Intraplate volcanism is volcanism that takes place away from the margins of tectonic plates . Most volcanic activity takes place on plate margins, and there is broad consensus among geologists that this activity is explained well by the theory of plate tectonics . However, the origins of volcanic activity within plates remains controversial.
81-455: Michinmahuida ( Spanish pronunciation: [mitʃinmaˈwiða] ) (alternate spellings Minchinmávida or Michimahuida ) is a glaciated stratovolcano located in Los Lagos Region of Chile . It lies about 15 km east of Chaitén volcano , and was extensively covered in ash during the 2008 eruption of Chaitén. The stratovolcano lies above the regional Liquine-Ofqui Fault zone, and
162-458: A composite volcano , is a conical volcano built up by many alternating layers ( strata ) of hardened lava and tephra . Unlike shield volcanoes , stratovolcanoes are characterized by a steep profile with a summit crater and explosive eruptions. Some have collapsed summit craters called calderas . The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity . The magma forming this lava
243-747: A 4-inch thick ash layer can weigh 120-200 pounds and can get twice as heavy when wet. Wet ash also poses a risk to electronics due to its conductive nature. Dense clouds of hot volcanic ash can be expelled due to the collapse of an eruptive column , or laterally due to the partial collapse of a volcanic edifice or lava dome during explosive eruptions . These clouds are known as pyroclastic surges and in addition to ash , they contain hot lava , pumice , rock , and volcanic gas . Pyroclastic surges flow at speeds over 50 mph and are at temperatures between 200 °C – 700 °C. These surges can cause major damage to property and people in their path. Lava flows from stratovolcanoes are generally not
324-669: A critical time of about 830 Myr for a core mantle heat flux of 20 mW/m , while the cycle time is about 2 Gyr. The number of mantle plumes is predicted to be about 17. When a plume head encounters the base of the lithosphere, it is expected to flatten out against this barrier and to undergo widespread decompression melting to form large volumes of basalt magma. It may then erupt onto the surface. Numerical modelling predicts that melting and eruption will take place over several million years. These eruptions have been linked to flood basalts , although many of those erupt over much shorter time scales (less than 1 million years). Examples include
405-510: A definitive list. Some scientists suggest that several tens of plumes exist, whereas others suggest that there are none. The theory was really inspired by the Hawaiian volcano system. Hawaii is a large volcanic edifice in the center of the Pacific Ocean, far from any plate boundaries. Its regular, time-progressive chain of islands and seamounts superficially fits the plume theory well. However, it
486-474: A fast moving mudflow . Lahars are typically about 60% sediment and 40% water. Depending on the abundance of volcanic debris the lahar can be fluid or thick like concrete. Lahars have the strength and speed to flatten structures and cause great bodily harm, gaining speeds up to dozens of kilometers per hour. In the 1985 eruption of Nevado del Ruiz in Colombia , Pyroclastic surges melted snow and ice atop
567-515: A final intermediate composition . When the magma nears the top surface, it pools in a magma chamber within the crust below the stratovolcano. The processes that trigger the final eruption remain a question for further research. Possible mechanisms include: These internal triggers may be modified by external triggers such as sector collapse , earthquakes , or interactions with groundwater . Some of these triggers operate only under limited conditions. For example, sector collapse (where part of
648-509: A geo-stationary plate. Many postulated "hot spots" are also lacking time-progressive volcanic trails, e.g., Iceland, the Galapagos, and the Azores. Mismatches between the predictions of the hypothesis and observations are commonly explained by auxiliary processes such as "mantle wind", "ridge capture", "ridge escape" and lateral flow of plume material. Helium-3 is a primordial isotope that formed in
729-537: A mantle plume postulated to have caused the breakup of Eurasia and the opening of the north Atlantic, now suggested to underlie Iceland . Current research has shown that the time-history of the uplift is probably much shorter than predicted, however. It is thus not clear how strongly this observation supports the mantle plume hypothesis. Basalts found at oceanic islands are geochemically distinct from those found at mid-ocean ridges and volcanoes associated with subduction zones (island arc basalts). " Ocean island basalt "
810-573: A model based on full waveform tomography , requiring the equivalent of 3 million hours of supercomputer time. Due to computational limitations, high-frequency data still could not be used, and seismic data remained unavailable from much of the seafloor. Nonetheless, vertical plumes, 400 C hotter than the surrounding rock, were visualized under many hotspots, including the Pitcairn , Macdonald , Samoa , Tahiti , Marquesas , Galapagos , Cape Verde , and Canary hotspots. They extended nearly vertically from
891-643: A network of seismometers to construct three-dimensional images of the variation in seismic wave speed throughout the mantle. Seismic waves generated by large earthquakes enable structure below the Earth's surface to be determined along the ray path. Seismic waves that have traveled a thousand or more kilometers (also called teleseismic waves ) can be used to image large regions of Earth's mantle. They also have limited resolution, however, and only structures at least several hundred kilometers in diameter can be detected. Seismic tomography images have been cited as evidence for
SECTION 10
#1732855259123972-490: A number of mantle plumes in Earth's mantle. There is, however, vigorous on-going discussion regarding whether the structures imaged are reliably resolved, and whether they correspond to columns of hot, rising rock. The mantle plume hypothesis predicts that domal topographic uplifts will develop when plume heads impinge on the base of the lithosphere. An uplift of this kind occurred when the north Atlantic Ocean opened about 54 million years ago. Some scientists have linked this to
1053-739: A result of intraplate volcanism on oceanic islands far from plate boundaries. Examples are Teide in the Canary Islands , and Pico do Fogo in Cape Verde . Stratovolcanoes in the East African Rift include Ol Doinyo Lengai in Tanzania, and Longonot in Kenya. Subduction zone volcanoes form when hydrous minerals are pulled down into the mantle on the slab. These hydrous minerals, such as chlorite and serpentine , release their water into
1134-604: A result of a fixed, deep-mantle plume rising into the upper mantle, partly melting, and causing a volcanic chain to form as the plate moves overhead relative to the fixed plume source. Other "hot spots" with time-progressive volcanic chains behind them include Réunion , the Chagos-Laccadive Ridge , the Louisville Ridge , the Ninety East Ridge and Kerguelen , Tristan , and Yellowstone . An intrinsic aspect of
1215-533: A result of it having a lower melting point), or being richer in Fe, also has a lower seismic wave speed and those effects are stronger than temperature. Thus, although unusually low wave speeds have been taken to indicate anomalously hot mantle beneath "hot spots", this interpretation is ambiguous. The most commonly cited seismic wave-speed images that are used to look for variations in regions where plumes have been proposed come from seismic tomography. This method involves using
1296-494: A result, the ratio He/ He in the Earth has decreased over time. Unusually high He/ He have been observed in some, but not all, "hot spots". In mantle plume theory, this is explained by plumes tapping a deep, primordial reservoir in the lower mantle, where the original, high He/ He ratios have been preserved throughout geologic time. In the context of the Plate hypothesis, the high ratios are explained by preservation of old material in
1377-421: A result, wave speeds cannot be used simply and directly to measure temperature, but more sophisticated approaches must be taken. Seismic anomalies are identified by mapping variations in wave speed as seismic waves travel through Earth. A hot mantle plume is predicted to have lower seismic wave speeds compared with similar material at a lower temperature. Mantle material containing a trace of partial melt (e.g., as
1458-461: A significant threat to humans or animals because the highly viscous lava moves slowly enough for everyone to evacuate. Most deaths attributed to lava are due to related causes such as explosions and asphyxiation from toxic gas . Lava flows can bury homes and farms in thick volcanic rock which greatly reduces property value. However, not all stratovolcanoes erupt viscous and sticky lava . Nyiragongo , near Lake Kivu in central Africa ,
1539-527: Is a passive release of gas during periods of dormancy. As per the above examples, while eruptions like Mount Unzen have caused deaths and local damage, the impact of the June 1991 eruption of Mount Pinatubo was seen globally. The eruptive columns reached heights of 40 km and dumped 17 megatons of SO 2 into the lower stratosphere . The aerosols that formed from the sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), and other gases dispersed around
1620-499: Is a strong thermal (temperature) discontinuity. The temperature of the core is approximately 1,000 degrees Celsius higher than that of the overlying mantle. Plumes are postulated to rise as the base of the mantle becomes hotter and more buoyant. Plumes are postulated to rise through the mantle and begin to partially melt on reaching shallow depths in the asthenosphere by decompression melting . This would create large volumes of magma. The plume hypothesis postulates that this melt rises to
1701-535: Is almost unique on Earth, as nothing as extreme exists anywhere else. The second strongest candidate for a plume location is often quoted to be Iceland, but according to opponents of the plume hypothesis its massive nature can be explained by plate tectonic forces along the mid-Atlantic spreading center. Mantle plumes have been suggested as the source for flood basalts . These extremely rapid, large scale eruptions of basaltic magmas have periodically formed continental flood basalt provinces on land and oceanic plateaus in
SECTION 20
#17328552591231782-600: Is also similar to basalts found throughout the oceans on both small and large seamounts (thought to be formed by eruptions on the sea floor that did not rise above the surface of the ocean). They are also compositionally similar to some basalts found in the interiors of the continents (e.g., the Snake River Plain ). In major elements, ocean island basalts are typically higher in iron (Fe) and titanium (Ti) than mid-ocean ridge basalts at similar magnesium (Mg) contents. In trace elements , they are typically more enriched in
1863-409: Is drawn down into the mantle, causing rifting. The hypothesis of mantle plumes from depth is not universally accepted as explaining all such volcanism. It has required progressive hypothesis-elaboration leading to variant propositions such as mini-plumes and pulsing plumes. Another hypothesis for unusual volcanic regions is the plate theory . This proposes shallower, passive leakage of magma from
1944-471: Is lacking. The plume hypothesis has been tested by looking for the geophysical anomalies predicted to be associated with them. These include thermal, seismic, and elevation anomalies. Thermal anomalies are inherent in the term "hotspot". They can be measured in numerous different ways, including surface heat flow, petrology, and seismology. Thermal anomalies produce anomalies in the speeds of seismic waves, but unfortunately so do composition and partial melt. As
2025-627: Is less commonly recognised that the plates themselves deform internally, and can permit volcanism in those regions where the deformation is extensional. Well-known examples are the Basin and Range Province in the western USA, the East African Rift valley, and the Rhine Graben . Under this hypothesis, variable volumes of magma are attributed to variations in chemical composition (large volumes of volcanism corresponding to more easily molten mantle material) rather than to temperature differences. While not denying
2106-447: Is likely that different mechanisms accounts for different cases of intraplate volcanism. A mantle plume is a proposed mechanism of convection of abnormally hot rock within the Earth's mantle . Because the plume head partly melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots , such as Hawaii or Iceland , and large igneous provinces such as
2187-476: Is often felsic , having high to intermediate levels of silica (as in rhyolite , dacite , or andesite ), with lesser amounts of less viscous mafic magma . Extensive felsic lava flows are uncommon, but can travel as far as 8 km (5 mi). The term composite volcano is used because the strata are usually mixed and uneven instead of neat layers. They are among the most common types of volcanoes; more than 700 stratovolcanoes have erupted lava during
2268-463: Is often associated with continental rifting and breakup. This has led to the hypothesis that mantle plumes contribute to continental rifting and the formation of ocean basins. In the context of the alternative "Plate model", continental breakup is a process integral to plate tectonics, and massive volcanism occurs as a natural consequence when it starts. The current mantle plume theory is that material and energy from Earth's interior are exchanged with
2349-422: Is posited to exist where hot rock nucleates at the core-mantle boundary and rises through the Earth's mantle becoming a diapir in the Earth's crust . In particular, the concept that mantle plumes are fixed relative to one another, and anchored at the core-mantle boundary, would provide a natural explanation for the time-progressive chains of older volcanoes seen extending out from some such hot spots, such as
2430-496: Is some confusion regarding what constitutes support, as there has been a tendency to re-define the postulated characteristics of mantle plumes after observations have been made. Some common and basic lines of evidence cited in support of the theory are linear volcanic chains, noble gases , geophysical anomalies, and geochemistry . The age-progressive distribution of the Hawaiian-Emperor seamount chain has been explained as
2511-451: Is the most famous example of a hazardous stratovolcano eruption. It completely smothered the nearby ancient cities of Pompeii and Herculaneum with thick deposits of pyroclastic surges and pumice ranging from 6–7 meters deep. Pompeii had 10,000-20,000 inhabitants at the time of eruption. Mount Vesuvius is recognized as one of the most dangerous of the world's volcanoes, due to its capacity for powerful explosive eruptions coupled with
Michinmahuida - Misplaced Pages Continue
2592-450: Is typically between 700 and 1,200 °C (1,300-2,200 °F). Volcanic bombs are masses of unconsolidated rock and lava that are ejected during an eruption. Volcanic bombs are classified as larger than 64mm (2.5 inches). Anything below 64mm is classified as a volcanic block . When erupted Bombs are still molten and partially cool and solidify on their descent. They can form ribbon or oval shapes that can also flatten on impact with
2673-403: Is very dangerous because its magma has an unusually low silica content , making it much less viscous than other stratovolcanoes. Low viscosity lava can generate massive lava fountains , while lava of thicker viscosity can solidify within the vent, creating a volcanic plug . Volcanic plugs can trap gas and create pressure in the magma chamber, resulting in violent eruptions. Lava
2754-468: The Big Bang . Very little is produced, and little has been added to the Earth by other processes since then. Helium-4 includes a primordial component, but it is also produced by the natural radioactive decay of elements such as uranium and thorium . Over time, helium in the upper atmosphere is lost into space. Thus, the Earth has become progressively depleted in helium, and He is not replaced as He is. As
2835-524: The Deccan and Siberian traps . Some such volcanic regions lie far from tectonic plate boundaries , while others represent unusually large-volume volcanism near plate boundaries. The hypothesis of mantle plumes has required progressive hypothesis-elaboration leading to variant propositions such as mini-plumes and pulsing plumes. Mantle plumes were first proposed by J. Tuzo Wilson in 1963 and further developed by W. Jason Morgan in 1971. A mantle plume
2916-899: The Deccan traps in India, the Siberian traps of Asia, the Karoo-Ferrar basalts/dolerites in South Africa and Antarctica, the Paraná and Etendeka traps in South America and Africa (formerly a single province separated by opening of the South Atlantic Ocean), and the Columbia River basalts of North America. Flood basalts in the oceans are known as oceanic plateaus, and include the Ontong Java plateau of
2997-518: The Hawaiian–Emperor seamount chain . However, paleomagnetic data show that mantle plumes can be associated with Large Low Shear Velocity Provinces (LLSVPs) and do move. Two largely independent convective processes are proposed: The plume hypothesis was studied using laboratory experiments conducted in small fluid-filled tanks in the early 1970s. Thermal or compositional fluid-dynamical plumes produced in that way were presented as models for
3078-800: The Holocene Epoch (the last 11,700 years), and many older, now extinct, stratovolcanoes erupted lava as far back as Archean times. Stratovolcanoes are typically found in subduction zones but they also occur in other geological settings. Two examples of stratovolcanoes famous for catastrophic eruptions are Krakatoa in Indonesia (which erupted in 1883 claiming 36,000 lives) and Mount Vesuvius in Italy (which erupted in 79 A.D killing an estimated 2,000 people). In modern times, Mount St. Helens (1980) in Washington State , US, and Mount Pinatubo (1991) in
3159-573: The Philippines have erupted catastrophically, but with fewer deaths. Stratovolcanoes are common at subduction zones , forming chains and clusters along plate tectonic boundaries where an oceanic crust plate is drawn under a continental crust plate (continental arc volcanism, e.g. Cascade Range , Andes , Campania ) or another oceanic crust plate ( island arc volcanism, e.g. Japan , Philippines , Aleutian Islands ). Stratovolcanoes also occur in some other geological settings, for example as
3240-421: The lower mantle under Africa and under the central Pacific. It is postulated that plumes rise from their surface or their edges. Their low seismic velocities were thought to suggest that they are relatively hot, although it has recently been shown that their low wave velocities are due to high density caused by chemical heterogeneity. Various lines of evidence have been cited in support of mantle plumes. There
3321-891: The magma is too viscous to allow easy escape of volcanic gases . As a consequence, the tremendous internal pressures of the trapped volcanic gases remain and intermingle in the pasty magma . Following the breaching of the vent and the opening of the crater, the magma degasses explosively. The magma and gases blast out with high speed and full force. Since 1600 CE , nearly 300,000 people have been killed by volcanic eruptions . Most deaths were caused by pyroclastic flows and lahars , deadly hazards that often accompany explosive eruptions of subduction-zone stratovolcanoes. Pyroclastic flows are swift, avalanche-like, ground-sweeping, incandescent mixtures of hot volcanic debris, fine ash , fragmented lava , and superheated gases that can travel at speeds over 150 km/h (90 mph). Around 30,000 people were killed by pyroclastic flows during
Michinmahuida - Misplaced Pages Continue
3402-443: The mantle which decreases its melting point by 60 to 100 °C. The release of water from hydrated minerals is termed " dewatering ", and occurs at specific pressures and temperatures for each mineral, as the plate descends to greater depths. This allows the mantle to partially melt and generate magma . This is called flux melting . The magma then rises through the crust , incorporating silica-rich crustal rock, leading to
3483-607: The 1902 eruption of Mount Pelée on the island of Martinique in the Caribbean . During March and April 1982, El Chichón in the State of Chiapas in southeastern Mexico , erupted 3 times, causing the worst volcanic disaster in that country's history and killied more than 2,000 people in pyroclastic flows . Two Decade Volcanoes that erupted in 1991 provide examples of stratovolcano hazards. On 15 June, Mount Pinatubo erupted and caused an ash cloud to shoot 40 km (25 mi) into
3564-481: The 1982 eruption of Galunggung in Java , British Airways Flight 9 flew into the ash cloud, causing it to sustain temporary engine failure and structural damage. Although no crashes have happened due to ash, more than 60, mostly commercial aircraft , have been damaged. Some of these incidents resulted in emergency landings. Ashfalls are a threat to health when inhaled and are also a threat to property. A square yard of
3645-585: The 5,321 m (17,457 ft) high Andean volcano. The ensuing lahar killed 25,000 people and flooded the city of Armero and nearby settlements. As a volcano forms, several different gases mix with magma in the volcanic chamber. During an eruption the gases are then released into the atmosphere which can lead to toxic human exposure. The most abundant of these gases is H 2 O ( water ) followed by CO 2 ( carbon dioxide ), SO 2 ( sulfur dioxide ), H 2 S ( hydrogen sulfide ), and HF ( hydrogen fluoride ). If at concentrations of more than 3% in
3726-816: The air, when breathed in CO 2 can cause dizziness and difficulty breathing. At more than 15% concentration CO 2 causes death. CO 2 can settle into depressions in the land, leading to deadly, odorless pockets of gas. SO 2 classified as a respiratory, skin, and eye irritant if come into contact with. It is known for its pungent egg smell and role in ozone depletion and has the potential to cause acid rain downwind of an eruption. H 2 S has an even stronger odor than SO 2 as well as being even more toxic. Exposure for less than an hour at concentrations of over 500 ppm causes death. HF and similar species can coat ash particles and once deposited can poison soil and water. Gases are also emitted during volcanic degassing, which
3807-741: The air. It produced large pyroclastic surges and lahar floods that caused a lot of damage to the surrounding area. Pinatubo , located in Central Luzon just 90 km (56 mi) west-northwest of Manila , had been dormant for six centuries before the 1991 eruption. This eruption was one of the 2nd largest in the 20th century. It produced a large volcanic ash cloud that affected global temperatures, lowering them in areas as much as .5 °C. The volcanic ash cloud consisted of 22 million tons of SO 2 which combined with water droplets to create sulfuric acid . In 1991 Japan's Unzen Volcano also erupted, after 200 years of inactivity. It's located on
3888-448: The asthenosphere beneath. It is thus the conceptual inverse of the plume hypothesis because the plate hypothesis attributes volcanism to shallow, near-surface processes associated with plate tectonics, rather than active processes arising at the core-mantle boundary. Lithospheric extension is attributed to processes related to plate tectonics. These processes are well understood at mid-ocean ridges, where most of Earth's volcanism occurs. It
3969-507: The bottom of the mantle transition zone at 650 km depth. Subduction to greater depths is less certain, but there is evidence that they may sink to mid-lower-mantle depths at about 1,500 km depth. The source of mantle plumes is postulated to be the core-mantle boundary at 3,000 km depth. Because there is little material transport across the core-mantle boundary, heat transfer must occur by conduction, with adiabatic gradients above and below this boundary. The core-mantle boundary
4050-479: The core-mantle boundary (2900 km depth) to a possible layer of shearing and bending at 1000 km. They were detectable because they were 600–800 km wide, more than three times the width expected from contemporary models. Many of these plumes are in the large low-shear-velocity provinces under Africa and the Pacific, while some other hotspots such as Yellowstone were less clearly related to mantle features in
4131-417: The distinct geochemical signature of ocean island basalts results from inclusion of a component of subducted slab material. This must have been recycled in the mantle, then re-melted and incorporated in the lavas erupted. In the context of the plume hypothesis, subducted slabs are postulated to have been subducted down as far as the core-mantle boundary, and transported back up to the surface in rising plumes. In
SECTION 50
#17328552591234212-540: The flank of a volcano collapses in a massive landslide) can only trigger the eruption of a very shallow magma chamber . Magma differentiation and thermal expansion also are ineffective as triggers for eruptions from deep magma chambers . In recorded history , explosive eruptions at subduction zone ( convergent-boundary ) volcanoes have posed the greatest hazard to civilizations. Subduction-zone stratovolcanoes, such as Mount St. Helens , Mount Etna and Mount Pinatubo , typically erupt with explosive force because
4293-455: The formation of island arc basalts. The subducting slab is depleted in these water-mobile elements (e.g., K , Rb , Th , Pb ) and thus relatively enriched in elements that are not water-mobile (e.g., Ti, Nb, Ta) compared to both mid-ocean ridge and island arc basalts. Ocean island basalts are also relatively enriched in immobile elements relative to the water-mobile elements. This, and other observations, have been interpreted as indicating that
4374-478: The ground. Volcanic Bombs are associated with Strombolian and Vulcanian eruptions and basaltic lava . Ejection velocities ranging from 200 to 400 m/s have been recorded causing volcanic bombs to be destructive. Lahars (from a Javanese term for volcanic mudflows) are a mixture of volcanic debris and water. Lahars can result from heavy rainfall during or before the eruption or interaction with ice and snow. Meltwater mixes with volcanic debris causing
4455-458: The high population density of the surrounding Metropolitan Naples area (totaling about 3.6 million inhabitants). In addition to potentially affecting the climate, volcanic ash clouds from explosive eruptions pose a serious hazard to aviation . Volcanic ash clouds consist of ash which is made of silt or sand sized pieces of rock, mineral, volcanic glass . Ash grains are jagged, abrasive, and don't dissolve in water. For example, during
4536-475: The ice-covered massif towers over the south portion of Pumalín Park . It has a summit elevation of 2,450 meters above sea level. This Los Lagos Region location article is a stub . You can help Misplaced Pages by expanding it . This article related to a mountain , mountain range , or peak in Chile is a stub . You can help Misplaced Pages by expanding it . Stratovolcano A stratovolcano , also known as
4617-500: The island of Kyushu about 40 km (25 mi) east of Nagasaki . Beginning in June, a newly formed lava dome repeatedly collapsed. This generated a pyroclastic flow that flowed down the mountain's slopes at speeds as high as 200 km/h (120 mph). The 1991 eruption of Mount Unzen was one of the worst volcanic disasters in Japan's history, once killing more than 15,000 people in 1792. The eruption of Mount Vesuvius in 79 AD
4698-446: The light rare-earth elements than mid-ocean ridge basalts. Compared to island arc basalts, ocean island basalts are lower in alumina (Al 2 O 3 ) and higher in immobile trace elements (e.g., Ti, Nb , Ta ). These differences result from processes that occur during the subduction of oceanic crust and mantle lithosphere . Oceanic crust (and to a lesser extent, the underlying mantle) typically becomes hydrated to varying degrees on
4779-406: The mantle onto the Earth's surface where extension of the lithosphere permits it, attributing most volcanism to plate tectonic processes, with volcanoes far from plate boundaries resulting from intraplate extension. The plate theory attributes all volcanic activity on Earth, even that which appears superficially to be anomalous, to the operation of plate tectonics . According to the plate theory,
4860-483: The mantle source. There are two competing interpretations for this. In the context of mantle plumes, the near-surface material is postulated to have been transported down to the core-mantle boundary by subducting slabs, and to have been transported back up to the surface by plumes. In the context of the Plate hypothesis, subducted material is mostly re-circulated in the shallow mantle and tapped from there by volcanoes. Stable isotopes like Fe are used to track processes that
4941-510: The model. The unexpected size of the plumes leaves open the possibility that they may conduct the bulk of the Earth's 44 terawatts of internal heat flow from the core to the surface, and means that the lower mantle convects less than expected, if at all. It is possible that there is a compositional difference between plumes and the surrounding mantle that slows them down and broadens them. Many different localities have been suggested to be underlain by mantle plumes, and scientists cannot agree on
SECTION 60
#17328552591235022-416: The much larger postulated mantle plumes. Based on these experiments, mantle plumes are now postulated to comprise two parts: a long thin conduit connecting the top of the plume to its base, and a bulbous head that expands in size as the plume rises. The entire structure is considered to resemble a mushroom. The bulbous head of thermal plumes forms because hot material moves upward through the conduit faster than
5103-572: The ocean basins, such as the Deccan Traps , the Siberian Traps the Karoo-Ferrar flood basalts of Gondwana , and the largest known continental flood basalt, the Central Atlantic magmatic province (CAMP). Many continental flood basalt events coincide with continental rifting. This is consistent with a system that tends toward equilibrium: as matter rises in a mantle plume, other material
5184-409: The originally subducted material creates diverging trends, termed mantle components. Identified mantle components are DMM (depleted mid-ocean ridge basalt (MORB) mantle), HIMU (high U/Pb-ratio mantle), EM1 (enriched mantle 1), EM2 (enriched mantle 2) and FOZO (focus zone). This geochemical signature arises from the mixing of near-surface materials such as subducted slabs and continental sediments, in
5265-429: The plate hypothesis, the slabs are postulated to have been recycled at shallower depths – in the upper few hundred kilometers that make up the upper mantle . However, the plate hypothesis is inconsistent with both the geochemistry of shallow asthenosphere melts (i.e., Mid-ocean ridge basalts) and with the isotopic compositions of ocean island basalts. In 2015, based on data from 273 large earthquakes, researchers compiled
5346-544: The plume hypothesis is that the "hot spots" and their volcanic trails have been fixed relative to one another throughout geological time. Whereas there is evidence that the chains listed above are time-progressive, it has, however, been shown that they are not fixed relative to one another. The most remarkable example of this is the Emperor chain, the older part of the Hawaii system, which was formed by migration of volcanic activity across
5427-455: The plume itself rises through its surroundings. In the late 1980s and early 1990s, experiments with thermal models showed that as the bulbous head expands it may entrain some of the adjacent mantle into the head. The sizes and occurrence of mushroom mantle plumes can be predicted easily by transient instability theory developed by Tan and Thorpe. The theory predicts mushroom shaped mantle plumes with heads of about 2000 km diameter that have
5508-506: The presence of deep mantle convection and upwelling in general, the plate hypothesis holds that these processes do not result in mantle plumes, in the sense of columnar vertical features that span most of the Earth's mantle, transport large amounts of heat, and contribute to surface volcanism. Under the umbrella of the plate hypothesis, the following sub-processes, all of which can contribute to permitting surface volcanism, are recognised: Lithospheric extension enables pre-existing melt in
5589-410: The principal cause of volcanism is extension of the lithosphere . Extension of the lithosphere is a function of the lithospheric stress field . The global distribution of volcanic activity at a given time reflects the contemporaneous lithospheric stress field, and changes in the spatial and temporal distribution of volcanoes reflect changes in the stress field. The main factors governing the evolution of
5670-407: The seafloor, partly as the result of seafloor weathering, and partly in response to hydrothermal circulation near the mid-ocean-ridge crest where it was originally formed. As oceanic crust and underlying lithosphere subduct, water is released by dehydration reactions, along with water-soluble elements and trace elements. This enriched fluid rises to metasomatize the overlying mantle wedge and leads to
5751-549: The shallow asthenosphere that is thought to be flowing rapidly in response to motion of the overlying tectonic plates. There is no other known major thermal boundary layer in the deep Earth, and so the core-mantle boundary was the only candidate. The base of the mantle is known as the D″ layer , a seismological subdivision of the Earth. It appears to be compositionally distinct from the overlying mantle, and may contain partial melt. Two very broad, large low-shear-velocity provinces , exist in
5832-424: The shallow mantle. Ancient, high He/ He ratios would be particularly easily preserved in materials lacking U or Th, so He was not added over time. Olivine and dunite , both found in subducted crust, are materials of this sort. Other elements, e.g. osmium , have been suggested to be tracers of material arising from near to the Earth's core, in basalts at oceanic islands. However, so far conclusive proof for this
5913-460: The size of Mount Pinatubo affected the weather for a few years; with warmer winters and cooler summers observed. A similar phenomenon occurred in the April 1815, the eruption of Mount Tambora on Sumbawa island in Indonesia . The Mount Tambora eruption is recognized as the most powerful eruption in recorded history. Its eruption cloud lowered global temperatures as much as 0.4 to 0.7 °C. In
5994-563: The stress field are: Beginning in the early 2000s, dissatisfaction with the state of the evidence for mantle plumes and the proliferation of ad hoc hypotheses drove a number of geologists, led by Don L. Anderson , Gillian Foulger , and Warren B. Hamilton , to propose a broad alternative based on shallow processes in the upper mantle and above, with an emphasis on plate tectonics as the driving force of magmatism. The plate hypothesis suggests that "anomalous" volcanism results from lithospheric extension that permits melt to rise passively from
6075-417: The surface and erupts to form "hot spots". The most prominent thermal contrast known to exist in the deep (1000 km) mantle is at the core-mantle boundary at 2900 km. Mantle plumes were originally postulated to rise from this layer because the "hot spots" that are assumed to be their surface expression were thought to be fixed relative to one another. This required that plumes were sourced from beneath
6156-614: The surface crust in two distinct modes: the predominant, steady state plate tectonic regime driven by upper mantle convection , and a punctuated, intermittently dominant, mantle overturn regime driven by plume convection. This second regime, while often discontinuous, is periodically significant in mountain building and continental breakup. The chemical and isotopic composition of basalts found at hotspots differs subtly from mid-ocean-ridge basalts. These basalts, also called ocean island basalts (OIBs), are analysed in their radiogenic and stable isotope compositions. In radiogenic isotope systems
6237-416: The surface is expected to form a chain of volcanoes that parallels plate motion. The Hawaiian Islands chain in the Pacific Ocean is the type example. It has recently been discovered that the volcanic locus of this chain has not been fixed over time, and it thus joined the club of the many type examples that do not exhibit the key characteristic originally proposed. The eruption of continental flood basalts
6318-457: The uprising material experiences during melting. The processing of oceanic crust, lithosphere, and sediment through a subduction zone decouples the water-soluble trace elements (e.g., K, Rb, Th) from the immobile trace elements (e.g., Ti, Nb, Ta), concentrating the immobile elements in the oceanic slab (the water-soluble elements are added to the crust in island arc volcanoes). Seismic tomography shows that subducted oceanic slabs sink as far as
6399-522: The western Pacific Ocean and the Kerguelen Plateau of the Indian Ocean. The narrow vertical pipe, or conduit, postulated to connect the plume head to the core-mantle boundary, is viewed as providing a continuous supply of magma to a fixed location, often referred to as a "hotspot". As the overlying tectonic plate (lithosphere) moves over this hotspot, the eruption of magma from the fixed conduit onto
6480-412: The world. The SO 2 in this cloud combined with water (both of volcanic and atmospheric origin) and formed sulfuric acid , blocking a portion of the sunlight from reaching the troposphere . This caused the global temperature to decrease by about 0.4 °C (0.72 °F) from 1992 to 1993. These aerosols caused the ozone layer to reach the lowest concentrations recorded at that time. An eruption
6561-602: The year following the eruption, most of the Northern Hemisphere experienced cooler temperatures during the summer. In the northern hemisphere , 1816 was known as the " Year Without a Summer ". The eruption caused crop failures, food shortages, and floods that killed over 100,000 people across Europe , Asia , and North America . Intraplate volcanism Mechanisms that have been proposed to explain intraplate volcanism include mantle plumes; non-rigid motion within tectonic plates (the plate model); and impact events . It
#122877