Misplaced Pages

Mariana plate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Mariana plate is a micro tectonic plate located west of the Mariana Trench which forms the basement of the Mariana Islands which form part of the Izu–Bonin–Mariana Arc . It is separated from the Philippine Sea plate to the west by a divergent boundary with numerous transform fault offsets. The boundary between the Mariana and the Pacific plate to the east is a subduction zone with the Pacific plate subducting beneath the Mariana. This eastern subduction is divided into the Mariana Trench, which forms the southeastern boundary, and the Izu–Ogasawara Trench the northeastern boundary. The subduction plate motion is responsible for the shape of the Mariana plate and back arc.

#145854

102-659: Subduction at the Mariana plate has been going on for over 50 million years. Some theories of the origin of this microplate is that when the Pacific plate began to subduct beneath the Philippine plate the volcanism and spreading ridge started to make an arc. This geological activity caused the section of the Philippine plate to break off and become the Mariana microplate. The Mariana Islands consist of volcanoes that are active and dormant and are made up of volcanic and sedimentary rocks from

204-435: A magnetic field , possibly to the point of behaving like a solid. The viscous forces that arise during fluid flow are distinct from the elastic forces that occur in a solid in response to shear, compression, or extension stresses. While in the latter the stress is proportional to the amount of shear deformation, in a fluid it is proportional to the rate of deformation over time. For this reason, James Clerk Maxwell used

306-787: A mid-ocean ridge , such as the Mid-Atlantic Ridge , has volcanoes caused by divergent tectonic plates whereas the Pacific Ring of Fire has volcanoes caused by convergent tectonic plates. Volcanoes can also form where there is stretching and thinning of the crust's plates, such as in the East African Rift and the Wells Gray-Clearwater volcanic field and Rio Grande rift in North America. Volcanism away from plate boundaries has been postulated to arise from upwelling diapirs from

408-408: A planet's formation , it would have experienced heating from impacts from planetesimals , which would have dwarfed even the asteroid impact that caused the extinction of dinosaurs . This heating could trigger differentiation , further heating the planet. The larger a body is, the slower it loses heat. In larger bodies, for example Earth, this heat, known as primordial heat, still makes up much of

510-493: A common feature at explosive volcanoes on Earth. Pyroclastic flows have been found on Venus, for example at the Dione Regio volcanoes. A phreatic eruption can occur when hot water under pressure is depressurised. Depressurisation reduces the boiling point of the water, so when depressurised the water suddenly boils. Or it may happen when groundwater is suddenly heated, flashing to steam suddenly. When water turns into steam in

612-436: A constant viscosity ( non-Newtonian fluids ) cannot be described by a single number. Non-Newtonian fluids exhibit a variety of different correlations between shear stress and shear rate. One of the most common instruments for measuring kinematic viscosity is the glass capillary viscometer. In coating industries, viscosity may be measured with a cup in which the efflux time is measured. There are several sorts of cup—such as

714-502: A fluid, just as thermal conductivity characterizes heat transport, and (mass) diffusivity characterizes mass transport. This perspective is implicit in Newton's law of viscosity, τ = μ ( ∂ u / ∂ y ) {\displaystyle \tau =\mu (\partial u/\partial y)} , because the shear stress τ {\displaystyle \tau } has units equivalent to

816-425: A lava flow to cool rapidly. This splinters the surface of the lava, and the magma then collects into sacks that often pile up in front of the flow, forming a structure called a pillow. A’a lava has a rough, spiny surface made of clasts of lava called clinkers. Block lava is another type of lava, with less jagged fragments than in a’a lava. Pahoehoe lava is by far the most common lava type, both on Earth and probably

918-409: A mechanical standpoint it is a water filled crevasse turned upside down. As magma rises into the vertical crack, the low density of the magma compared to the wall rock means that the pressure falls less rapidly than in the surrounding denser rock. If the average pressure of the magma and the surrounding rock are equal, the pressure in the dike exceeds that of the enclosing rock at the top of the dike, and

1020-415: A momentum flux , i.e., momentum per unit time per unit area. Thus, τ {\displaystyle \tau } can be interpreted as specifying the flow of momentum in the y {\displaystyle y} direction from one fluid layer to the next. Per Newton's law of viscosity, this momentum flow occurs across a velocity gradient, and the magnitude of the corresponding momentum flux

1122-537: A moon of Saturn . The ejecta may be composed of water, liquid nitrogen , ammonia , dust, or methane compounds. Cassini–Huygens also found evidence of a methane-spewing cryovolcano on the Saturnian moon Titan , which is believed to be a significant source of the methane found in its atmosphere. It is theorized that cryovolcanism may also be present on the Kuiper Belt Object Quaoar . A 2010 study of

SECTION 10

#1732855629146

1224-502: A partially molten core. However, the Moon does have many volcanic features such as maria (the darker patches seen on the Moon), rilles and domes . The planet Venus has a surface that is 90% basalt , indicating that volcanism played a major role in shaping its surface. The planet may have had a major global resurfacing event about 500 million years ago, from what scientists can tell from

1326-480: A phreatic eruption, it expands at supersonic speeds, up to 1,700 times its original volume. This can be enough to shatter solid rock, and hurl rock fragments hundreds of metres. A phreatomagmatic eruption occurs when hot magma makes contact with water, creating an explosion. One mechanism for explosive cryovolcanism is cryomagma making contact with clathrate hydrates . Clathrate hydrates, if exposed to warm temperatures, readily decompose. A 1982 article pointed out

1428-499: A pressure of 0.208 GPa is reached, after which the melting point increases with pressure. Flux melting occurs when the melting point is lowered by the addition of volatiles, for example, water or carbon dioxide. Like decompression melting, it is not caused by an increase in temperature, but rather by a decrease in melting point. Cryovolcanism , instead of originating in a uniform subsurface ocean, may instead take place from discrete liquid reservoirs. The first way these can form

1530-494: A rigid open channel, in the lithosphere and settles at the level of hydrostatic equilibrium . Despite how it explains observations well (which newer models cannot), such as an apparent concordance of the elevation of volcanoes near each other, it cannot be correct and is now discredited, because the lithosphere thickness derived from it is too large for the assumption of a rigid open channel to hold. Unlike silicate volcanism, where melt can rise by its own buoyancy until it reaches

1632-416: A specific fluid state. To standardize comparisons among experiments and theoretical models, viscosity data is sometimes extrapolated to ideal limiting cases, such as the zero shear limit, or (for gases) the zero density limit. Transport theory provides an alternative interpretation of viscosity in terms of momentum transport: viscosity is the material property which characterizes momentum transport within

1734-649: Is 1 cP divided by 1000 kg/m^3, close to the density of water. The kinematic viscosity of water at 20 °C is about 1 cSt. The most frequently used systems of US customary, or Imperial , units are the British Gravitational (BG) and English Engineering (EE). In the BG system, dynamic viscosity has units of pound -seconds per square foot (lb·s/ft ), and in the EE system it has units of pound-force -seconds per square foot (lbf·s/ft ). The pound and pound-force are equivalent;

1836-457: Is a linear combination of the shear and bulk viscosities that describes the reaction of a solid elastic material to elongation. It is widely used for characterizing polymers. In geology , earth materials that exhibit viscous deformation at least three orders of magnitude greater than their elastic deformation are sometimes called rheids . Viscosity is measured with various types of viscometers and rheometers . Close temperature control of

1938-462: Is a calculation derived from tests performed on drilling fluid used in oil or gas well development. These calculations and tests help engineers develop and maintain the properties of the drilling fluid to the specifications required. Nanoviscosity (viscosity sensed by nanoprobes) can be measured by fluorescence correlation spectroscopy . The SI unit of dynamic viscosity is the newton -second per square meter (N·s/m ), also frequently expressed in

2040-428: Is a plume of warm ice welling up and then sinking back down, forming a convection current. A model developed to investigate the effects of this on Europa found that energy from tidal heating became focused in these plumes, allowing melting to occur in these shallow depths as the plume spreads laterally (horizontally). The next is a switch from vertical to horizontal propagation of a fluid filled crack. Another mechanism

2142-550: Is a viscosity tensor that maps the velocity gradient tensor ∂ v k / ∂ r ℓ {\displaystyle \partial v_{k}/\partial r_{\ell }} onto the viscous stress tensor τ i j {\displaystyle \tau _{ij}} . Since the indices in this expression can vary from 1 to 3, there are 81 "viscosity coefficients" μ i j k l {\displaystyle \mu _{ijkl}} in total. However, assuming that

SECTION 20

#1732855629146

2244-540: Is approximately 100 km thick and converging to the east at a rate of 50–80 mm/yr with the Pacific plate subducting at 60–100 mm/yr This eastern subduction is divided into the Mariana Trench, which forms the southeastern boundary, and the Izu–Ogasawara Trench the northeastern boundary. The Izu–Ogasawara Trench and Mariana subduction zones are traveling at different rates. While the northern section of

2346-532: Is called the rate of shear deformation or shear velocity , and is the derivative of the fluid speed in the direction parallel to the normal vector of the plates (see illustrations to the right). If the velocity does not vary linearly with y {\displaystyle y} , then the appropriate generalization is: where τ = F / A {\displaystyle \tau =F/A} , and ∂ u / ∂ y {\displaystyle \partial u/\partial y}

2448-453: Is derived from the Latin viscum (" mistletoe "). Viscum also referred to a viscous glue derived from mistletoe berries. In materials science and engineering , there is often interest in understanding the forces or stresses involved in the deformation of a material. For instance, if the material were a simple spring, the answer would be given by Hooke's law , which says that

2550-448: Is determined by the viscosity. The analogy with heat and mass transfer can be made explicit. Just as heat flows from high temperature to low temperature and mass flows from high density to low density, momentum flows from high velocity to low velocity. These behaviors are all described by compact expressions, called constitutive relations , whose one-dimensional forms are given here: where ρ {\displaystyle \rho }

2652-447: Is driven by exsolution of volatiles that were previously dissolved into the cryomagma, similar to what happens in explosive silicate volcanism as seen on Earth, which is what is mainly covered below. Silica-rich magmas cool beneath the surface before they erupt. As they do this, bubbles exsolve from the magma. As the magma nears the surface, the bubbles and thus the magma increase in volume. The resulting pressure eventually breaks through

2754-598: Is entirely in the form of water, which freezes into ice on the frigid surface. This process is known as cryovolcanism , and is apparently most common on the moons of the outer planets of the Solar System . In 1989, the Voyager 2 spacecraft observed cryovolcanoes (ice volcanoes) on Triton , a moon of Neptune , and in 2005 the Cassini–Huygens probe photographed fountains of frozen particles erupting from Enceladus ,

2856-534: Is equal to the SI millipascal second (mPa·s). The SI unit of kinematic viscosity is square meter per second (m /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm ·s = 0.0001 m ·s ), named after Sir George Gabriel Stokes . In U.S. usage, stoke is sometimes used as the singular form. The submultiple centistokes (cSt) is often used instead, 1 cSt = 1 mm ·s  = 10  m ·s . 1 cSt

2958-411: Is forced through a tube, it flows more quickly near the tube's center line than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of

3060-477: Is formed when fluids and gases under pressure erupt to the surface, bringing mud with them. This pressure can be caused by the weight of overlying sediments over the fluid which pushes down on the fluid, preventing it from escaping, by fluid being trapped in the sediment, migrating from deeper sediment into other sediment or being made from chemical reactions in the sediment. They often erupt quietly, but sometimes they erupt flammable gases like methane. Cryovolcanism

3162-400: Is greater than the rate of uplift. The collision of aseismic ridges and the axis of the trench explain how the plate curvature is evolving. Volcanism Volcanism , vulcanism , volcanicity , or volcanic activity is the phenomenon where solids, liquids, gases, and their mixtures erupt to the surface of a solid-surface astronomical body such as a planet or a moon. It is caused by

Mariana plate - Misplaced Pages Continue

3264-497: Is heating of ice from release of stress through lateral motion of fractures in the ice shell penetrating it from the surface, and even heating from large impacts can create such reservoirs. When material of a planetary body begins to melt, the melting first occurs in small pockets in certain high energy locations, for example grain boundary intersections and where different crystals react to form eutectic liquid , that initially remain isolated from one another, trapped inside rock. If

3366-576: Is in terms of the standard (scalar) viscosity μ {\displaystyle \mu } and the bulk viscosity κ {\displaystyle \kappa } such that α = κ − 2 3 μ {\displaystyle \alpha =\kappa -{\tfrac {2}{3}}\mu } and β = γ = μ {\displaystyle \beta =\gamma =\mu } . In vector notation this appears as: where δ {\displaystyle \mathbf {\delta } }

3468-503: Is much more than the ambient pressure. Not only that, but any volatiles in the water will exsolve. The combination of these processes will release droplets and vapor, which can rise up the fracture, creating a plume. This is thought to be partially responsible for Enceladus's ice plumes. On Earth, volcanoes are most often found where tectonic plates are diverging or converging , and because most of Earth's plate boundaries are underwater, most volcanoes are found underwater. For example,

3570-658: Is not a fundamental law of nature, but rather a constitutive equation (like Hooke's law , Fick's law , and Ohm's law ) which serves to define the viscosity μ {\displaystyle \mu } . Its form is motivated by experiments which show that for a wide range of fluids, μ {\displaystyle \mu } is independent of strain rate. Such fluids are called Newtonian . Gases , water , and many common liquids can be considered Newtonian in ordinary conditions and contexts. However, there are many non-Newtonian fluids that significantly deviate from this behavior. For example: Trouton 's ratio

3672-462: Is observed only at very low temperatures in superfluids ; otherwise, the second law of thermodynamics requires all fluids to have positive viscosity. A fluid that has zero viscosity (non-viscous) is called ideal or inviscid . For non-Newtonian fluid 's viscosity, there are pseudoplastic , plastic , and dilatant flows that are time-independent, and there are thixotropic and rheopectic flows that are time-dependent. The word "viscosity"

3774-460: Is pressurised in the same way. For a crack in the ice shell to propagate upwards, the fluid in it must have positive buoyancy or external stresses must be strong enough to break through the ice. External stresses could include those from tides or from overpressure due to freezing as explained above. There is yet another possible mechanism for ascent of cryovolcanic melts. If a fracture with water in it reaches an ocean or subsurface fluid reservoir,

3876-581: Is the dynamic viscosity of the fluid, often simply referred to as the viscosity . It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units : The aforementioned ratio u / y {\displaystyle u/y}

3978-408: Is the density, J {\displaystyle \mathbf {J} } and q {\displaystyle \mathbf {q} } are the mass and heat fluxes, and D {\displaystyle D} and k t {\displaystyle k_{t}} are the mass diffusivity and thermal conductivity. The fact that mass, momentum, and energy (heat) transport are among

4080-461: Is the eruption of volatiles into an environment below their freezing point. The processes behind it are different to silicate volcanism because the cryomagma (which is usually water-based) is normally denser than its surroundings, meaning it cannot rise by its own buoyancy. Sulfur lavas have a different behaviour to silicate ones. First, sulfur has a low melting point of about 120 degrees Celsius. Also, after cooling down to about 175 degrees Celsius

4182-425: Is the local shear velocity. This expression is referred to as Newton's law of viscosity . In shearing flows with planar symmetry, it is what defines μ {\displaystyle \mu } . It is a special case of the general definition of viscosity (see below), which can be expressed in coordinate-free form. Use of the Greek letter mu ( μ {\displaystyle \mu } ) for

Mariana plate - Misplaced Pages Continue

4284-606: Is the ratio of extensional viscosity to shear viscosity . For a Newtonian fluid, the Trouton ratio is 3. Shear-thinning liquids are very commonly, but misleadingly, described as thixotropic. Viscosity may also depend on the fluid's physical state (temperature and pressure) and other, external , factors. For gases and other compressible fluids , it depends on temperature and varies very slowly with pressure. The viscosity of some fluids may depend on other factors. A magnetorheological fluid , for example, becomes thicker when subjected to

4386-554: Is the unit tensor. This equation can be thought of as a generalized form of Newton's law of viscosity. The bulk viscosity (also called volume viscosity) expresses a type of internal friction that resists the shearless compression or expansion of a fluid. Knowledge of κ {\displaystyle \kappa } is frequently not necessary in fluid dynamics problems. For example, an incompressible fluid satisfies ∇ ⋅ v = 0 {\displaystyle \nabla \cdot \mathbf {v} =0} and so

4488-674: The Pleistocene . As the Pacific plate subducts beneath the Mariana plate, it creates a trench. This is the Mariana Trench , and it is the deepest trench in the world. Another result of this subduction is the Mariana Islands . These are formed from dehydration of the subducting, old oceanic crust creates melt , and the melt rises to the surface through a volcano. This volcanism has been occurring for almost 50 million years. The rock type in

4590-577: The Zahn cup and the Ford viscosity cup —with the usage of each type varying mainly according to the industry. Also used in coatings, a Stormer viscometer employs load-based rotation to determine viscosity. The viscosity is reported in Krebs units (KU), which are unique to Stormer viscometers. Vibrating viscometers can also be used to measure viscosity. Resonant, or vibrational viscometers work by creating shear waves within

4692-436: The contact angle of the melted material allows the melt to wet crystal faces and run along grain boundaries , the melted material will accumulate into larger quantities. On the other hand, if the angle is greater than about 60 degrees, much more melt must form before it can separate from its parental rock. Studies of rocks on Earth suggest that melt in hot rocks quickly collects into pockets and veins that are much larger than

4794-626: The core–mantle boundary , 3,000 kilometers (1,900 mi) deep within Earth. This results in hotspot volcanism , of which the Hawaiian hotspot is an example. Volcanoes are usually not created where two tectonic plates slide past one another. In 1912–1952, in the Northern Hemisphere, studies show that within this time, winters were warmer due to no massive eruptions that had taken place. These studies demonstrate how these eruptions can cause changes within

4896-425: The density of the fluid ( ρ ). It is usually denoted by the Greek letter nu ( ν ): and has the dimensions ( l e n g t h ) 2 / t i m e {\displaystyle \mathrm {(length)^{2}/time} } , therefore resulting in the SI units and the derived units : In very general terms, the viscous stresses in a fluid are defined as those resulting from

4998-441: The exoplanet COROT-7b , which was detected by transit in 2009, suggested that tidal heating from the host star very close to the planet and neighboring planets could generate intense volcanic activity similar to that found on Io. Viscosity Viscosity is a measure of a fluid's dynamic resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to

5100-405: The grain size, in contrast to the model of rigid melt percolation . Melt, instead of uniformly flowing out of source rock, flows out through rivulets which join to create larger veins. Under the influence of buoyancy , the melt rises. Diapirs may also form in non-silicate bodies, playing a similar role in moving warm material towards the surface. A dike is a vertical fluid-filled crack, from

5202-468: The lower mantle and being redirected horizontally, deflecting off the upper to lower mantle transition zone. The Mariana plate is also separating at a rate of 30 mm/yr from the Philippine Plate to the west. The ]]Mariana Trough]] is located on the western side of the island arc along with the back arc basin. Around 3 Ma the basin began spreading at 4.7 cm/yr. Due to the back arc spreading in

SECTION 50

#1732855629146

5304-431: The shear viscosity . However, at least one author discourages the use of this terminology, noting that μ {\displaystyle \mu } can appear in non-shearing flows in addition to shearing flows. In fluid dynamics, it is sometimes more appropriate to work in terms of kinematic viscosity (sometimes also called the momentum diffusivity ), defined as the ratio of the dynamic viscosity ( μ ) over

5406-405: The terrestrial planets , and the Moon, experience some of this heating. The icy bodies of the outer solar system experience much less of this heat because they tend to not be very dense and not have much silicate material (radioactive elements concentrate in silicates). On Neptune's moon Triton , and possibly on Mars, cryogeyser activity takes place. The source of heat is external (heat from

5508-491: The BG and EE systems. Nonstandard units include the reyn (lbf·s/in ), a British unit of dynamic viscosity. In the automotive industry the viscosity index is used to describe the change of viscosity with temperature. The reciprocal of viscosity is fluidity , usually symbolized by ϕ = 1 / μ {\displaystyle \phi =1/\mu } or F = 1 / μ {\displaystyle F=1/\mu } , depending on

5610-463: The Couette flow, a fluid is trapped between two infinitely large plates, one fixed and one in parallel motion at constant speed u {\displaystyle u} (see illustration to the right). If the speed of the top plate is low enough (to avoid turbulence), then in steady state the fluid particles move parallel to it, and their speed varies from 0 {\displaystyle 0} at

5712-460: The Earth's atmosphere. Large eruptions can affect atmospheric temperature as ash and droplets of sulfuric acid obscure the Sun and cool Earth's troposphere . Historically, large volcanic eruptions have been followed by volcanic winters which have caused catastrophic famines. Earth's Moon has no large volcanoes and no current volcanic activity, although recent evidence suggests it may still possess

5814-554: The European Mars Express spacecraft has found evidence that volcanic activity may have occurred on Mars in the recent past as well. Jupiter 's moon Io is the most volcanically active object in the Solar System because of tidal interaction with Jupiter. It is covered with volcanoes that erupt sulfur , sulfur dioxide and silicate rock, and as a result, Io is constantly being resurfaced. There are only two planets in

5916-477: The Izu–Ogasawara Trench plate is subducting at 44 mm/yr, the southern section subducts at 14 mm/yr. The subducting Pacific plate dips at about 10 degrees and directed 83 degrees west of north. The northern subduction zone is expanding by rifting while the southern contains a strike slip fault . Seismologists have been studying how the subducting slabs underneath the Mariana island arc are entering

6018-536: The Mariana Trough the islands are moving east while the Philippine Sea plate is staying almost stationary. Since there is volcanism happening on the Mariana back arc ridge and basin , this system could continue to grow but combining the rate of separation from the Philippine plate along with the subduction destroying the Mariana plate it is possible this microplate could eventually dissipate. The rate of subduction

6120-508: The Sun) rather than internal. Decompression melting happens when solid material from deep beneath the body rises upwards. Pressure decreases as the material rises upwards, and so does the melting point. So, a rock that is solid at a given pressure and temperature can become liquid if the pressure, and thus melting point, decreases even if the temperature stays constant. However, in the case of water, increasing pressure decreases melting point until

6222-412: The area is volcaniclastic sediments on top of igneous rocks. The source of these rocks are from crustal spreading. Just off the eastern coast of Mariana there are big seamounts made of serpentinized periodic. They are formed from mud volcanism. The composition for the seamounts differs in the Izu–Ogasawara Trench and Mariana systems which indicate regional changes in geology. The tectonic plate

SECTION 60

#1732855629146

6324-428: The body's internal heat, but the Moon, which is smaller than Earth, has lost most of this heat. Another heat source is radiogenic heat, caused by radioactive decay . The decay of aluminium-26 would have significantly heated planetary embryos, but due to its short half-life (less than a million years), any traces of it have long since vanished. There are small traces of unstable isotopes in common minerals, and all

6426-425: The bottom to u {\displaystyle u} at the top. Each layer of fluid moves faster than the one just below it, and friction between them gives rise to a force resisting their relative motion. In particular, the fluid applies on the top plate a force in the direction opposite to its motion, and an equal but opposite force on the bottom plate. An external force is therefore required in order to keep

6528-420: The compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is negligible in certain cases. For example, the viscosity of a Newtonian fluid does not vary significantly with the rate of deformation. Zero viscosity (no resistance to shear stress )

6630-597: The convention used, measured in reciprocal poise (P , or cm · s · g ), sometimes called the rhe . Fluidity is seldom used in engineering practice. At one time the petroleum industry relied on measuring kinematic viscosity by means of the Saybolt viscometer , and expressing kinematic viscosity in units of Saybolt universal seconds (SUS). Other abbreviations such as SSU ( Saybolt seconds universal ) or SUV ( Saybolt universal viscosity ) are sometimes used. Kinematic viscosity in centistokes can be converted from SUS according to

6732-416: The cryomagma less dense), or with the presence of a densifying agent in the ice shell. Another is to pressurise the fluid to overcome negative buoyancy and make it reach the surface. When the ice shell above a subsurface ocean thickens, it can pressurise the entire ocean (in cryovolcanism, frozen water or brine is less dense than in liquid form). When a reservoir of liquid partially freezes, the remaining liquid

6834-538: The density of impact craters on the surface. Lava flows are widespread and forms of volcanism not present on Earth occur as well. Changes in the planet's atmosphere and observations of lightning have been attributed to ongoing volcanic eruptions, although there is no confirmation of whether or not Venus is still volcanically active. However, radar sounding by the Magellan probe revealed evidence for comparatively recent volcanic activity at Venus's highest volcano Maat Mons , in

6936-532: The difference in height between the basin and the height of the surrounding terrain could allow eruption of magma which otherwise would have stayed beneath the surface. A 2011 article showed that there would be zones of enhanced magma ascent at the margins of an impact basin. Not all of these mechanisms, and maybe even none, operate on a given body . Silicate volcanism occurs where silicate materials are erupted. Silicate lava flows, like those found on Earth, solidify at about 1000 degrees Celsius. A mud volcano

7038-461: The dynamic viscosity (sometimes also called the absolute viscosity ) is common among mechanical and chemical engineers , as well as mathematicians and physicists. However, the Greek letter eta ( η {\displaystyle \eta } ) is also used by chemists, physicists, and the IUPAC . The viscosity μ {\displaystyle \mu } is sometimes also called

7140-433: The enrichment of magma at the top of a dike by gas which is released when the dike breaches the surface, followed by magma from lower down than did not get enriched with gas. The reason the dissolved gas in the magma separates from it when the magma nears the surface is due to the effects of temperature and pressure on gas solubility . Pressure increases gas solubility, and if a liquid with dissolved gas in it depressurises,

7242-453: The equivalent forms pascal - second (Pa·s), kilogram per meter per second (kg·m ·s ) and poiseuille (Pl). The CGS unit is the poise (P, or g·cm ·s = 0.1 Pa·s), named after Jean Léonard Marie Poiseuille . It is commonly expressed, particularly in ASTM standards, as centipoise (cP). The centipoise is convenient because the viscosity of water at 20 °C is about 1 cP, and one centipoise

7344-409: The fluid do not depend on the distance the fluid has been sheared; rather, they depend on how quickly the shearing occurs. Viscosity is the material property which relates the viscous stresses in a material to the rate of change of a deformation (the strain rate). Although it applies to general flows, it is easy to visualize and define in a simple shearing flow, such as a planar Couette flow . In

7446-459: The fluid is essential to obtain accurate measurements, particularly in materials like lubricants, whose viscosity can double with a change of only 5 °C. A rheometer is used for fluids that cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer. For some fluids, the viscosity is constant over a wide range of shear rates ( Newtonian fluids ). The fluids without

7548-426: The force experienced by a spring is proportional to the distance displaced from equilibrium. Stresses which can be attributed to the deformation of a material from some rest state are called elastic stresses. In other materials, stresses are present which can be attributed to the deformation rate over time . These are called viscous stresses. For instance, in a fluid such as water the stresses which arise from shearing

7650-427: The form of ash flows near the summit and on the northern flank. However, the interpretation of the flows as ash flows has been questioned. There are several extinct volcanoes on Mars , four of which are vast shield volcanoes far bigger than any on Earth. They include Arsia Mons , Ascraeus Mons , Hecates Tholus , Olympus Mons , and Pavonis Mons . These volcanoes have been extinct for many millions of years, but

7752-605: The gas in the ash as it expands chills the magma fragments, often forming tiny glass shards recognisable as portions of the walls of former liquid bubbles. In more fluid magmas the bubble walls may have time to reform into spherical liquid droplets. The final state of the colloids depends strongly on the ratio of liquid to gas. Gas-poor magmas end up cooling into rocks with small cavities, becoming vesicular lava . Gas-rich magmas cool to form rocks with cavities that nearly touch, with an average density less than that of water, forming pumice . Meanwhile, other material can be accelerated with

7854-432: The gas will tend to exsolve (or separate) from the liquid. An example of this is what happens when a bottle of carbonated drink is quickly opened: when the seal is opened, pressure decreases and bubbles of carbon dioxide gas appear throughout the liquid. Fluid magmas erupt quietly. Any gas that has exsolved from the magma easily escapes even before it reaches the surface. However, in viscous magmas, gases remain trapped in

7956-462: The gas, becoming volcanic bombs . These can travel with so much energy that large ones can create craters when they hit the ground. A colloid of volcanic gas and magma can form as a density current called a pyroclastic flow . This occurs when erupted material falls back to the surface. The colloid is somewhat fluidised by the gas, allowing it to spread. Pyroclastic flows can often climb over obstacles, and devastate human life. Pyroclastic flows are

8058-413: The informal concept of thickness ; for example, syrup has a higher viscosity than water . Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square meter, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid

8160-433: The lava rapidly loses viscosity, unlike silicate lavas like those found on Earth. When magma erupts onto a planet's surface, it is termed lava . Viscous lavas form short, stubby glass-rich flows. These usually have a wavy solidified surface texture. More fluid lavas have solidified surface textures that volcanologists classify into four types. Pillow lava forms when a trigger, often lava making contact with water, causes

8262-529: The liquid. In this method, the sensor is submerged in the fluid and is made to resonate at a specific frequency. As the surface of the sensor shears through the liquid, energy is lost due to its viscosity. This dissipated energy is then measured and converted into a viscosity reading. A higher viscosity causes a greater loss of energy. Extensional viscosity can be measured with various rheometers that apply extensional stress . Volume viscosity can be measured with an acoustic rheometer . Apparent viscosity

8364-426: The magma even after they have exsolved, forming bubbles inside the magma. These bubbles enlarge as the magma nears the surface due to the dropping pressure, and the magma grows substantially. This fact gives volcanoes erupting such material a tendency to ‘explode’, although instead of the pressure increase associated with an explosion, pressure always decreases in a volcanic eruption. Generally, explosive cryovolcanism

8466-421: The mantle's viscosity will have dropped to about 10 Pascal-seconds . When large scale melting occurs, the viscosity rapidly falls to 10 Pascal-seconds or even less, increasing the heat transport rate a million-fold. The occurrence of volcanism is partially due to the fact that melted material tends to be more mobile and less dense than the materials from which they were produced, which can cause it to rise to

8568-435: The most relevant processes in continuum mechanics is not a coincidence: these are among the few physical quantities that are conserved at the microscopic level in interparticle collisions. Thus, rather than being dictated by the fast and complex microscopic interaction timescale, their dynamics occurs on macroscopic timescales, as described by the various equations of transport theory and hydrodynamics. Newton's law of viscosity

8670-672: The other terrestrial planets. It has a smooth surface, with mounds, hollows and folds. A volcanic eruption could just be a simple outpouring of material onto the surface of a planet, but they usually involve a complex mixture of solids, liquids and gases which behave in equally complex ways. Some types of explosive eruptions can release energy a quarter that of an equivalent mass of TNT . Volcanic eruptions on Earth have been consistently observed to progress from erupting gas rich material to gas depleted material, although an eruption may alternate between erupting gas rich to gas depleted material and vice versa multiple times. This can be explained by

8772-443: The possibility that the production of pressurised gas upon destabilisation of clathrate hydrates making contact with warm rising magma could produce an explosion that breaks through the surface, resulting in explosive cryovolcanism. If a fracture reaches the surface of an icy body and the column of rising water is exposed to the near-vacuum of the surface of most icy bodies, it will immediately start to boil, because its vapor pressure

8874-474: The presence of a heat source, usually internally generated, inside the body; the heat is generated by various processes, such as radioactive decay or tidal heating . This heat partially melts solid material in the body or turns material into gas. The mobilized material rises through the body's interior and may break through the solid surface. For volcanism to occur, the temperature of the mantle must have risen to about half its melting point. At this point,

8976-509: The pressure of the rock is greater than that of the dike at its bottom. So the magma thus pushes the crack upwards at its top, but the crack is squeezed closed at its bottom due to an elastic reaction (similar to the bulge next to a person sitting down on a springy sofa). Eventually, the tail gets so narrow it nearly pinches off, and no more new magma will rise into the crack. The crack continues to ascend as an independent pod of magma. This model of volcanic eruption posits that magma rises through

9078-515: The relative velocity of different fluid particles. As such, the viscous stresses must depend on spatial gradients of the flow velocity. If the velocity gradients are small, then to a first approximation the viscous stresses depend only on the first derivatives of the velocity. (For Newtonian fluids, this is also a linear dependence.) In Cartesian coordinates, the general relationship can then be written as where μ i j k ℓ {\displaystyle \mu _{ijk\ell }}

9180-417: The shallow crust, in cryovolcanism, the water (cryomagmas tend to be water based) is denser than the ice above it. One way to allow cryomagma to reach the surface is to make the water buoyant, by making the water less dense, either through the presence of other compounds that reverse negative buoyancy, or with the addition of exsolved gas bubbles in the cryomagma that were previously dissolved into it (that makes

9282-442: The solar system where volcanoes can be easily seen due to their high activity, Earth and Io. Its lavas are the hottest known anywhere in the Solar System, with temperatures exceeding 1,800 K (1,500 °C). In February 2001, the largest recorded volcanic eruptions in the Solar System occurred on Io. Europa , the smallest of Jupiter's Galilean moons , also appears to have an active volcanic system, except that its volcanic activity

9384-415: The surface, and the release of pressure causes more gas to exsolve, doing so explosively. The gas may expand at hundreds of metres per second, expanding upward and outward. As the eruption progresses, a chain reaction causes the magma to be ejected at higher and higher speeds. The violently expanding gas disperses and breaks up magma, forming a colloid of gas and magma called volcanic ash . The cooling of

9486-490: The surface. There are multiple ways to generate the heat needed for volcanism. Volcanism on outer solar system moons is powered mainly by tidal heating . Tidal heating caused by the deformation of a body's shape due to mutual gravitational attraction, which generates heat. Earth experiences tidal heating from the Moon , deforming by up to 1 metre (3 feet), but this does not make up a major portion of Earth's total heat . During

9588-555: The term fugitive elasticity for fluid viscosity. However, many liquids (including water) will briefly react like elastic solids when subjected to sudden stress. Conversely, many "solids" (even granite ) will flow like liquids, albeit very slowly, even under arbitrarily small stress. Such materials are best described as viscoelastic —that is, possessing both elasticity (reaction to deformation) and viscosity (reaction to rate of deformation). Viscoelastic solids may exhibit both shear viscosity and bulk viscosity. The extensional viscosity

9690-715: The term containing κ {\displaystyle \kappa } drops out. Moreover, κ {\displaystyle \kappa } is often assumed to be negligible for gases since it is 0 {\displaystyle 0} in a monatomic ideal gas . One situation in which κ {\displaystyle \kappa } can be important is the calculation of energy loss in sound and shock waves , described by Stokes' law of sound attenuation , since these phenomena involve rapid expansions and compressions. The defining equations for viscosity are not fundamental laws of nature, so their usefulness, as well as methods for measuring or calculating

9792-583: The top plate moving at constant speed. In many fluids, the flow velocity is observed to vary linearly from zero at the bottom to u {\displaystyle u} at the top. Moreover, the magnitude of the force, F {\displaystyle F} , acting on the top plate is found to be proportional to the speed u {\displaystyle u} and the area A {\displaystyle A} of each plate, and inversely proportional to their separation y {\displaystyle y} : The proportionality factor

9894-507: The two systems differ only in how force and mass are defined. In the BG system the pound is a basic unit from which the unit of mass (the slug ) is defined by Newton's Second Law , whereas in the EE system the units of force and mass (the pound-force and pound-mass respectively) are defined independently through the Second Law using the proportionality constant g c . Kinematic viscosity has units of square feet per second (ft /s) in both

9996-403: The viscosity depends only space- and time-dependent macroscopic fields (such as temperature and density) defining local equilibrium. Nevertheless, viscosity may still carry a non-negligible dependence on several system properties, such as temperature, pressure, and the amplitude and frequency of any external forcing. Therefore, precision measurements of viscosity are only defined with respect to

10098-571: The viscosity rank-2 tensor is isotropic reduces these 81 coefficients to three independent parameters α {\displaystyle \alpha } , β {\displaystyle \beta } , γ {\displaystyle \gamma } : and furthermore, it is assumed that no viscous forces may arise when the fluid is undergoing simple rigid-body rotation, thus β = γ {\displaystyle \beta =\gamma } , leaving only two independent parameters. The most usual decomposition

10200-500: The viscosity, must be established using separate means. A potential issue is that viscosity depends, in principle, on the full microscopic state of the fluid, which encompasses the positions and momenta of every particle in the system. Such highly detailed information is typically not available in realistic systems. However, under certain conditions most of this information can be shown to be negligible. In particular, for Newtonian fluids near equilibrium and far from boundaries (bulk state),

10302-439: The water to exsolve into gas. The elastic nature of the ice shell would likely prevent the fracture reaching the surface, and the crack would instead pinch off, enclosing the gas and liquid. The gas would increase buoyancy and could allow the crack to reach the surface. Even impacts can create conditions that allow for enhanced ascent of magma. An impact may remove the top few kilometres of crust, and pressure differences caused by

10404-459: The water would rise to its level of hydrostatic equilibrium, at about nine-tenths of the way to the surface. Tides which induce compression and tension in the ice shell may pump the water farther up. A 1988 article proposed a possibility for fractures propagating upwards from the subsurface ocean of Jupiter's moon Europa. It proposed that a fracture propagating upwards would possess a low pressure zone at its tip, allowing volatiles dissolved within

#145854