy of an incident photon is absorbed by the molecule, and the remaining part is scattered and detected. The energy difference corresponds to absorbed vibrational energy. The selection rules for infrared and for Raman spectroscopy are different at least for some molecular symmetries , so that

3605-452: Is often interpreted as having two regions. In the functional region there are one to a few troughs per functional group. In the fingerprint region there are many troughs which form an intricate pattern which can be used like a fingerprint to determine the compound. For many kinds of samples, the assignments are known, i.e. which bond deformation(s) are associated with which frequency. In such cases further information can be gleaned about

3708-414: Is then pressed in a mechanical press to form a translucent pellet through which the beam of the spectrometer can pass. A third technique is the "cast film" technique, which is used mainly for polymeric materials. The sample is first dissolved in a suitable, non- hygroscopic solvent. A drop of this solution is deposited on the surface of a KBr or NaCl cell. The solution is then evaporated to dryness and

3811-411: Is what has given humanity the capability to make accurate and preemptive space weather forecasts since the late 2010s. In Europe, the first Meteosat geostationary operational meteorological satellite, Meteosat-1, was launched in 1977 on a Delta launch vehicle. The satellite was a spin-stabilised cylindrical design, 2.1 m in diameter and 3.2 m tall, rotating at approx. 100 rpm and carrying

3914-586: Is with-in the responsibility of the appropriate national administration. The allocation might be primary, secondary, exclusive, and shared. Infrared spectroscopy The infrared portion of the electromagnetic spectrum is usually divided into three regions; the near- , mid- and far- infrared, named for their relation to the visible spectrum. The higher-energy near-IR, approximately 14,000–4,000 cm (0.7–2.5 μm wavelength) can excite overtone or combination modes of molecular vibrations . The mid-infrared, approximately 4,000–400 cm (2.5–25 μm)

4017-449: The CH 2 portion: two stretching modes (ν): symmetric (ν s ) and antisymmetric (ν as ); and four bending modes: scissoring (δ), rocking (ρ), wagging (ω) and twisting (τ), as shown below. Structures that do not have the two additional X groups attached have fewer modes because some modes are defined by specific relationships to those other attached groups. For example, in water,

4120-541: The COSPAS-SARSAT Search and Rescue (SAR) and ARGOS Data Collection Platform (DCP) missions. SEVIRI provided an increased number of spectral channels over MVIRI and imaged the full-Earth disc at double the rate. Meteosat-9 was launched to complement Meteosat-8 in 2005, with the second pair consisting of Meteosat-10 and Meteosat-11 launched in 2012 and 2015, respectively. The Meteosat Third Generation (MTG) programme launched its first satellite in 2022, and featured

4223-571: The European Commission 's Copernicus programme and fulfils the Sentinel-4 mission to monitor air quality, trace gases and aerosols over Europe hourly at high spatial resolution. Two MTG satellites - one Imager and one Sounder - will operate in close proximity from the 0-deg geostationary location over western Africa to observe the eastern Atlantic Ocean, Europe, Africa and the Middle East, while

NOAA-18 - Misplaced Pages Continue

4326-598: The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), is a five-channel microwave instrument intended primarily to measure profiles of atmospheric humidity. The SEM-2 on the Advanced TIROS-N (ATN) NOAA K-N series of polar orbiting meteorological satellites provides measurements to determine the population of the Earth's radiation belts and data on charged particle precipitation in

4429-838: The Meteosat Visible and Infrared Imager (MVIRI) instrument. Successive Meteosat first generation satellites were launched, on European Ariane-4 launchers from Kourou in French Guyana, up to and including Meteosat-7 which acquired data from 1997 until 2017, operated initially by the European Space Agency and later by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Japan has launched nine Himawari satellites beginning in 1977. Starting in 1988 China has launched twenty-one Fengyun satellites. The Meteosat Second Generation (MSG) satellites - also spin stabilised although physically larger and twice

4532-468: The equator ). While primarily used to detect the development and movement of storm systems and other cloud patterns, meteorological satellites can also detect other phenomena such as city lights, fires, effects of pollution, auroras , sand and dust storms , snow cover, ice mapping, boundaries of ocean currents , and energy flows. Other types of environmental information are collected using weather satellites. Weather satellite images helped in monitoring

4635-521: The solar radiation balance of the tropics. Other dust storms in Asia and mainland China are common and easy to spot and monitor, with recent examples of dust moving across the Pacific Ocean and reaching North America. In remote areas of the world with few local observers, fires could rage out of control for days or even weeks and consume huge areas before authorities are alerted. Weather satellites can be

4738-556: The ultraviolet spectral range from 160 to 406 nm. Measurements are made in discrete mode or sweep mode. In discrete mode, measurements are made in 12 spectral bands from which the total ozone and vertical distribution of ozone are derived. In the sweep mode, a continuous spectral scan from 160 to 406 nm is made primarily for computation of ultraviolet solar spectral irradiance. The 12 spectral channels are (in nm): 252.0, 273.61, 283.1, 287.7, 292,29, 297.59, 301.97, 305.87, 312.57, 317.56, 331.26, and 339.89 nm. The SARSAT on

4841-444: The watersheds of the western United States. This information is gleaned from existing satellites of all agencies of the U.S. government (in addition to local, on-the-ground measurements). Ice floes, packs, and bergs can also be located and tracked from weather spacecraft. Even pollution whether it is nature-made or human-made can be pinpointed. The visual and infrared photos show effects of pollution from their respective areas over

4944-526: The 1962 Defense Satellite Applications Program (DSAP) and the 1964 Soviet Meteor series . TIROS paved the way for the Nimbus program , whose technology and findings are the heritage of most of the Earth-observing satellites NASA and NOAA have launched since then. Beginning with the Nimbus 3 satellite in 1969, temperature information through the tropospheric column began to be retrieved by satellites from

5047-474: The 5 mm oxygen channels (channels 3-14) and the 80 GHz channel. The AMSU-A2 module consists of two low-frequency channels (channels 1 and 2). The 15 channels have a center frequency at: 23.8, 31.4, 50.3, 52.8, 53.6, 54.4, 54.94, 55.5, six at 57.29, and 89 GHz . The MHS is a new instrument on the Advanced TIROS-N (ATN) NOAA K-N series of operational meteorological satellites. The Microwave Humidity Sounder (MHS), built by EADS Astrium and donated by

5150-404: The Advanced TIROS-N (ATN) NOAA K-N series of operational meteorological satellites. The AMSU consists of two functionally independent units, AMSU-A and AMSU-B. The AMSU-A is a line-scan instrument designed to measure scene radiance in 15 channels, ranging from 23.8 to 89 GHz, to derive atmospheric temperature profiles from the Earth's surface to about 3 millibar pressure height. The instrument

5253-564: The Advanced TIROS-N (ATN) NOAA K-N series of polar orbiting meteorological satellites is a 20-channel, step-scanned, visible and infrared spectrometer designed to provide atmospheric temperature and moisture profiles. The HIRS/4 instrument is basically identical to the HIRS/3 flown on previous spacecraft except for changes in six spectral bands to improve the sounding accuracy. The HIRS/4 is used to derive water vapor , ozone , and cloud liquid water content . The instrument scans 49.5° on either side of

SECTION 50

#1732851407586

5356-436: The Advanced TIROS-N (ATN) NOAA K-N series of polar orbiting meteorological satellites is a random-access system for the collection of meteorological data from in situ platforms (moveable and fixed). The ARGOS DCS-2 collects telemetry data using a one-way RF link from data collection platforms (such as buoys, free-floating balloons and remote weather stations) and processes the inputs for on-board storage and later transmission from

5459-770: The Advanced TIROS-N (ATN) NOAA K-N series of polar orbiting meteorological satellites is designed to detect and locate Emergency Locator Transmitters (ELTs) and Emergency Position-Indicating Radio Beacons (EPIRB). The SARSAT instrumentation consists of two elements: the Search and Rescue Repeater (SARR) and the Search and Rescue Processor (SARP-2). The SARR is a radiofrequency (RF) system that accepts signals from emergency ground transmitters at three very high frequency (VHF/ UHF ) ranges (121.5 MHz, 243 MHz and 406.05 MHz) and translates, multiplexes, and transmits these signals at L-band frequency (1.544 GHz) to local Search and Rescue stations (LUTs or Local User Terminals) on

5562-626: The Earth Sensor Assembly (ESA) for pitch, roll, and yaw updates. The ADACS controls the spacecraft attitude so that orientation of the three axes is maintained to within ± 0.2° and pitch, roll, and yaw to within 0.1°. The ADACS consists of the Earth Sensor Assembly (ESA), the Sun Sensor Assembly (SSA), four Reaction Wheel Assemblies (RWA), two roll/yaw coils (RYC), two pitch torquing coils (PTC), four gyros, and computer software for data processing. The ATN data handling subsystem, consists of

5665-446: The Earth at a typical altitude of 850 km (530 miles) in a north to south (or vice versa) path, passing over the poles in their continuous flight. Polar orbiting weather satellites are in sun-synchronous orbits , which means they are able to observe any place on Earth and will view every location twice each day with the same general lighting conditions due to the near-constant local solar time . Polar orbiting weather satellites offer

5768-460: The IR Biotyper for food microbiology. Infrared spectroscopy exploits the fact that molecules absorb frequencies that are characteristic of their structure . These absorptions occur at resonant frequencies , i.e. the frequency of the absorbed radiation matches the vibrational frequency. The energies are affected by the shape of the molecular potential energy surfaces , the masses of the atoms, and

5871-487: The IR beam These devices are selected on the basis of their transparency in the region of interest and their resilience toward the sample. Gaseous samples require a sample cell with a long pathlength to compensate for the diluteness. The pathlength of the sample cell depends on the concentration of the compound of interest. A simple glass tube with length of 5 to 10 cm equipped with infrared-transparent windows at both ends of

5974-813: The Indian Ocean. The Japanese have the MTSAT -2 located over the mid Pacific at 145°E and the Himawari 8 at 140°E. The Europeans have four in operation, Meteosat -8 (3.5°W) and Meteosat-9 (0°) over the Atlantic Ocean and have Meteosat-6 (63°E) and Meteosat-7 (57.5°E) over the Indian Ocean. China currently has four Fengyun (风云) geostationary satellites (FY-2E at 86.5°E, FY-2F at 123.5°E, FY-2G at 105°E and FY-4A at 104.5 °E) operated. India also operates geostationary satellites called INSAT which carry instruments for meteorological purposes. Polar orbiting weather satellites circle

6077-545: The NOAA A-M series and a new launch vehicle ( Titan 23G ). NOAA-18 is in an afternoon equator -crossing orbit and replaced NOAA-17 as the prime afternoon spacecraft. NOAA-18 was launched by the Delta II launch vehicle on 20 May 2005 at 10:22:01 UTC from Vandenberg Air Force Base , at Vandenberg Space Launch Complex 4 (SLW-4W), in a Sun-synchronous orbit , at 854 km above the Earth , orbiting every 102.12 minutes. NOAA-18

6180-561: The Solar Array (SA). All of the instruments are located on the ESM and the IMP. The spacecraft power is provided by a direct energy transfer system from the single solar array which consists of eight panels of solar cells . The in-orbit Attitude Determination and Control Subsystem (ADACS) provides three-axis pointing control by controlling torque in three mutually orthogonal momentum wheels with input from

6283-575: The TIROS Information Processor (TIP) for low data rate instruments, the Manipulated Information Rate Processor (MIRP) for high data rate AVHRR, digital tape recorders (DTR), and a cross strap unit (XSU). The NOAA-18 instrument complement consists of: The AVHRR /3 on the Advanced TIROS-N (ATN) NOAA K-L series of polar orbiting meteorological satellites is an improved instrument over previous AVHRRs. The AVHRR/3 adds

SECTION 60

#1732851407586

6386-521: The U.S., Europe, India, China, Russia, and Japan provide nearly continuous observations for a global weather watch. As early as 1946, the idea of cameras in orbit to observe the weather was being developed. This was due to sparse data observation coverage and the expense of using cloud cameras on rockets. By 1958, the early prototypes for TIROS and Vanguard (developed by the Army Signal Corps ) were created. The first weather satellite, Vanguard 2 ,

6489-503: The absorption of a photon leading to a direct transition from the ground state to the second excited vibrational state ( v = 2). Such a band appears at approximately twice the energy of the fundamental band for the same normal mode. Some excitations, so-called combination modes , involve simultaneous excitation of more than one normal mode. The phenomenon of Fermi resonance can arise when two modes are similar in energy; Fermi resonance results in an unexpected shift in energy and intensity of

6592-547: The associated vibronic coupling . In particular, in the Born–Oppenheimer and harmonic approximations (i.e. when the molecular Hamiltonian corresponding to the electronic ground state can be approximated by a harmonic oscillator in the neighbourhood of the equilibrium molecular geometry ), the resonant frequencies are associated with the normal modes of vibration corresponding to the molecular electronic ground state potential energy surface. Thus, it depends on both

6695-416: The bands etc. The infrared spectrum of a sample is recorded by passing a beam of infrared light through the sample. When the frequency of the IR matches the vibrational frequency of a bond or collection of bonds, absorption occurs. Examination of the transmitted light reveals how much energy was absorbed at each frequency (or wavelength). This measurement can be achieved by scanning the wavelength range using

6798-584: The best of all weather vehicles with its ability to detect objects almost as 'small' as a huge oil tanker . In addition, of all the weather satellites in orbit, only DMSP can "see" at night in the visual. Some of the most spectacular photos have been recorded by the night visual sensor; city lights, volcanoes , fires, lightning, meteors , oil field burn-offs, as well as the Aurora Borealis and Aurora Australis have been captured by this 720 kilometres (450 mi) high space vehicle's low moonlight sensor. At

6901-600: The character or quantity of a particular bond are assessed by measuring at a specific frequency over time. Instruments can routinely record many spectra per second in situ, providing insights into reaction mechanism (e.g., detection of intermediates) and reaction progress. Infrared spectroscopy is utilized in the field of semiconductor microelectronics: for example, infrared spectroscopy can be applied to semiconductors like silicon , gallium arsenide , gallium nitride , zinc selenide , amorphous silicon, silicon nitride , etc. Another important application of infrared spectroscopy

7004-571: The eastern Atlantic and most of the Pacific Ocean, which led to significant improvements to weather forecasts . The ESSA and NOAA polar orbiting satellites followed suit from the late 1960s onward. Geostationary satellites followed, beginning with the ATS and SMS series in the late 1960s and early 1970s, then continuing with the GOES series from the 1970s onward. Polar orbiting satellites such as QuikScat and TRMM began to relay wind information near

7107-694: The entire earth. Aircraft and rocket pollution, as well as condensation trails , can also be spotted. The ocean current and low level wind information gleaned from the space photos can help predict oceanic oil spill coverage and movement. Almost every summer, sand and dust from the Sahara Desert in Africa drifts across the equatorial regions of the Atlantic Ocean. GOES-EAST photos enable meteorologists to observe, track and forecast this sand cloud. In addition to reducing visibilities and causing respiratory problems, sand clouds suppress hurricane formation by modifying

7210-454: The essential features are effectively hidden under the total spectrum. Extraction of the essential features therefore requires advanced statistical methods such as machine learning and deep-neural networks. The potential of this technique for bacteria classification have been demonstrated for differentiation at the genus, species and serotype taxonomic levels, and it has also been shown promising for antimicrobial susceptibility testing, which

7313-407: The film formed on the cell is analysed directly. Care is important to ensure that the film is not too thick otherwise light cannot pass through. This technique is suitable for qualitative analysis. The final method is to use microtomy to cut a thin (20–100 μm) film from a solid sample. This is one of the most important ways of analysing failed plastic products for example because the integrity of

7416-500: The geostationary photos in their daily weather presentation as single images or made into movie loops. These are also available on the city forecast pages of www.noaa.gov (example Dallas, TX). Several geostationary meteorological spacecraft are in operation. The United States' GOES series has three in operation: GOES-15 , GOES-16 and GOES-17 . GOES-16 and-17 remain stationary over the Atlantic and Pacific Oceans, respectively. GOES-15

7519-628: The ground, the SEM-2 data is separated from the rest of the data and sent to the NOAA Space Environment Laboratory in Boulder, Colorado , for processing and dissemination. The SBUV/2 on the Advanced TIROS-N (ATN) NOAA K-N series of polar orbiting meteorological satellites is a dual monochrometer ultraviolet grating spectrometer for stratospheric ozone measurements. The SBUV/2 is designed to measure scene radiance and solar spectral irradiance in

7622-605: The ground. The location of the transmitter is determined by retrieving the Doppler information in the relayed signal at the LUT. The SARP-2 is a receiver and processor that accepts digital data from emergency ground transmitters at UHF and demodulates, processes, stores, and relays the data to the SARR where they are combined with the three SARR signals and transmitted via L-band frequency to local stations. The Argos Data Collection System (DCS-2) on

7725-442: The intensity in the selected energy bands. The particle energies range from 50 eV to 20 keV. The MEPED detects protons , electrons , and ions with energies from 30 keV to several tens of MeV. The MEPED consists of four directional solid-state detector telescopes and four omnidirectional sensors. The DPU sorts and counts the events and the results are multiplexed and incorporated into the satellite telemetry system. Once received on

7828-650: The mass of the first generation - were developed by ESA with European industry and in cooperation with EUMETSAT who then operate the satellites from their headquarters in Darmstadt, Germany with this same approach followed for all subsequent European meteorological satellites. Meteosat-8 , the first MSG satellite, was launched in 2002 on an Ariane-5 launcher, carrying the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and Geostationary Earth Radiation Budget (GERB) instruments, along with payloads to support

7931-418: The measurements of photon life-times (and not the laser intensity) makes it needless for any calibration and comparison with a reference Some instruments also automatically identify the substance being measured from a store of thousands of reference spectra held in storage. Fourier transform infrared (FTIR) spectroscopy is a measurement technique that allows one to record infrared spectra. Infrared light

8034-607: The molecule is symmetrical, e.g. N 2 , the band is not observed in the IR spectrum, but only in the Raman spectrum . Asymmetrical diatomic molecules, e.g. carbon monoxide ( CO ), absorb in the IR spectrum. More complex molecules have many bonds, and their vibrational spectra are correspondingly more complex, i.e. big molecules have many peaks in their IR spectra. The atoms in a CH 2 X 2 group, commonly found in organic compounds and where X can represent any other atom, can vibrate in nine different ways. Six of these vibrations involve only

8137-432: The molecule, are much smaller than the movements of the lighter H atoms. The simplest and most important or fundamental IR bands arise from the excitations of normal modes, the simplest distortions of the molecule, from the ground state with vibrational quantum number v = 0 to the first excited state with vibrational quantum number v = 1. In some cases, overtone bands are observed. An overtone band arises from

8240-503: The most dramatic photos showed the 600 Kuwaiti oil fires that the fleeing Army of Iraq started on February 23, 1991. The night photos showed huge flashes, far outstripping the glow of large populated areas. The fires consumed huge quantities of oil; the last was doused on November 6, 1991. Snowfield monitoring, especially in the Sierra Nevada , can be helpful to the hydrologist keeping track of available snowpack for runoff vital to

8343-525: The nature of the bonds and the mass of the atoms that are involved. Using the Schrödinger equation leads to the selection rule for the vibrational quantum number in the system undergoing vibrational changes: △ v = ± 1 {\displaystyle \bigtriangleup v=\pm 1} The compression and extension of a bond may be likened to the behaviour of a spring , but real molecules are hardly perfectly elastic in nature. If

8446-484: The ocean's surface starting in the late 1970s, with microwave imagery which resembled radar displays, which significantly improved the diagnoses of tropical cyclone strength, intensification, and location during the 2000s and 2010s. The DSCOVR satellite, owned by NOAA, was launched in 2015 and became the first deep space satellite that can observe and predict space weather. It can detect potentially dangerous weather such as solar wind and geomagnetic storms . This

8549-529: The operational configuration. The imager satellites carry the Flexible Combined Imager (FCI), succeeding MVIRI and SEVIRI to give even greater resolution and spectral coverage, scanning the full Earth disc every ten minutes, as well as a new Lightning Imager (LI) payload. The sounder satellites carry the Infrared Sounder (IRS) and Ultra-violet Visible Near-infrared (UVN) instruments. UVN is part of

8652-415: The orbital track with a ground resolution at nadir of 17.4 km. The instrument produces 56 IFOVs for each 1,125 km scan line at 42 km between IFOVs along-track. The instrument consists of 19 IR and 1 visible channel centered at 14.95, 14.71, 14.49, 14.22, 13.97, 13.64, 13.35, 11.11, 9.71, 12.45, 7.33, 6.52, 4.57, 4.52, 4.47, 4.45, 4.13, 4.0, 3.76, and 0.69 μm. The AMSU-A is an instrument on

8755-438: The properties of the solute (at least approximately). A common way to compare to a reference is sequentially: first measure the reference, then replace the reference by the sample and measure the sample. This technique is not perfectly reliable; if the infrared lamp is a bit brighter during the reference measurement, then a bit dimmer during the sample measurement, the measurement will be distorted. More elaborate methods, such as

8858-410: The relative molecular or electromagnetic properties. Infrared spectroscopy is a simple and reliable technique widely used in both organic and inorganic chemistry, in research and industry. It is used in quality control, dynamic measurement, and monitoring applications such as the long-term unattended measurement of CO 2 concentrations in greenhouses and growth chambers by infrared gas analyzers. It

8961-411: The rocking, wagging, and twisting modes do not exist because these types of motions of the H atoms represent simple rotation of the whole molecule rather than vibrations within it. In case of more complex molecules, out-of-plane (γ) vibrational modes can be also present. These figures do not represent the " recoil " of the C atoms, which, though necessarily present to balance the overall movements of

9064-424: The same time, energy use and city growth can be monitored since both major and even minor cities, as well as highway lights, are conspicuous. This informs astronomers of light pollution . The New York City Blackout of 1977 was captured by one of the night orbiter DMSP space vehicles. In addition to monitoring city lights, these photos are a life saving asset in the detection and monitoring of fires. Not only do

9167-417: The sample and a "reference". This step controls for a number of variables, e.g. infrared detector , which may affect the spectrum. The reference measurement makes it possible to eliminate the instrument influence. The appropriate "reference" depends on the measurement and its goal. The simplest reference measurement is to simply remove the sample (replacing it by air). However, sometimes a different reference

9270-582: The satellite ground track can still be gridded later to form maps . According to the International Telecommunication Union (ITU), a meteorological-satellite service (also: meteorological-satellite radiocommunication service ) is – according to Article 1.52 of the ITU Radio Regulations (RR) – defined as « An earth exploration-satellite service for meteorological purposes.» This radiocommunication service

9373-429: The satellites see the fires visually day and night, but the thermal and infrared scanners on board these weather satellites detect potential fire sources below the surface of the Earth where smoldering occurs. Once the fire is detected, the same weather satellites provide vital information about wind that could fan or spread the fires. These same cloud photos from space tell the firefighter when it will rain. Some of

9476-782: The single first generation satellites to continue the EPS mission. Observation is typically made via different 'channels' of the electromagnetic spectrum , in particular, the visible and infrared portions. Some of these channels include: Visible-light images from weather satellites during local daylight hours are easy to interpret even by the average person, clouds, cloud systems such as fronts and tropical storms, lakes, forests, mountains, snow ice, fires, and pollution such as smoke, smog, dust and haze are readily apparent. Even wind can be determined by cloud patterns, alignments and movement from successive photos. The thermal or infrared images recorded by sensors called scanning radiometers enable

9579-404: The solid is preserved. In photoacoustic spectroscopy the need for sample treatment is minimal. The sample, liquid or solid, is placed into the sample cup which is inserted into the photoacoustic cell which is then sealed for the measurement. The sample may be one solid piece, powder or basically in any form for the measurement. For example, a piece of rock can be inserted into the sample cup and

9682-980: The spacecraft. For free-floating platforms, the DCS-2 system determines the position to within 5 to 8 km RMS and velocity to an accuracy of 1.0 to 1.6 mps RMS. The DCS-2 measures the in-coming signal frequency and time. The formatted data are stored on the satellite for transmission to NOAA stations. The DCS-2 data is stripped from the GAC data by NOAA/ NESDIS and sent to the Argos center at CNES in France for processing, distribution to users, and archival. The TIP formats low bit rate instruments and telemetry to tape recorders and direct read-out. The MIRP process high data rate AVHRR to tape recorders (GAC) and direct read-out (HRPT and LAC). On-board recorders can store 110 minutes of GAC, 10 minutes HRPT and 250 minutes TIP. APT transmission frequency

9785-473: The spectra unreadable without this computer treatment). Solid samples can be prepared in a variety of ways. One common method is to crush the sample with an oily mulling agent (usually mineral oil Nujol ). A thin film of the mull is applied onto salt plates and measured. The second method is to grind a quantity of the sample with a specially purified salt (usually potassium bromide ) finely (to remove scattering effects from large crystals). This powder mixture

9888-419: The spectrum measured from it. A useful way of analyzing solid samples without the need for cutting samples uses ATR or attenuated total reflectance spectroscopy. Using this approach, samples are pressed against the face of a single crystal. The infrared radiation passes through the crystal and only interacts with the sample at the interface between the two materials. It is typical to record spectrum of both

9991-438: The tube can be used for concentrations down to several hundred ppm. Sample gas concentrations well below ppm can be measured with a White's cell in which the infrared light is guided with mirrors to travel through the gas. White's cells are available with optical pathlength starting from 0.5 m up to hundred meters. Liquid samples can be sandwiched between two plates of a salt (commonly sodium chloride , or common salt, although

10094-406: The two methods are complementary in that they observe vibrations of different symmetries. Another method is electron energy loss spectroscopy (EELS), in which the energy absorbed is provided by an inelastically scattered electron rather than a photon. This method is useful for studying vibrations of molecules adsorbed on a solid surface. Recently, high-resolution EELS (HREELS) has emerged as

10197-545: The upper atmosphere as a result of solar activity. The SEM-2 consists of two separate sensors the Total Energy Detector (TED) and the Medium Energy Proton/Electron Detector (MEPED). In addition, the SEM-2 includes a common Data Processing Unit (DPU). The TED uses eight programmed swept electrostatic curved-plate analyzers to select particle type and energy and Channeltron detectors to measure

10300-399: The volcanic ash cloud from Mount St. Helens and activity from other volcanoes such as Mount Etna . Smoke from fires in the western United States such as Colorado and Utah have also been monitored. El Niño and its effects on weather are monitored daily from satellite images. The Antarctic ozone hole is mapped from weather satellite data. Collectively, weather satellites flown by

10403-586: Was launched into a Sun-synchronous orbit at 817 km altitude by a Soyuz launcher from Baikonur, Kazakhstan. This operational satellite - which forms the space segment of the EUMETSAT Polar System (EPS) - built on the heritage from ESA's ERS and Envisat experimental missions, and was followed at six-year intervals by Metop-B and Metop-C - the latter launched from French Guyana in a "Europeanised" Soyuz . Each carry thirteen different passive and active instruments ranging in design from imagers and sounders to

10506-550: Was launched on February 17, 1959. It was designed to measure cloud cover and resistance, but a poor axis of rotation and its elliptical orbit kept it from collecting a notable amount of useful data. The Explorer 6 and Explorer 7 satellites also contained weather-related experiments. The first weather satellite to be considered a success was TIROS-1 , launched by NASA on April 1, 1960. TIROS operated for 78 days and proved to be much more successful than Vanguard 2. Other early weather satellite programs include

10609-522: Was retired in early July 2019. The satellite GOES 13 that was previously owned by the National Oceanic and Atmospheric Association (NOAA) was transferred to the U.S. Space Force in 2019 and renamed the EWS-G1; becoming the first geostationary weather satellite to be owned and operated by the U.S. Department of Defense. Russia 's new-generation weather satellite Elektro-L No.1 operates at 76°E over

#585414