Misplaced Pages

Triple Bridge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Triple Bridge ( Slovene : Tromostovje , in older sources also Tromostje ) comprises three bridges spanning the Ljubljanica River in Ljubljana , the capital of Slovenia . It connects the historical medieval town on the southeastern bank with the central Prešeren Square on the northwestern bank. Dating back to the 13th century, it stands as the oldest bridge in Ljubljana. In the early 1930s, the architect Jože Plečnik redesigned and expanded it. In August 2021, the Triple Bridge was added to the UNESCO World Heritage List as part of Plečnik's enduring legacy.

#657342

75-551: The central bridge is partly built from Glinica limestone . Other parts are built from concrete . The balustrades with 642 balusters are made of concrete. The platform is paved with granite blocks laid in 2010. Previously, it was paved with asphalt . There is mention of a wooden bridge in this location from 1280. It was at first called the Old Bridge ( Stari most ) and later the Lower Bridge ( Spodnji most ), in contrast to

150-411: A calcium aluminate cement or with Portland cement to form Portland cement concrete (named for its visual resemblance to Portland stone ). Many other non-cementitious types of concrete exist with other methods of binding aggregate together, including asphalt concrete with a bitumen binder, which is frequently used for road surfaces , and polymer concretes that use polymers as a binder. Concrete

225-487: A lime kiln above 900 °C (1,650 °F) converts it into the highly caustic material burnt lime , unslaked lime or quicklime ( calcium oxide ) and, through subsequent addition of water, into the less caustic (but still strongly alkaline ) slaked lime or hydrated lime ( calcium hydroxide , Ca(OH) 2 ), the process of which is called slaking of lime . When the term is encountered in an agricultural context, it usually refers to agricultural lime , which today

300-433: A French structural and civil engineer . Concrete components or structures are compressed by tendon cables during, or after, their fabrication in order to strengthen them against tensile forces developing when put in service. Freyssinet patented the technique on 2 October 1928. Concrete is an artificial composite material , comprising a matrix of cementitious binder (typically Portland cement paste or asphalt ) and

375-452: A cementitious material forms a cement paste by the process of hydration. The cement paste glues the aggregate together, fills voids within it, and makes it flow more freely. As stated by Abrams' law , a lower water-to-cement ratio yields a stronger, more durable concrete, whereas more water gives a freer-flowing concrete with a higher slump . The hydration of cement involves many concurrent reactions. The process involves polymerization ,

450-400: A concrete component—and become a part of the binder for the aggregate. Fly ash and slag can enhance some properties of concrete such as fresh properties and durability. Alternatively, other materials can also be used as a concrete binder: the most prevalent substitute is asphalt , which is used as the binder in asphalt concrete . Admixtures are added to modify the cure rate or properties of

525-434: A dispersed phase or "filler" of aggregate (typically a rocky material, loose stones, and sand). The binder "glues" the filler together to form a synthetic conglomerate . Many types of concrete are available, determined by the formulations of binders and the types of aggregate used to suit the application of the engineered material. These variables determine strength and density, as well as chemical and thermal resistance of

600-437: A fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water , and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. When aggregate is mixed with dry Portland cement and water , the mixture forms a fluid slurry that is easily poured and molded into shape. The cement reacts with

675-452: A greater degree of fracture resistance even in seismically active environments. Roman concrete is significantly more resistant to erosion by seawater than modern concrete; it used pyroclastic materials which react with seawater to form Al- tobermorite crystals over time. The use of hot mixing and the presence of lime clasts are thought to give the concrete a self-healing ability, where cracks that form become filled with calcite that prevents

750-415: A large aggregate that is too large for the size of the formwork, or which has too few smaller aggregate grades to serve to fill the gaps between the larger grades, or using too little or too much sand for the same reason, or using too little water, or too much cement, or even using jagged crushed stone instead of smoother round aggregate such as pebbles. Any combination of these factors and others may result in

825-461: A large type of industrial facility called a concrete plant , or often a batch plant. The usual method of placement is casting in formwork , which holds the mix in shape until it has set enough to hold its shape unaided. Concrete plants come in two main types, ready-mix plants and central mix plants. A ready-mix plant blends all of the solid ingredients, while a central mix does the same but adds water. A central-mix plant offers more precise control of

SECTION 10

#1732858155658

900-474: A lime made from kankar which is a form of calcium carbonate. Selenitic lime, also known as Scotts' cement after Henry Young Darracott Scott , is a cement of grey chalk or similar lime, such as in the Lias Group , with about 5% added gypsum plaster (calcined gypsum ). Selenite is a type of gypsum, but selenitic cement may be made using any form of sulfate or sulfuric acid . Sulfate arrests slaking, causes

975-464: A limitation on its unhydrated oxide content." The term Type S originated in 1946 in ASTM C 207 Hydrated Lime for Masonry Purposes. Type S lime is almost always dolomitic lime, hydrated under heat and pressure in an autoclave, and used in mortar, render , stucco , and plaster . Type S lime is not considered reliable as a pure binder in mortar due to high burning temperatures during production. Kankar lime,

1050-399: A mineral with the chemical formula of CaO. The word lime originates with its earliest use as building mortar and has the sense of sticking or adhering . These materials are still used in large quantities as building and engineering materials (including limestone products, cement , concrete , and mortar ), as chemical feedstocks, for sugar refining , and other uses. Lime industries and

1125-485: A mix which is too harsh, i.e., which does not flow or spread out smoothly, is difficult to get into the formwork, and which is difficult to surface finish. Lime (material) Lime is an inorganic material composed primarily of calcium oxides and hydroxides . It is also the name for calcium oxide which occurs as a product of coal-seam fires and in altered limestone xenoliths in volcanic ejecta. The International Mineralogical Association recognizes lime as

1200-469: A mixture of calcium silicates ( alite , belite ), aluminates and ferrites —compounds, which will react with water. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay or shale (a source of silicon, aluminium and iron) and grinding this product (called clinker ) with a source of sulfate (most commonly gypsum ). Cement kilns are extremely large, complex, and inherently dusty industrial installations. Of

1275-405: A number of manufactured aggregates, including air-cooled blast furnace slag and bottom ash are also permitted. The size distribution of the aggregate determines how much binder is required. Aggregate with a very even size distribution has the biggest gaps whereas adding aggregate with smaller particles tends to fill these gaps. The binder must fill the gaps between the aggregate as well as paste

1350-424: A semi-liquid slurry (paste) that can be shaped, typically by pouring it into a form. The concrete solidifies and hardens through a chemical process called hydration . The water reacts with the cement, which bonds the other components together, creating a robust, stone-like material. Other cementitious materials, such as fly ash and slag cement , are sometimes added—either pre-blended with the cement or directly as

1425-493: A simple, fast way of getting a basic idea of the properties of the finished concrete without having to perform testing in advance. Various governing bodies (such as British Standards ) define nominal mix ratios into a number of grades, usually ranging from lower compressive strength to higher compressive strength. The grades usually indicate the 28-day cure strength. Thorough mixing is essential to produce uniform, high-quality concrete. Separate paste mixing has shown that

1500-471: Is also known as rich, common, air, slaked, slack, pickling, hydrated, and high calcium lime. It consists primarily of calcium hydroxide which is derived by slaking quicklime (calcium oxide), and may contain up to 5% of other ingredients. Pure lime sets very slowly through contact with carbon dioxide in the air and moisture; it is not a hydraulic lime so it will not set under water. Pure lime is pure white and can be used for whitewash, plaster, and mortar. Pure lime

1575-400: Is called the lime cycle . The conditions and compounds present during each step of the lime cycle have a strong influence of the end product, thus the complex and varied physical nature of lime products. An example is when slaked lime (calcium hydroxide) is mixed into a thick slurry with sand and water to form mortar for building purposes. When the masonry has been laid, the slaked lime in

SECTION 20

#1732858155658

1650-511: Is distinct from mortar . Whereas concrete is itself a building material, mortar is a bonding agent that typically holds bricks , tiles and other masonry units together. Grout is another material associated with concrete and cement. It does not contain coarse aggregates and is usually either pourable or thixotropic , and is used to fill gaps between masonry components or coarse aggregate which has already been put in place. Some methods of concrete manufacture and repair involve pumping grout into

1725-479: Is done by composition as high calcium, argillaceous (clayey), silicious , conglomerate , magnesian , dolomite , and other limestones . Uncommon sources of lime include coral, sea shells, calcite and ankerite . Limestone is extracted from quarries or mines . Part of the extracted stone, selected according to its chemical composition and optical granulometry , is calcinated at about 900 °C (1,650 °F) in lime kilns to produce quicklime according to

1800-501: Is made by adding forms of silica or alumina such as clay to the limestone during firing, or by adding a pozzolana to pure lime. Hydraulic limes are classified by their strength: feebly , moderately and eminently hydraulic lime. Feebly hydraulic lime contains 5-10% clay, slakes in minutes, and sets in about three weeks. It is used for less expensive work and in mild climates. Moderately hydraulic lime contains 11-20% clay, slakes in one to two hours, and sets in approximately one week. It

1875-670: Is named for the Dolomite Mountains in the Italian and Austrian Alps. In the United States the most commonly used masonry lime is Type S hydrated lime which is intended to be added to Portland cement to improve plasticity , water retention and other qualities. The S in type S stands for special which distinguishes it from Type N hydrated lime where the N stands for normal. The special attributes of Type S are its "...ability to develop high, early plasticity and higher water retentivity and by

1950-425: Is similar to hydraulic lime but has less soluble silica (usually minimum 6%) and aluminates , and will set under water but will never harden. Hydraulic lime is also called water lime . Hydraulic lime contains lime with silica or alumina and sets with exposure to water and can set under water. Natural hydraulic lime (NHL) is made from a limestone which naturally contains some clay . Artificial hydraulic lime

2025-492: Is soluble in water containing carbonic acid , a natural, weak acid which is a solution of carbon dioxide in water and acid rain so it will slowly wash away, but this characteristic also produces autogenous or self-healing process where the dissolved lime can flow into cracks in the material and be redeposited, automatically repairing the crack. Semi-hydraulic lime, also called partially hydraulic and grey lime, sets initially with water and then continues to set with air. This lime

2100-559: Is then blended with aggregates and any remaining batch water and final mixing is completed in conventional concrete mixing equipment. Workability is the ability of a fresh (plastic) concrete mix to fill the form/mold properly with the desired work (pouring, pumping, spreading, tamping, vibration) and without reducing the concrete's quality. Workability depends on water content, aggregate (shape and size distribution), cementitious content and age (level of hydration ) and can be modified by adding chemical admixtures, like superplasticizer. Raising

2175-632: Is used for better quality work and exterior walls in freezing climates. Eminently hydraulic lime contains 21-30% clay, slakes very slowly, and sets in approximately a day. It is used in harsh environments such as damp locations and near saltwater. Hydraulic lime is off-white in color. "The degree of hydraulicity of mortars will affect many characteristics. By selecting an appropriate ratio of clay to limestone mortars that carbonate or set hydraulically to varying extents can be designed for particular application requirements such as setting time, strength, colour, durability, frost resistance, workability, speed of set in

2250-407: Is usually crushed limestone, not a product of a lime kiln. Otherwise it most commonly means slaked lime , as the more dangerous form is usually described more specifically as quicklime or burnt lime . In the lime industry, limestone is a general term for rocks that contain 80% or more of calcium or magnesium carbonate , including marble , chalk , oolite , and marl . Further classification

2325-399: Is usually reinforced with materials that are strong in tension, typically steel rebar . The mix design depends on the type of structure being built, how the concrete is mixed and delivered, and how it is placed to form the structure. Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar , and many plasters . It consists of

Triple Bridge - Misplaced Pages Continue

2400-633: The Upper Bridge that was built in the location of the nowadays Cobblers' Bridge in the same century. It was also named the Špital Bridge ( Špitalski most ) after the nearby poorhouse , which was established in the early 14th century. It was built anew in 1657 after a fire. In 1842, the Lower Bridge was replaced by a new bridge designed by Giovanni Picco , an Italian architect from Villach , and named Franz's Bridge, ( Frančev most ) in honor of Archduke Franz Karl of Austria . It also became known as

2475-480: The construction industry , whose demand is ever growing with greater impacts on raw material extraction, waste generation and landfill practices. Concrete production is the process of mixing together the various ingredients—water, aggregate, cement, and any additives—to produce concrete. Concrete production is time-sensitive. Once the ingredients are mixed, workers must put the concrete in place before it hardens. In modern usage, most concrete production takes place in

2550-413: The 1842 stone arch bridge from being a bottleneck , the architect Jože Plečnik designed in 1929 the extension of the bridge with two footbridges at a slight angle on each side of it. In collaboration with his student Ciril Tavčar , who drew the plans, he published the proposal in the same year in the journal Ljubljanski zvon . Construction started in 1931 and continued until spring 1932. The bridge

2625-584: The Franciscan Bridge ( Frančiškanski most ). This bridge, opened on 25 September 1842, had two arches and a metal fence. The essentials of the bridge have been preserved until today, which is evidenced by the inscribed dedication to the archduke above its central pier, reading in Latin " ARCHIDVCI. FRANCISCO. CAROLO. MDCCCXLII. CIVITAS. ", which means "To Archduke Franz Karl in 1842 by the Town." In order to prevent

2700-639: The absence of reinforcement, its tensile strength was far lower than modern reinforced concrete , and its mode of application also differed: Modern structural concrete differs from Roman concrete in two important details. First, its mix consistency is fluid and homogeneous, allowing it to be poured into forms rather than requiring hand-layering together with the placement of aggregate, which, in Roman practice, often consisted of rubble . Second, integral reinforcing steel gives modern concrete assemblies great strength in tension, whereas Roman concrete could depend only upon

2775-610: The cisterns secret as these enabled the Nabataeans to thrive in the desert. Some of these structures survive to this day. In the Ancient Egyptian and later Roman eras, builders discovered that adding volcanic ash to lime allowed the mix to set underwater. They discovered the pozzolanic reaction . The Romans used concrete extensively from 300 BC to AD 476. During the Roman Empire, Roman concrete (or opus caementicium )

2850-526: The concrete at the time of batching/mixing. (See § Production below.) The common types of admixtures are as follows: Inorganic materials that have pozzolanic or latent hydraulic properties, these very fine-grained materials are added to the concrete mix to improve the properties of concrete (mineral admixtures), or as a replacement for Portland cement (blended cements). Products which incorporate limestone , fly ash , blast furnace slag , and other useful materials with pozzolanic properties into

2925-399: The concrete can cause the initially placed material to begin to set before the next batch is added on top. This creates a horizontal plane of weakness called a cold joint between the two batches. Once the mix is where it should be, the curing process must be controlled to ensure that the concrete attains the desired attributes. During concrete preparation, various technical details may affect

3000-461: The concrete quality. Central mix plants must be close to the work site where the concrete will be used, since hydration begins at the plant. A concrete plant consists of large hoppers for storage of various ingredients like cement, storage for bulk ingredients like aggregate and water, mechanisms for the addition of various additives and amendments, machinery to accurately weigh, move, and mix some or all of those ingredients, and facilities to dispense

3075-519: The crack from spreading. The widespread use of concrete in many Roman structures ensured that many survive to the present day. The Baths of Caracalla in Rome are just one example. Many Roman aqueducts and bridges, such as the magnificent Pont du Gard in southern France, have masonry cladding on a concrete core, as does the dome of the Pantheon . After the Roman Empire, the use of burned lime and pozzolana

Triple Bridge - Misplaced Pages Continue

3150-431: The finished product. Construction aggregates consist of large chunks of material in a concrete mix, generally a coarse gravel or crushed rocks such as limestone , or granite , along with finer materials such as sand . Cement paste, most commonly made of Portland cement , is the most prevalent kind of concrete binder. For cementitious binders, water is mixed with the dry cement powder and aggregate, which produces

3225-633: The formation of magnesium sulfate salts." Magnesium sulfate salts may damage the mortar when they dry and recrystallize due to expansion of the crystals as they form, which is known as sulfate attack . Lime used in building materials is broadly classified as "pure", "hydraulic", and "poor" lime; can be natural or artificial ; and may be further identified by its magnesium content such as dolomitic or magnesium lime. Uses include lime mortar , lime plaster , lime render , lime-ash floors , tabby concrete , whitewash , silicate mineral paint , and limestone blocks which may be of many types . The qualities of

3300-622: The gaps to make up a solid mass in situ . The word concrete comes from the Latin word " concretus " (meaning compact or condensed), the perfect passive participle of " concrescere ", from " con -" (together) and " crescere " (to grow). Concrete floors were found in the royal palace of Tiryns , Greece, which dates roughly to 1400 to 1200 BC. Lime mortars were used in Greece, such as in Crete and Cyprus, in 800 BC. The Assyrian Jerwan Aqueduct (688 BC) made use of waterproof concrete . Concrete

3375-554: The interlinking of the silicates and aluminate components as well as their bonding to sand and gravel particles to form a solid mass. One illustrative conversion is the hydration of tricalcium silicate: The hydration (curing) of cement is irreversible. Fine and coarse aggregates make up the bulk of a concrete mixture. Sand , natural gravel, and crushed stone are used mainly for this purpose. Recycled aggregates (from construction, demolition, and excavation waste) are increasingly used as partial replacements for natural aggregates, while

3450-437: The magnesium compounds also slake to periclase which slake more slowly than calcium oxide and when hydrated produce several other compounds. Thus, these limes contain inclusions of portlandite , brucite , magnesite , and other magnesium hydroxycarbonate compounds. These magnesium compounds have very limited, contradictory research which questions whether they "...may be significantly reactive with acid rain, which could lead to

3525-406: The making of mortar. In an English translation from 1397, it reads "lyme ... is a stone brent; by medlynge thereof with sonde and water sement is made". From the 14th century, the quality of mortar was again excellent, but only from the 17th century was pozzolana commonly added. The Canal du Midi was built using concrete in 1670. Perhaps the greatest step forward in the modern use of concrete

3600-747: The many types of processed lime affect how they are used. The Romans used two types of lime mortar to make Roman concrete , which allowed them to revolutionize architecture, sometimes called the Concrete revolution . Lime has many complex qualities as a building product including workability which includes cohesion, adhesion, air content, water content, crystal shape, board-life, spreadability, and flowability; bond strength; comprehensive strength; setting time; sand-carrying capacity; hydraulicity; free lime content; vapor permeability; flexibility; and resistance to sulfates. These qualities are affected by many factors during each step of manufacturing and installation, including

3675-531: The material. Mineral admixtures use recycled materials as concrete ingredients. Conspicuous materials include fly ash , a by-product of coal-fired power plants ; ground granulated blast furnace slag , a by-product of steelmaking ; and silica fume , a by-product of industrial electric arc furnaces . Structures employing Portland cement concrete usually include steel reinforcement because this type of concrete can be formulated with high compressive strength , but always has lower tensile strength . Therefore, it

3750-419: The mix, are being tested and used. These developments are ever growing in relevance to minimize the impacts caused by cement use, notorious for being one of the largest producers (at about 5 to 10%) of global greenhouse gas emissions . The use of alternative materials also is capable of lowering costs, improving concrete properties, and recycling wastes, the latest being relevant for circular economy aspects of

3825-478: The mixed concrete, often to a concrete mixer truck. Modern concrete is usually prepared as a viscous fluid, so that it may be poured into forms. The forms are containers that define the desired shape. Concrete formwork can be prepared in several ways, such as slip forming and steel plate construction . Alternatively, concrete can be mixed into dryer, non-fluid forms and used in factory settings to manufacture precast concrete products. Interruption in pouring

SECTION 50

#1732858155658

3900-441: The mixing of cement and water into a paste before combining these materials with aggregates can increase the compressive strength of the resulting concrete. The paste is generally mixed in a high-speed , shear-type mixer at a w/c (water to cement ratio) of 0.30 to 0.45 by mass. The cement paste premix may include admixtures such as accelerators or retarders, superplasticizers , pigments , or silica fume . The premixed paste

3975-441: The mixture to improve the physical properties of the wet mix, delay or accelerate the curing time, or otherwise change the finished material. Most concrete is poured with reinforcing materials (such as steel rebar ) embedded to provide tensile strength , yielding reinforced concrete . In the past, lime -based cement binders, such as lime putty, were often used but sometimes with other hydraulic cements , (water resistant) such as

4050-420: The mortar slowly begins to react with carbon dioxide to form calcium carbonate (limestone) according to the reaction: The carbon dioxide that takes part in this reaction is principally available in the air or dissolved in rainwater so pure lime mortar will not recarbonate under water or inside a thick masonry wall. The lime cycle for dolomitic and magnesium lime is not well understood but more complex because

4125-476: The original ingredients of the source of lime; added ingredients before and during firing including inclusion of compounds from the fuel exhaust; firing temperature and duration; method of slaking including a hot mix (quicklime added to sand and water to make mortar), dry slaking and wet slaking; ratio of the mixture with aggregates and water; the sizes and types of aggregate; contaminants in the mixing water; workmanship; and rate of drying during curing. Pure lime

4200-405: The presence of water, vapour permeability etc." Poor lime is also known as lean or meager lime. Poor lime sets and cures very slowly and has weak bonding. Poor lime is grey in color. Magnesium lime contains more than 5% magnesium oxide (BS 6100) or 5-35% magnesium carbonate (ASTM C 59-91). Dolomitic lime has a high magnesium content of 35-46% magnesium carbonate (ASTM C 59-91). Dolomitic lime

4275-506: The properties or increase the performance envelope of the mix. Design-mix concrete can have very broad specifications that cannot be met with more basic nominal mixes, but the involvement of the engineer often increases the cost of the concrete mix. Concrete mixes are primarily divided into nominal mix, standard mix and design mix. Nominal mix ratios are given in volume of Cement : Sand : Aggregate {\displaystyle {\text{Cement : Sand : Aggregate}}} . Nominal mixes are

4350-468: The quality and nature of the product. Design mix ratios are decided by an engineer after analyzing the properties of the specific ingredients being used. Instead of using a 'nominal mix' of 1 part cement, 2 parts sand, and 4 parts aggregate (the second example from above), a civil engineer will custom-design a concrete mix to exactly meet the requirements of the site and conditions, setting material ratios and often designing an admixture package to fine-tune

4425-444: The quicklime to a form referred to as lime putty. Because lime has an adhesive property with bricks and stones, it is often used as a binding mortar in masonry works. It is also used in whitewashing as a wall-coat to allow the whitewash to adhere the wall. The process by which limestone (calcium carbonate) is converted to quicklime by heating, then to slaked lime by hydration, and naturally reverts to calcium carbonate by carbonation

4500-409: The reaction: Before use, quicklime is hydrated , that is combined with water, called slaking, so hydrated lime is also known as slaked lime, and is produced according to the reaction: Dry slaking is slaking quicklime with just enough water to hydrate the quicklime, but to keep it as a powder; it is referred to as hydrated lime. In wet slaking , a slight excess of water is added to hydrate

4575-411: The strength of the concrete bonding to resist tension. The long-term durability of Roman concrete structures has been found to be due to its use of pyroclastic (volcanic) rock and ash, whereby the crystallization of strätlingite (a specific and complex calcium aluminosilicate hydrate) and the coalescence of this and similar calcium–aluminium-silicate–hydrate cementing binders helped give the concrete

SECTION 60

#1732858155658

4650-497: The surface of concrete for a decorative "exposed aggregate" finish, popular among landscape designers. Admixtures are materials in the form of powder or fluids that are added to the concrete to give it certain characteristics not obtainable with plain concrete mixes. Admixtures are defined as additions "made as the concrete mix is being prepared". The most common admixtures are retarders and accelerators. In normal use, admixture dosages are less than 5% by mass of cement and are added to

4725-535: The surfaces of the aggregate together, and is typically the most expensive component. Thus, variation in sizes of the aggregate reduces the cost of concrete. The aggregate is nearly always stronger than the binder, so its use does not negatively affect the strength of the concrete. Redistribution of aggregates after compaction often creates non-homogeneity due to the influence of vibration. This can lead to strength gradients. Decorative stones such as quartzite , small river stones or crushed glass are sometimes added to

4800-549: The use of many of the resulting products date from prehistoric times in both the Old World and the New World. Lime is used extensively for wastewater treatment with ferrous sulfate . The rocks and minerals from which these materials are derived, typically limestone or chalk , are composed primarily of calcium carbonate . They may be cut, crushed, or pulverized and chemically altered. Burning ( calcination ) of calcium carbonate in

4875-655: The various ingredients used to produce a given quantity of concrete, the cement is the most energetically expensive. Even complex and efficient kilns require 3.3 to 3.6 gigajoules of energy to produce a ton of clinker and then grind it into cement . Many kilns can be fueled with difficult-to-dispose-of wastes, the most common being used tires. The extremely high temperatures and long periods of time at those temperatures allows cement kilns to efficiently and completely burn even difficult-to-use fuels. The five major compounds of calcium silicates and aluminates comprising Portland cement range from 5 to 50% in weight. Combining water with

4950-439: The water content or adding chemical admixtures increases concrete workability. Excessive water leads to increased bleeding or segregation of aggregates (when the cement and aggregates start to separate), with the resulting concrete having reduced quality. Changes in gradation can also affect workability of the concrete, although a wide range of gradation can be used for various applications. An undesirable gradation can mean using

5025-527: The water through a process called concrete hydration that hardens it over several hours to form a hard matrix that binds the materials together into a durable stone-like material that has many uses. This time allows concrete to not only be cast in forms, but also to have a variety of tooled processes performed. The hydration process is exothermic , which means ambient temperature plays a significant role in how long it takes concrete to set. Often, additives (such as pozzolans or superplasticizers ) are included in

5100-515: Was Smeaton's Tower , built by British engineer John Smeaton in Devon , England, between 1756 and 1759. This third Eddystone Lighthouse pioneered the use of hydraulic lime in concrete, using pebbles and powdered brick as aggregate. A method for producing Portland cement was developed in England and patented by Joseph Aspdin in 1824. Aspdin chose the name for its similarity to Portland stone , which

5175-622: Was built largely of concrete, and the Pantheon has the world's largest unreinforced concrete dome. Concrete, as the Romans knew it, was a new and revolutionary material. Laid in the shape of arches , vaults and domes , it quickly hardened into a rigid mass, free from many of the internal thrusts and strains that troubled the builders of similar structures in stone or brick. Modern tests show that opus caementicium had as much compressive strength as modern Portland-cement concrete (c. 200 kg/cm  [20 MPa; 2,800 psi]). However, due to

5250-602: Was greatly reduced. Low kiln temperatures in the burning of lime, lack of pozzolana, and poor mixing all contributed to a decline in the quality of concrete and mortar. From the 11th century, the increased use of stone in church and castle construction led to an increased demand for mortar. Quality began to improve in the 12th century through better grinding and sieving. Medieval lime mortars and concretes were non-hydraulic and were used for binding masonry, "hearting" (binding rubble masonry cores) and foundations. Bartholomaeus Anglicus in his De proprietatibus rerum (1240) describes

5325-448: Was made from quicklime , pozzolana and an aggregate of pumice . Its widespread use in many Roman structures , a key event in the history of architecture termed the Roman architectural revolution , freed Roman construction from the restrictions of stone and brick materials. It enabled revolutionary new designs in terms of both structural complexity and dimension. The Colosseum in Rome

5400-519: Was opened for traffic in April 1932. The bridge was renovated in 1992. Since 2007, all the three bridges have been part of the Ljubljana pedestrian-only zone. Other bridges designed by Plečnik: 46°03′04″N 14°30′22″E  /  46.05111°N 14.50611°E  / 46.05111; 14.50611 Concrete Concrete is a composite material composed of aggregate bonded together with

5475-493: Was pioneered by the Nabatean traders who occupied and controlled a series of oases and developed a small empire in the regions of southern Syria and northern Jordan from the 4th century BC. They discovered the advantages of hydraulic lime , with some self-cementing properties, by 700 BC. They built kilns to supply mortar for the construction of rubble masonry houses, concrete floors, and underground waterproof cisterns . They kept

5550-614: Was quarried on the Isle of Portland in Dorset , England. His son William continued developments into the 1840s, earning him recognition for the development of "modern" Portland cement. Reinforced concrete was invented in 1849 by Joseph Monier . and the first reinforced concrete house was built by François Coignet in 1853. The first concrete reinforced bridge was designed and built by Joseph Monier in 1875. Prestressed concrete and post-tensioned concrete were pioneered by Eugène Freyssinet ,

5625-615: Was used for construction in many ancient structures. Mayan concrete at the ruins of Uxmal (AD 850–925) is referenced in Incidents of Travel in the Yucatán by John L. Stephens . "The roof is flat and had been covered with cement". "The floors were cement, in some places hard, but, by long exposure, broken, and now crumbling under the feet." "But throughout the wall was solid, and consisting of large stones imbedded in mortar, almost as hard as rock." Small-scale production of concrete-like materials

#657342