72-463: (Redirected from Mechanicals ) [REDACTED] Look up mechanical in Wiktionary, the free dictionary. Mechanical may refer to: Machine [ edit ] Machine (mechanical) , a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement Mechanical calculator , a device used to perform
144-513: A motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element. Power is the rate with respect to time at which work is done; it is the time derivative of work : P = d W d t , {\displaystyle P={\frac {dW}{dt}},} where P
216-502: A (near-) synonym both by Harris and in later language derives ultimately (via Old French ) from Latin ingenium 'ingenuity, an invention'. The hand axe , made by chipping flint to form a wedge , in the hands of a human transforms force and movement of the tool into a transverse splitting forces and movement of the workpiece. The hand axe is the first example of a wedge , the oldest of the six classic simple machines , from which most machines are based. The second oldest simple machine
288-399: A force F A acting on a point that moves with velocity v A and the output power be a force F B acts on a point that moves with velocity v B . If there are no losses in the system, then P = F B v B = F A v A , {\displaystyle P=F_{\text{B}}v_{\text{B}}=F_{\text{A}}v_{\text{A}},} and
360-401: A lever is modeled as a hinged or revolute joint . Wheel: The wheel is an important early machine, such as the chariot . A wheel uses the law of the lever to reduce the force needed to overcome friction when pulling a load. To see this notice that the friction associated with pulling a load on the ground is approximately the same as the friction in a simple bearing that supports the load on
432-588: A licensee to the owner of a copyright for the right to mechanically reproduce a song Mechanic (disambiguation) Mechanism Mechanics Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Mechanical . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Mechanical&oldid=1230358887 " Category : Disambiguation pages Hidden categories: Short description
504-482: A logarithmic measure relative to a reference of 1 milliwatt, calories per hour, BTU per hour (BTU/h), and tons of refrigeration . As a simple example, burning one kilogram of coal releases more energy than detonating a kilogram of TNT , but because the TNT reaction releases energy more quickly, it delivers more power than the coal. If Δ W is the amount of work performed during a period of time of duration Δ t ,
576-420: A machine is "a device for applying power or changing its direction."McCarthy and Soh describe a machine as a system that "generally consists of a power source and a mechanism for the controlled use of this power." Human and animal effort were the original power sources for early machines. Waterwheel: Waterwheels appeared around the world around 300 BC to use flowing water to generate rotary motion, which
648-470: A machine provides a way to understand the performance of devices ranging from levers and gear trains to automobiles and robotic systems. The German mechanician Franz Reuleaux wrote, "a machine is a combination of resistant bodies so arranged that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motion." Notice that forces and motion combine to define power . More recently, Uicker et al. stated that
720-838: A mechanical system is assembled from components called machine elements . These elements provide structure for the system and control its movement. The structural components are, generally, the frame members, bearings, splines, springs, seals, fasteners and covers. The shape, texture and color of covers provide a styling and operational interface between the mechanical system and its users. The assemblies that control movement are also called " mechanisms ." Mechanisms are generally classified as gears and gear trains , which includes belt drives and chain drives , cam and follower mechanisms, and linkages , though there are other special mechanisms such as clamping linkages, indexing mechanisms , escapements and friction devices such as brakes and clutches . The number of degrees of freedom of
792-500: A mechanism, or its mobility, depends on the number of links and joints and the types of joints used to construct the mechanism. The general mobility of a mechanism is the difference between the unconstrained freedom of the links and the number of constraints imposed by the joints. It is described by the Chebychev–Grübler–Kutzbach criterion . The transmission of rotation between contacting toothed wheels can be traced back to
SECTION 10
#1732856072351864-469: A non-electric mechanism Mechanical engineering , a branch of engineering concerned with the application of physical mechanics HVAC (heating, ventilation, and air-conditioning), the mechanical systems of a building Mechanical phenomenon , as in the mechanics of the Digestive Tract or the mechanics of swallowing Mechanical license , used in the music industry to indicate the payment made from
936-420: A periodic function of period T {\displaystyle T} . The peak power is simply defined by: P 0 = max [ p ( t ) ] . {\displaystyle P_{0}=\max[p(t)].} The peak power is not always readily measurable, however, and the measurement of the average power P a v g {\displaystyle P_{\mathrm {avg} }}
1008-412: A point farther from the pivot is greater than the velocity of a point near the pivot, forces applied far from the pivot are amplified near the pivot by the associated decrease in speed. If a is the distance from the pivot to the point where the input force is applied and b is the distance to the point where the output force is applied, then a/b is the mechanical advantage of the lever. The fulcrum of
1080-430: A pressure vessel; the expanding steam drives a piston or a turbine. This principle can be seen in the aeolipile of Hero of Alexandria. This is called an external combustion engine . An automobile engine is called an internal combustion engine because it burns fuel (an exothermic chemical reaction) inside a cylinder and uses the expanding gases to drive a piston . A jet engine uses a turbine to compress air which
1152-520: A programmable drum machine , where they could be made to play different rhythms and different drum patterns. During the Renaissance , the dynamics of the Mechanical Powers , as the simple machines were called, began to be studied from the standpoint of how much useful work they could perform, leading eventually to the new concept of mechanical work . In 1586 Flemish engineer Simon Stevin derived
1224-455: A specific application of output forces and movement, (iii) a controller with sensors that compare the output to a performance goal and then directs the actuator input, and (iv) an interface to an operator consisting of levers, switches, and displays. This can be seen in Watt's steam engine in which the power is provided by steam expanding to drive the piston. The walking beam, coupler and crank transform
1296-646: A system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems . Renaissance natural philosophers identified six simple machines which were the elementary devices that put a load into motion, and calculated the ratio of output force to input force, known today as mechanical advantage . Modern machines are complex systems that consist of structural elements, mechanisms and control components and include interfaces for convenient use. Examples include:
1368-403: A wide range of vehicles , such as trains , automobiles , boats and airplanes ; appliances in the home and office, including computers, building air handling and water handling systems ; as well as farm machinery , machine tools and factory automation systems and robots . The English word machine comes through Middle French from Latin machina , which in turn derives from
1440-410: Is burned with fuel so that it expands through a nozzle to provide thrust to an aircraft , and so is also an "internal combustion engine." Power plant: The heat from coal and natural gas combustion in a boiler generates steam that drives a steam turbine to rotate an electric generator . A nuclear power plant uses heat from a nuclear reactor to generate steam and electric power . This power
1512-423: Is called the cam (also see cam shaft ) and the link that is driven through the direct contact of their surfaces is called the follower. The shape of the contacting surfaces of the cam and follower determines the movement of the mechanism. A linkage is a collection of links connected by joints. Generally, the links are the structural elements and the joints allow movement. Perhaps the single most useful example
SECTION 20
#17328560723511584-412: Is constant, the amount of work performed in time period t can be calculated as W = P t . {\displaystyle W=Pt.} In the context of energy conversion, it is more customary to use the symbol E rather than W . Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or
1656-580: Is different from Wikidata All article disambiguation pages All disambiguation pages Machine (mechanical) A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines . Machines can be driven by animals and people , by natural forces such as wind and water , and by chemical , thermal , or electrical power, and include
1728-603: Is distributed through a network of transmission lines for industrial and individual use. Motors: Electric motors use either AC or DC electric current to generate rotational movement. Electric servomotors are the actuators for mechanical systems ranging from robotic systems to modern aircraft . Fluid Power: Hydraulic and pneumatic systems use electrically driven pumps to drive water or air respectively into cylinders to power linear movement . Electrochemical: Chemicals and materials can also be sources of power. They may chemically deplete or need re-charging, as
1800-449: Is given by P ( t ) = p Q , {\displaystyle P(t)=pQ,} where p is pressure in pascals or N/m , and Q is volumetric flow rate in m /s in SI units. If a mechanical system has no losses, then the input power must equal the output power. This provides a simple formula for the mechanical advantage of the system. Let the input power to a device be
1872-401: Is made by chipping stone, generally flint, to form a bifacial edge, or wedge . A wedge is a simple machine that transforms lateral force and movement of the tool into a transverse splitting force and movement of the workpiece. The available power is limited by the effort of the person using the tool, but because power is the product of force and movement, the wedge amplifies the force by reducing
1944-675: Is more commonly performed by an instrument. If one defines the energy per pulse as ε p u l s e = ∫ 0 T p ( t ) d t {\displaystyle \varepsilon _{\mathrm {pulse} }=\int _{0}^{T}p(t)\,dt} then the average power is P a v g = 1 T ∫ 0 T p ( t ) d t = ε p u l s e T . {\displaystyle P_{\mathrm {avg} }={\frac {1}{T}}\int _{0}^{T}p(t)\,dt={\frac {\varepsilon _{\mathrm {pulse} }}{T}}.} One may define
2016-414: Is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F} \cdot \mathbf {v} } If a constant force F is applied throughout a distance x ,
2088-401: Is the electrical resistance , measured in ohms . In the case of a periodic signal s ( t ) {\displaystyle s(t)} of period T {\displaystyle T} , like a train of identical pulses, the instantaneous power p ( t ) = | s ( t ) | 2 {\textstyle p(t)=|s(t)|^{2}} is also
2160-420: Is the case with batteries , or they may produce power without changing their state, which is the case for solar cells and thermoelectric generators . All of these, however, still require their energy to come from elsewhere. With batteries, it is the already existing chemical potential energy inside. In solar cells and thermoelectrics, the energy source is light and heat respectively. The mechanism of
2232-499: Is the limiting value of the average power as the time interval Δ t approaches zero. P = lim Δ t → 0 P a v g = lim Δ t → 0 Δ W Δ t = d W d t . {\displaystyle P=\lim _{\Delta t\to 0}P_{\mathrm {avg} }=\lim _{\Delta t\to 0}{\frac {\Delta W}{\Delta t}}={\frac {dW}{dt}}.} When power P
Mechanical - Misplaced Pages Continue
2304-421: Is the planar four-bar linkage . However, there are many more special linkages: A planar mechanism is a mechanical system that is constrained so the trajectories of points in all the bodies of the system lie on planes parallel to a ground plane. The rotational axes of hinged joints that connect the bodies in the system are perpendicular to this ground plane. A spherical mechanism is a mechanical system in which
2376-465: Is the product of the torque τ and angular velocity ω , P ( t ) = τ ⋅ ω , {\displaystyle P(t)={\boldsymbol {\tau }}\cdot {\boldsymbol {\omega }},} where ω is angular frequency , measured in radians per second . The ⋅ {\displaystyle \cdot } represents scalar product . In fluid power systems such as hydraulic actuators, power
2448-510: The Antikythera mechanism of Greece and the south-pointing chariot of China . Illustrations by the renaissance scientist Georgius Agricola show gear trains with cylindrical teeth. The implementation of the involute tooth yielded a standard gear design that provides a constant speed ratio. Some important features of gears and gear trains are: A cam and follower is formed by the direct contact of two specially shaped links. The driving link
2520-509: The Greek ( Doric μαχανά makhana , Ionic μηχανή mekhane 'contrivance, machine, engine', a derivation from μῆχος mekhos 'means, expedient, remedy' ). The word mechanical (Greek: μηχανικός ) comes from the same Greek roots. A wider meaning of 'fabric, structure' is found in classical Latin, but not in Greek usage. This meaning is found in late medieval French, and is adopted from
2592-470: The International System of Units , the unit of power is the watt , equal to one joule per second. Power is a scalar quantity. Specifying power in particular systems may require attention to other quantities; for example, the power involved in moving a ground vehicle is the product of the aerodynamic drag plus traction force on the wheels, and the velocity of the vehicle. The output power of
2664-565: The Twelfth Dynasty (1991–1802 BC). The screw , the last of the simple machines to be invented, first appeared in Mesopotamia during the Neo-Assyrian period (911–609) BC. The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever. Three of the simple machines were studied and described by Greek philosopher Archimedes around
2736-533: The VOX-ATypI classification See also [ edit ] Machine , especially in opposition to an electronic item Mechanical Animals , the third full-length studio release by Marilyn Manson Manufactured or artificial , especially in opposition to a biological or natural component Automation , using machine decisions and processing instead of human Mechanization , using machine labor instead of human or animal labor Mechanical watch , utilizing
2808-414: The fundamental theorem of calculus , we know that P = d W d t = d d t ∫ Δ t F ⋅ v d t = F ⋅ v . {\displaystyle P={\frac {dW}{dt}}={\frac {d}{dt}}\int _{\Delta t}\mathbf {F} \cdot \mathbf {v} \,dt=\mathbf {F} \cdot \mathbf {v} .} Hence
2880-491: The lever , pulley and screw as simple machines . By the time of the Renaissance this list increased to include the wheel and axle , wedge and inclined plane . The modern approach to characterizing machines focusses on the components that allow movement, known as joints . Wedge (hand axe): Perhaps the first example of a device designed to manage power is the hand axe , also called biface and Olorgesailie . A hand axe
2952-424: The mechanical advantage of the system (output force per input force) is given by M A = F B F A = v A v B . {\displaystyle \mathrm {MA} ={\frac {F_{\text{B}}}{F_{\text{A}}}}={\frac {v_{\text{A}}}{v_{\text{B}}}}.} The similar relationship is obtained for rotating systems, where T A and ω A are
Mechanical - Misplaced Pages Continue
3024-516: The 3rd century BC: the lever, pulley and screw. Archimedes discovered the principle of mechanical advantage in the lever. Later Greek philosophers defined the classic five simple machines (excluding the inclined plane) and were able to roughly calculate their mechanical advantage. Hero of Alexandria ( c. 10 –75 AD) in his work Mechanics lists five mechanisms that can "set a load in motion"; lever, windlass , pulley, wedge, and screw, and describes their fabrication and uses. However,
3096-547: The French into English in the mid-16th century. In the 17th century, the word machine could also mean a scheme or plot, a meaning now expressed by the derived machination . The modern meaning develops out of specialized application of the term to stage engines used in theater and to military siege engines , both in the late 16th and early 17th centuries. The OED traces the formal, modern meaning to John Harris ' Lexicon Technicum (1704), which has: The word engine used as
3168-606: The Greeks' understanding was limited to statics (the balance of forces) and did not include dynamics (the tradeoff between force and distance) or the concept of work . The earliest practical wind-powered machines, the windmill and wind pump , first appeared in the Muslim world during the Islamic Golden Age , in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD. The earliest practical steam-powered machine
3240-524: The Muslim world. A music sequencer , a programmable musical instrument , was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their Book of Ingenious Devices , in the 9th century. In 1206, Al-Jazari invented programmable automata / robots . He described four automaton musicians, including drummers operated by
3312-421: The average power P avg over that period is given by the formula P a v g = Δ W Δ t . {\displaystyle P_{\mathrm {avg} }={\frac {\Delta W}{\Delta t}}.} It is the average amount of work done or energy converted per unit of time. Average power is often called "power" when the context makes it clear. Instantaneous power
3384-409: The axle of a wheel. However, the wheel forms a lever that magnifies the pulling force so that it overcomes the frictional resistance in the bearing. The classification of simple machines to provide a strategy for the design of new machines was developed by Franz Reuleaux , who collected and studied over 800 elementary machines. He recognized that the classical simple machines can be separated into
3456-478: The basic operations of arithmetic Mechanical energy , the sum of potential energy and kinetic energy Mechanical system , a system that manages the power of forces and movements to accomplish a task Mechanism (engineering) , a portion of a mechanical device Other [ edit ] Mechanical (character) , one of several characters in Shakespeare's A Midsummer Night's Dream A kind of typeface in
3528-583: The beginning and end of the path along which the work was done. The power at any point along the curve C is the time derivative: P ( t ) = d W d t = F ⋅ v = − d U d t . {\displaystyle P(t)={\frac {dW}{dt}}=\mathbf {F} \cdot \mathbf {v} =-{\frac {dU}{dt}}.} In one dimension, this can be simplified to: P ( t ) = F ⋅ v . {\displaystyle P(t)=F\cdot v.} In rotational systems, power
3600-419: The bodies in the system form lines in space that do not intersect and have distinct common normals. A flexure mechanism consists of a series of rigid bodies connected by compliant elements (also known as flexure joints) that is designed to produce a geometrically well-defined motion upon application of a force. Power (physics) Power is the amount of energy transferred or converted per unit time. In
3672-411: The bodies move in a way that the trajectories of points in the system lie on concentric spheres. The rotational axes of hinged joints that connect the bodies in the system pass through the center of these circle. A spatial mechanism is a mechanical system that has at least one body that moves in a way that its point trajectories are general space curves. The rotational axes of hinged joints that connect
SECTION 50
#17328560723513744-571: The double acting steam engine practical. The Boulton and Watt steam engine and later designs powered steam locomotives , steam ships , and factories . The Industrial Revolution was a period from 1750 to 1850 where changes in agriculture, manufacturing, mining, transportation, and technology had a profound effect on the social, economic and cultural conditions of the times. It began in the United Kingdom , then subsequently spread throughout Western Europe , North America , Japan , and eventually
3816-611: The force is variable over a three-dimensional curve C , then the work is expressed in terms of the line integral: W = ∫ C F ⋅ d r = ∫ Δ t F ⋅ d r d t d t = ∫ Δ t F ⋅ v d t . {\displaystyle W=\int _{C}\mathbf {F} \cdot d\mathbf {r} =\int _{\Delta t}\mathbf {F} \cdot {\frac {d\mathbf {r} }{dt}}\ dt=\int _{\Delta t}\mathbf {F} \cdot \mathbf {v} \,dt.} From
3888-523: The formula is valid for any general situation. In older works, power is sometimes called activity . The dimension of power is energy divided by time. In the International System of Units (SI), the unit of power is the watt (W), which is equal to one joule per second. Other common and traditional measures are horsepower (hp), comparing to the power of a horse; one mechanical horsepower equals about 745.7 watts. Other units of power include ergs per second (erg/s), foot-pounds per minute, dBm ,
3960-417: The lever, pulley and wheel and axle that are formed by a body rotating about a hinge, and the inclined plane, wedge and screw that are similarly a block sliding on a flat surface. Simple machines are elementary examples of kinematic chains or linkages that are used to model mechanical systems ranging from the steam engine to robot manipulators. The bearings that form the fulcrum of a lever and that allow
4032-529: The linear movement of the piston into rotation of the output pulley. Finally, the pulley rotation drives the flyball governor which controls the valve for the steam input to the piston cylinder. The adjective "mechanical" refers to skill in the practical application of an art or science, as well as relating to or caused by movement, physical forces, properties or agents such as is dealt with by mechanics . Similarly Merriam-Webster Dictionary defines "mechanical" as relating to machinery or tools. Power flow through
4104-731: The maximum performance of a device in terms of velocity ratios determined by its physical dimensions. See for example gear ratios . The instantaneous electrical power P delivered to a component is given by P ( t ) = I ( t ) ⋅ V ( t ) , {\displaystyle P(t)=I(t)\cdot V(t),} where If the component is a resistor with time-invariant voltage to current ratio, then: P = I ⋅ V = I 2 ⋅ R = V 2 R , {\displaystyle P=I\cdot V=I^{2}\cdot R={\frac {V^{2}}{R}},} where R = V I {\displaystyle R={\frac {V}{I}}}
4176-751: The mechanical advantage of the inclined plane, and it was included with the other simple machines. The complete dynamic theory of simple machines was worked out by Italian scientist Galileo Galilei in 1600 in Le Meccaniche ("On Mechanics"). He was the first to understand that simple machines do not create energy , they merely transform it. The classic rules of sliding friction in machines were discovered by Leonardo da Vinci (1452–1519), but remained unpublished in his notebooks. They were rediscovered by Guillaume Amontons (1699) and were further developed by Charles-Augustin de Coulomb (1785). James Watt patented his parallel motion linkage in 1782, which made
4248-408: The movement. This amplification, or mechanical advantage is the ratio of the input speed to output speed. For a wedge this is given by 1/tanα, where α is the tip angle. The faces of a wedge are modeled as straight lines to form a sliding or prismatic joint . Lever: The lever is another important and simple device for managing power. This is a body that pivots on a fulcrum. Because the velocity of
4320-419: The output of one crank to the input of another. Additional links can be attached to form a six-bar linkage or in series to form a robot. A mechanical system manages power to accomplish a task that involves forces and movement. Modern machines are systems consisting of (i) a power source and actuators that generate forces and movement, (ii) a system of mechanisms that shape the actuator input to achieve
4392-414: The path C and v is the velocity along this path. If the force F is derivable from a potential ( conservative ), then applying the gradient theorem (and remembering that force is the negative of the gradient of the potential energy) yields: W C = U ( A ) − U ( B ) , {\displaystyle W_{C}=U(A)-U(B),} where A and B are
SECTION 60
#17328560723514464-403: The primary elements of a machine. Starting with four types of joints, the rotary joint, sliding joint, cam joint and gear joint, and related connections such as cables and belts, it is possible to understand a machine as an assembly of solid parts that connect these joints called a mechanism . Two levers, or cranks, are combined into a planar four-bar linkage by attaching a link that connects
4536-580: The product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work. In mechanics , the work done by a force F on an object that travels along a curve C is given by the line integral : W C = ∫ C F ⋅ v d t = ∫ C F ⋅ d x , {\displaystyle W_{C}=\int _{C}\mathbf {F} \cdot \mathbf {v} \,dt=\int _{C}\mathbf {F} \cdot d\mathbf {x} ,} where x defines
4608-488: The pulse length τ {\displaystyle \tau } such that P 0 τ = ε p u l s e {\displaystyle P_{0}\tau =\varepsilon _{\mathrm {pulse} }} so that the ratios P a v g P 0 = τ T {\displaystyle {\frac {P_{\mathrm {avg} }}{P_{0}}}={\frac {\tau }{T}}} are equal. These ratios are called
4680-467: The rest of the world. Starting in the later part of the 18th century, there began a transition in parts of Great Britain 's previously manual labour and draft-animal-based economy towards machine-based manufacturing. It started with the mechanisation of the textile industries, the development of iron-making techniques and the increased use of refined coal . The idea that a machine can be decomposed into simple movable elements led Archimedes to define
4752-744: The torque and angular velocity of the input and T B and ω B are the torque and angular velocity of the output. If there are no losses in the system, then P = T A ω A = T B ω B , {\displaystyle P=T_{\text{A}}\omega _{\text{A}}=T_{\text{B}}\omega _{\text{B}},} which yields the mechanical advantage M A = T B T A = ω A ω B . {\displaystyle \mathrm {MA} ={\frac {T_{\text{B}}}{T_{\text{A}}}}={\frac {\omega _{\text{A}}}{\omega _{\text{B}}}}.} These relations are important because they define
4824-399: The wheel and axle and pulleys to rotate are examples of a kinematic pair called a hinged joint. Similarly, the flat surface of an inclined plane and wedge are examples of the kinematic pair called a sliding joint. The screw is usually identified as its own kinematic pair called a helical joint. This realization shows that it is the joints, or the connections that provide movement, that are
4896-622: The work done is defined as W = F ⋅ x {\displaystyle W=\mathbf {F} \cdot \mathbf {x} } . In this case, power can be written as: P = d W d t = d d t ( F ⋅ x ) = F ⋅ d x d t = F ⋅ v . {\displaystyle P={\frac {dW}{dt}}={\frac {d}{dt}}\left(\mathbf {F} \cdot \mathbf {x} \right)=\mathbf {F} \cdot {\frac {d\mathbf {x} }{dt}}=\mathbf {F} \cdot \mathbf {v} .} If instead
4968-675: Was a steam jack driven by a steam turbine , described in 1551 by Taqi ad-Din Muhammad ibn Ma'ruf in Ottoman Egypt . The cotton gin was invented in India by the 6th century AD, and the spinning wheel was invented in the Islamic world by the early 11th century, both of which were fundamental to the growth of the cotton industry . The spinning wheel was also a precursor to the spinning jenny . The earliest programmable machines were developed in
5040-613: Was applied to milling grain, and powering lumber, machining and textile operations . Modern water turbines use water flowing through a dam to drive an electric generator . Windmill: Early windmills captured wind power to generate rotary motion for milling operations. Modern wind turbines also drives a generator. This electricity in turn is used to drive motors forming the actuators of mechanical systems. Engine: The word engine derives from "ingenuity" and originally referred to contrivances that may or may not be physical devices. A steam engine uses heat to boil water contained in
5112-451: Was the inclined plane (ramp), which has been used since prehistoric times to move heavy objects. The other four simple machines were invented in the ancient Near East . The wheel , along with the wheel and axle mechanism, was invented in Mesopotamia (modern Iraq) during the 5th millennium BC. The lever mechanism first appeared around 5,000 years ago in the Near East , where it
5184-485: Was used in a simple balance scale , and to move large objects in ancient Egyptian technology . The lever was also used in the shadoof water-lifting device, the first crane machine, which appeared in Mesopotamia c. 3000 BC , and then in ancient Egyptian technology c. 2000 BC . The earliest evidence of pulleys date back to Mesopotamia in the early 2nd millennium BC, and ancient Egypt during
#350649