Misplaced Pages

Lewis Hills

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Lewis Hills is a section of the Long Range Mountains located on the west coast of Newfoundland , along the Gulf of Saint Lawrence .

#792207

68-541: An ophiolite and Peridotite complex, the Lewis Hills is the southernmost of four such complexes located within the Humber Arm Allochthon, a world-renowned geological area. It is located in an area stretching between the town of Stephenville in the south and the city of Corner Brook in the north. The Lewis Hills is an excellent backcountry wilderness hiking destination. The most accessible day-hiking route to

136-485: A Nb depletion. These chemical signatures support the ophiolites having formed in a back-arc basin of a subduction zone. Ophiolite generation and subduction may also be explained, as suggested from evidence from the Coast Range ophiolite of California and Baja California, by a change in subduction location and polarity. Oceanic crust attached to a continental margin subducts beneath an island arc. Pre-ophiolitic ocean crust

204-410: A large effect on the image created. For example, commonly used tomographic methods work by iteratively improving an initial input model, and thus can produce unrealistic results if the initial model is unreasonable. P-wave data are used in most local models and global models in areas with sufficient earthquake and seismograph density. S- and surface wave data are used in global models when this coverage

272-415: A low occurrence of silica-rich minerals; those present have a high sodium and low potassium content. The temperature gradients of the metamorphosis of ophiolitic pillow lavas and dykes are similar to those found beneath ocean ridges today. Evidence from the metal-ore deposits present in and near ophiolites and from oxygen and hydrogen isotopes suggests that the passage of seawater through hot basalt in

340-515: A model limits the resolution it can achieve. Longer wavelengths are able to penetrate deeper into the Earth, but can only be used to resolve large features. Finer resolution can be achieved with surface waves, with the trade off that they cannot be used in models deeper than the crust and upper mantle. The disparity between wavelength and feature scale causes anomalies to appear of reduced magnitude and size in images. P- and S-wave models respond differently to

408-498: A mountain, mountain range, or peak in Canada is a stub . You can help Misplaced Pages by expanding it . This Newfoundland and Labrador location article is a stub . You can help Misplaced Pages by expanding it . Ophiolite An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed, and often emplaced onto continental crustal rocks. The Greek word ὄφις, ophis ( snake )

476-920: A passive continental margin. They include the Coast Range ophiolite of California, the Josephine ophiolite of the Klamath Mountains (California, Oregon), and ophiolites in the southern Andes of South America. Despite their differences in mode of emplacement, both types of ophiolite are exclusively supra-subduction zone (SSZ) in origin. Based on mode of occurrences, the Neoproterozoic ophiolites appear to show characteristics of both mid-oceanic ridge basalt (MORB)-type and SSZ-type ophiolites and are classified from oldest to youngest into: (1) MORB intact ophiolites (MIO); (2) dismembered ophiolites (DO); and (3) arc-associated ophiolites (AAO) (El Bahariya, 2018). Collectively,

544-480: A radial path through the Earth, and assumes this profile is valid for every path from the core to the surface. This 1984 study was also the first to apply the term "tomography" to seismology, as the term had originated in the medical field with X-ray tomography . Seismic tomography has continued to improve in the past several decades since its initial conception. The development of adjoint inversions, which are able to combine several different types of seismic data into

612-458: A range of trace elements as well (that is, chemical elements occurring in amounts of 1000  ppm or less). In particular, trace elements associated with subduction zone (island arc) volcanics tend to be high in ophiolites, whereas trace elements that are high in ocean ridge basalts but low in subduction zone volcanics are also low in ophiolites. Additionally, the crystallization order of feldspar and pyroxene (clino- and orthopyroxene) in

680-442: A result of thermal or chemical differences, which are attributed to processes such as mantle plumes, subducting slabs, and mineral phase changes. Larger scale features that can be imaged with tomography include the high velocities beneath continental shields and low velocities under ocean spreading centers . The mantle plume hypothesis proposes that areas of volcanism not readily explained by plate tectonics, called hotspots , are

748-418: A result of thermal upwelling within the mantle. Some researchers have proposed an upper mantle source above the 660km discontinuity for these plumes, while others propose a much deeper source, possibly at the core-mantle boundary . While the source of mantle plumes has been highly debated since they were first proposed in the 1970s, most modern studies argue in favor of mantle plumes originating at or near

SECTION 10

#1732848152793

816-532: A seismic study on an ophiolite complex ( Bay of Islands, Newfoundland ) in order to establish a comparison. The study concluded that oceanic and ophiolitic velocity structures were identical, pointing to the origin of ophiolite complexes as oceanic crust. The observations that follow support this conclusion. Rocks originating on the seafloor show chemical composition comparable to unaltered ophiolite layers, from primary composition elements such as silicon and titanium to trace elements. Seafloor and ophiolitic rocks share

884-432: A seismically active region with extensive permanent network coverage. These allow for the imaging of the crust and upper mantle . Regional to global scale tomographic models are generally based on long wavelengths. Various models have better agreement with each other than local models due to the large feature size they image, such as subducted slabs and superplumes . The trade off from whole mantle to whole Earth coverage

952-404: A single inversion, help negate some of the trade-offs associated with any individual data type. Historically, seismic waves have been modeled as 1D rays, a method referred to as "ray theory" that is relatively simple to model and can usually fit travel-time data well. However, recorded seismic waveforms contain much more information than just travel-time and are affected by a much wider path than

1020-663: A subduction zone, and contact with air. A hypothesis based on research conducted on the Bay of Islands complex in Newfoundland as well as the East Vardar complex in the Apuseni Mountains of Romania suggest that an irregular continental margin colliding with an island arc complex causes ophiolite generation in a back-arc basin and obduction due to compression. The continental margin, promontories and reentrants along its length,

1088-659: A type of geosyncline called eugeosynclines were characterized by producing an "initial magmatism" that in some cases corresponded to ophiolitic magmatism. As plate tectonic theory prevailed in geology and geosyncline theory became outdated ophiolites were interpreted in the new framework. They were recognized as fragments of oceanic lithosphere , and dykes were viewed as the result of extensional tectonics at mid-ocean ridges . The plutonic rocks found in ophiolites were understood as remnants of former magma chambers. In 1973, Akiho Miyashiro revolutionized common conceptions of ophiolites and proposed an island arc origin for

1156-435: Is assumed by ray theory. Methods like the finite-frequency method attempt to account for this within the framework of ray theory. More recently, the development of "full waveform" or "waveform" tomography has abandoned ray theory entirely. This method models seismic wave propagation in its full complexity and can yield more accurate images of the subsurface. Originally these inversions were developed in exploration seismology in

1224-409: Is attached to the subducting oceanic crust, which dips away from it underneath the island arc complex. As subduction takes place, the buoyant continent and island arc complex converge, initially colliding with the promontories. However, oceanic crust is still at the surface between the promontories, not having been subducted beneath the island arc yet. The subducting oceanic crust is thought to split from

1292-502: Is found in the name of ophiolites, because of the superficial texture of some of them. Serpentinite especially evokes a snakeskin. (The suffix -lite is from the Greek lithos , meaning "stone".) Some ophiolites have a green color. The origin of these rocks, present in many mountainous massifs , remained uncertain until the advent of plate tectonic theory. Their great significance relates to their occurrence within mountain belts such as

1360-408: Is generated by a back-arc basin. The collision of the continent and island arc initiates a new subduction zone at the back-arc basin, dipping in the opposite direction as the first. The created ophiolite becomes the tip of the new subduction's forearc and is uplifted (over the accretionary wedge ) by detachment and compression. Verification of the two above hypotheses requires further research, as do

1428-418: Is not sufficient, such as in ocean basins and away from subduction zones. First-arrival times are the most widely used, but models utilizing reflected and refracted phases are used in more complex models, such as those imaging the core. Differential traveltimes between wave phases or types are also used. Local tomographic models are often based on a temporary seismic array targeting specific areas, unless in

SECTION 20

#1732848152793

1496-455: Is that the thick gabbro layer of ophiolites calls for large magma chambers beneath mid-ocean ridges. However, seismic sounding of mid-ocean ridges has revealed only a few magma chambers beneath ridges, and these are quite thin. A few deep drill holes into oceanic crust have intercepted gabbro, but it is not layered like ophiolite gabbro. The circulation of hydrothermal fluids through young oceanic crust causes serpentinization , alteration of

1564-473: Is the coarse resolution (hundreds of kilometers) and difficulty imaging small features (e.g. narrow plumes). Although often used to image different parts of the subsurface, P- and S-wave derived models broadly agree where there is image overlap. These models use data from both permanent seismic stations and supplementary temporary arrays. Seismic tomography can resolve anisotropy, anelasticity, density, and bulk sound velocity. Variations in these parameters may be

1632-497: The Alps and the Himalayas , where they document the existence of former ocean basins that have now been consumed by subduction . This insight was one of the founding pillars of plate tectonics , and ophiolites have always played a central role in plate tectonic theory and the interpretation of ancient mountain belts. The stratigraphic -like sequence observed in ophiolites corresponds to

1700-481: The Integrated Ocean Drilling Program and other research cruises have shown that in situ ocean crust can be quite variable in thickness and composition, and that in places sheeted dikes sit directly on peridotite tectonite , with no intervening gabbros . Ophiolites have been identified in most of the world's orogenic belts . However, two components of ophiolite formation are under debate:

1768-672: The closure of the Tethys Ocean . Ophiolites in Archean and Paleoproterozoic domains are rare. Most ophiolites can be divided into one of two groups: Tethyan and Cordilleran. Tethyan ophiolites are characteristic of those that occur in the eastern Mediterranean sea area, e.g. Troodos in Cyprus, and in the Middle East, such as Semail in Oman, which consist of relatively complete rock series corresponding to

1836-596: The geosyncline concept. He held that Alpine ophiolites were "submarine effusions issuing along thrust faults into the active flank of an asymmetrically shortening geosyncline". The apparent lack of ophiolites in the Peruvian Andes , Steinmann theorized, was either due to the Andes being preceded by a shallow geosyncline or representing just the margin of a geosyncline. Thus, Cordilleran-type and Alpine-type mountains were to be different in this regard. In Hans Stille 's models

1904-428: The lithosphere -forming processes at mid-oceanic ridges . From top to bottom, the layers in the sequence are: A Geological Society of America Penrose Conference on ophiolites in 1972 defined the term "ophiolite" to include all of the layers listed above, including the sediment layer formed independently of the rest of the ophiolite. This definition has been challenged recently because new studies of oceanic crust by

1972-431: The underlying magmatic system . These images have most commonly been used to estimate the depth and volume of magma stored in the crust, but have also been used to constrain properties such as the geometry, temperature, or chemistry of the magma. It is important to note that both lab experiments and tomographic imaging studies have shown that recovering these properties from seismic velocity alone can be difficult due to

2040-526: The "Steinmann Trinity": the mixture of serpentine , diabase - spilite and chert . The recognition of the Steinmann Trinity served years later to build up the theory around seafloor spreading and plate tectonics . A key observation by Steinmann was that ophiolites were associated to sedimentary rocks reflecting former deep sea environments. Steinmann himself interpreted ophiolites (the Trinity) using

2108-400: The 1980s and 1990s and were too computationally complex for global and regional scale studies, but development of numerical modeling methods to simulate seismic waves has allowed waveform tomography to become more common. Seismic tomography uses seismic records to create 2D and 3D models of the subsurface through an inverse problem that minimizes the difference between the created model and

Lewis Hills - Misplaced Pages Continue

2176-544: The Lewis Hills is by the International Appalachian Trail , with the southern trail head located almost at the end of Cold Brook Road, and the northern trail head at the end of Logger School Road At 814 m (2,671 ft) above sea level, the highest elevation on Newfoundland is The Cabox located in the Lewis Hills at 48°49′59″N 58°29′03″W  /  48.83306°N 58.48417°W  / 48.83306; -58.48417 . This article related to

2244-525: The above observations, there are inconsistencies in the theory of ophiolites as oceanic crust, which suggests that newly generated ocean crust follows the full Wilson cycle before emplacement as an ophiolite. This requires ophiolites to be much older than the orogenies on which they lie, and therefore old and cold. However, radiometric and stratigraphic dating has found ophiolites to have undergone emplacement when young and hot: most are less than 50 million years old. Ophiolites therefore cannot have followed

2312-475: The accuracy of a model. As early as 1972, researchers successfully used some of the underlying principles of modern seismic tomography to search for fast and slow areas in the subsurface. The first widely cited publication that largely resembles modern seismic tomography was published in 1976 and used local earthquakes to determine the 3D velocity structure beneath Southern California. The following year, P-wave delay times were used to create 2D velocity maps of

2380-477: The classic ophiolite assemblage and which have been emplaced onto a passive continental margin more or less intact (Tethys is the name given to the ancient sea that once separated Europe and Africa). Cordilleran ophiolites are characteristic of those that occur in the mountain belts of western North America (the " Cordillera " or backbone of the continent). These ophiolites sit on subduction zone accretionary complexes (subduction complexes) and have no association with

2448-549: The classic ophiolite occurrences thought of as being related to seafloor spreading (Troodos in Cyprus , Semail in Oman ) were found to be "SSZ" ophiolites, formed by rapid extension of fore-arc crust during subduction initiation. A fore-arc setting for most ophiolites also solves the otherwise-perplexing problem of how oceanic lithosphere can be emplaced on top of continental crust. It appears that continental accretion sediments, if carried by

2516-496: The complexity of seismic wave propagation through focused zones of hot, potentially melted rocks. While comparatively primitive to tomography on Earth, seismic tomography has been proposed on other bodies in the solar system and successfully used on the Moon . Data collected from four seismometers placed by the Apollo missions have been used many times to create 1-D velocity profiles for

2584-401: The continental margin to aid subduction. In the event that the rate of trench retreat is greater than that of the island arc complex's progression, trench rollback will take place, and by consequence, extension of the overriding plate will occur to allow the island arc complex to match the trench retreat's speed. The extension, a back-arc basin, generates oceanic crust: ophiolites. Finally, when

2652-437: The core-mantle boundary. This is in large part due to tomographic images that reveal both the plumes themselves as well as large low-velocity zones in the deep mantle that likely contribute to the formation of mantle plumes. These large low-shear velocity provinces as well as smaller ultra low velocity zones have been consistently observed across many tomographic models of the deep Earth Subducting plates are colder than

2720-503: The downgoing plate into a subduction zone, will jam it up and cause subduction to cease, resulting in the rebound of the accretionary prism with fore-arc lithosphere (ophiolite) on top of it. Ophiolites with compositions comparable with hotspot -type eruptive settings or normal mid-oceanic ridge basalt are rare, and those examples are generally strongly dismembered in subduction zone accretionary complexes. Ophiolites are common in orogenic belts of Mesozoic age, like those formed by

2788-424: The famous Troodos Ophiolite in Cyprus , arguing that numerous lavas and dykes in the ophiolite had calc-alkaline chemistries . Examples of ophiolites that have been influential in the study of these rocks bodies are: Seismic tomography Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth using seismic waves . The properties of seismic waves are modified by

Lewis Hills - Misplaced Pages Continue

2856-497: The first, he used ophiolite for serpentinite rocks found in large-scale breccias called mélanges . In the second publication, he expanded the definition to encompass a variety of igneous rocks as well such as gabbro , diabase , ultramafic and volcanic rocks. Ophiolites thus became a name for a well-known association of rocks occurring in the Alps and Apennines of Italy. Following work in these two mountains systems, Gustav Steinmann defined what later became known as

2924-410: The full Wilson cycle and are considered atypical ocean crust. There is yet no consensus on the mechanics of emplacement, the process by which oceanic crust is uplifted onto continental margins despite the relatively low density of the latter. All emplacement procedures share the same steps nonetheless: subduction initiation, thrusting of the ophiolite over a continental margin or an overriding plate at

2992-481: The gabbros is reversed, and ophiolites also appear to have a multi-phase magmatic complexity on par with subduction zones. Indeed, there is increasing evidence that most ophiolites are generated when subduction begins and thus represent fragments of fore-arc lithosphere. This led to introduction of the term "supra-subduction zone" (SSZ) ophiolite in the 1980s to acknowledge that some ophiolites are more closely related to island arcs than ocean ridges. Consequently, some of

3060-463: The geologic setting, seismometer coverage, distance from nearby earthquakes, and required resolution. The model created by tomographic imaging is almost always a seismic velocity model , and features within this model may be interpreted as structural, thermal, or compositional variations. Geoscientists apply seismic tomography to a wide variety of settings in which the subsurface structure is of interest, ranging in scale from whole-Earth structure to

3128-509: The interiors of other planetary bodies when only a single seismometer is available. For example, data gathered by the SEIS (Seismic Experiment for Interior Structure) instrument on InSight on Mars has been able to detect the Martian core. Global seismic networks have expanded steadily since the 1960s, but are still concentrated on continents and in seismically active regions. Oceans, particularly in

3196-581: The investigated ophiolites of the Central Eastern Desert (CED) fall into both MORB/back-arc basin basalt (BABB) ophiolites and SSZ ophiolites. They are spatially and temporally unrelated, and thus, it seems likely that the two types are not petrogenetically related. Ophiolites occur in different geological settings, and they represent change of the tectonic setting of the ophiolites from MORB to SSZ with time. The term ophiolite originated from publications of Alexandre Brongniart in 1813 and 1821. In

3264-616: The late-20th century, tomography is only capable of viewing changes in velocity structure over decades. For example, tectonic plates only move at millimeters per year, so the total amount of change in geologic structure due to plate tectonics since the development of seismic tomography is several orders of magnitude lower than the finest resolution possible with modern seismic networks. However, seismic tomography has still been used to view near-surface velocity structure changes at time scales of years to months. Tomographic solutions are non-unique. Although statistical methods can be used to analyze

3332-447: The location of the earthquake hypocenter . CT scans use linear x-rays and a known source. In the early 20th century, seismologists first used travel time variations in seismic waves from earthquakes to make discoveries such as the existence of the Moho and the depth to the outer core. While these findings shared some underlying principles with seismic tomography, modern tomography itself

3400-451: The mantle into which they are moving. This creates a fast anomaly that is visible in tomographic images. Tomographic images have been made of most subduction zones around the world and have provided insight into the geometries of the crust and upper mantle in these areas. These images have revealed that subducting plates vary widely in how steeply they move into the mantle. Tomographic images have also seen features such as deeper portions of

3468-483: The material through which they travel. By comparing the differences in seismic waves recorded at different locations, it is possible to create a model of the subsurface structure. Most commonly, these seismic waves are generated by earthquakes or man-made sources such as explosions. Different types of waves, including P- , S- , Rayleigh , and Love waves can be used for tomographic images, though each comes with their own benefits and downsides and are used depending on

SECTION 50

#1732848152793

3536-432: The measured seismic waveform to be fit during the inversion. Seismic tomography is similar to medical x-ray computed tomography (CT scan) in that a computer processes receiver data to produce a 3D image, although CT scans use attenuation instead of travel-time difference. Seismic tomography has to deal with the analysis of curved ray paths which are reflected and refracted within the Earth, and potential uncertainty in

3604-402: The moon, and less commonly 3-D tomographic models. Tomography relies on having multiple seismometers, but tomography-adjacent methods for constraining Earth structure have been used on other planets. While on Earth these methods are often used in combination with seismic tomography models to better constrain the locations of subsurface features, they can still provide useful information about

3672-468: The observed seismic data. Various methods are used to resolve anomalies in the crust , lithosphere , mantle , and core based on the availability of data and types of seismic waves that pass through the region. Longer wavelengths penetrate deeper into the Earth, but seismic waves are not sensitive to features significantly smaller than their wavelength and therefore provide a lower resolution. Different methods also make different assumptions, which can have

3740-500: The oceanic lithosphere is entirely subducted, the island arc complex's extensional regime becomes compressional. The hot, positively buoyant ocean crust from the extension will not subduct, instead obducting onto the island arc as an ophiolite. As compression persists, the ophiolite is emplaced onto the continental margin. Based on Sr and Nd isotope analyses, ophiolites have a similar composition to mid-ocean-ridge basalts, but typically have slightly elevated large ion lithophile elements and

3808-412: The origin of the sequence and the mechanism for ophiolite emplacement. Emplacement is the process of the sequence's uplift over lower density continental crust. Several studies support the conclusion that ophiolites formed as oceanic lithosphere . Seismic velocity structure studies have provided most of the current knowledge of the oceanic crust's composition. For this reason, researchers carried out

3876-628: The other hypotheses available in current literature on the subject. Scientists have drilled only about 1.5 km into the 6- to 7-kilometer-thick oceanic crust, so scientific understanding of oceanic crust comes largely from comparing ophiolite structure to seismic soundings of in situ oceanic crust. Oceanic crust generally has a layered velocity structure that implies a layered rock series similar to that listed above. But in detail there are problems, with many ophiolites exhibiting thinner accumulations of igneous rock than are inferred for oceanic crust. Another problem relating to oceanic crust and ophiolites

3944-465: The peridotites and alteration of minerals in the gabbros and basalts to lower temperature assemblages. For example, plagioclase , pyroxenes , and olivine in the sheeted dikes and lavas will alter to albite , chlorite , and serpentine , respectively. Often, ore bodies such as iron -rich sulfide deposits are found above highly altered epidosites ( epidote - quartz rocks) that are evidence of relict black smokers , which continue to operate within

4012-409: The reflection and refraction of these waves. The location and magnitude of variations in the subsurface can be calculated by the inversion process, although solutions to tomographic inversions are non-unique. Most commonly, only the travel time of the seismic waves is considered in the inversion. However, advances in modeling techniques and computing power have allowed different parts, or the entirety, of

4080-572: The seafloor spreading centers of ocean ridges today. Thus, there is reason to believe that ophiolites are indeed oceanic mantle and crust; however, certain problems arise when looking closer. Beyond issues of layer thicknesses mentioned above, a problem arises concerning compositional differences of silica (SiO 2 ) and titania (TiO 2 ). Ophiolite basalt contents place them in the domain of subduction zones (~55% silica, <1% TiO 2 ), whereas mid-ocean ridge basalts typically have ~50% silica and 1.5–2.5% TiO 2 . These chemical differences extend to

4148-581: The southern hemisphere, are under-covered. Temporary seismic networks have helped improve tomographic models in regions of particular interest, but typically only collect data for months to a few years. The uneven distribution of earthquakes biases tomographic models towards seismically active regions. Methods that do not rely on earthquakes such as active source surveys or ambient noise tomography have helped image areas with little to no seismicity, though these both have their own limitations as compared to earthquake-based tomography. The type of seismic wave used in

SECTION 60

#1732848152793

4216-793: The subducting plate tearing off from the upper portion. Tomography can be used to image faults to better understand their seismic hazard . This can be through imaging the fault itself by seeing differences in seismic velocity across the fault boundary or by determining near-surface velocity structure, which can have a large impact on the magnitude on the amplitude of ground-shaking during an earthquake due to site amplification effects . Near-surface velocity structure from tomographic images can also be useful for other hazards, such as monitoring of landslides for changes in near-surface moisture content which has an effect on both seismic velocity and potential for future landslides. Tomographic images of volcanoes have yielded new insights into properties of

4284-523: The types of anomalies. Models based solely on the wave that arrives first naturally prefer faster pathways, causing models based on these data to have lower resolution of slow (often hot) features. This can prove to be a significant issue in areas such as volcanoes where rocks are much hotter than their surroundings and oftentimes partially melted. Shallow models must also consider the significant lateral velocity variations in continental crust. Because seismometers have only been deployed in large numbers since

4352-474: The upper few meters below the surface. Tomography is solved as an inverse problem . Seismic data are compared to an initial Earth model and the model is modified until the best possible fit between the model predictions and observed data is found. Seismic waves would travel in straight lines if Earth was of uniform composition, but structural , chemical, and thermal variations affect the properties of seismic waves, most importantly their velocity , leading to

4420-490: The validity of a model, unresolvable uncertainty remains. This contributes to difficulty comparing the validity of different model results. Computing power limits the amount of seismic data, number of unknowns, mesh size, and iterations in tomographic models. This is of particular importance in ocean basins, which due to limited network coverage and earthquake density require more complex processing of distant data. Shallow oceanic models also require smaller model mesh size due to

4488-483: The vicinity of ridges dissolved and carried elements that precipitated as sulfides when the heated seawater came into contact with cold seawater. The same phenomenon occurs near oceanic ridges in a formation known as hydrothermal vents . The final line of evidence supporting the origin of ophiolites as seafloor is the region of formation of the sediments over the pillow lavas: they were deposited in water over 2 km deep, far removed from land-sourced sediments. Despite

4556-473: The whole Earth at several depth ranges, representing an early 3D model. The first model using iterative techniques, which improve upon an initial model in small steps and are required when there are a large number of unknowns, was done in 1984. The model was made possible by iterating upon the first radially anisotropic Earth model , created in 1981. A radially anisotropic Earth model describes changes in material properties, specifically seismic velocity, along

4624-603: Was not developed until the 1970s with the expansion of global seismic networks. Networks like the World-Wide Standardized Seismograph Network were initially motivated by underground nuclear tests , but quickly showed the benefits of their accessible, standardized datasets for geoscience . These developments occurred concurrently with advancements in modeling techniques and computing power that were required to solve large inverse problems and generate theoretical seismograms, which are required to test

#792207