Misplaced Pages

Lepidodendron

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A leaf scar is the mark left by a leaf after it falls off the twig. It marks the site where the petiole attached to the stem . A leaf scar is typically found below a branch, as branches come from axillary buds located above leaf scars.

#684315

92-676: Lepidodendron is an extinct genus of primitive lycopodian vascular plants belonging the order Lepidodendrales . It is well preserved and common in the fossil record. Like other Lepidodendrales, species of Lepidodendron grew as large-tree-like plants in wetland coal forest environments. They sometimes reached heights of 50 metres (160 feet), and the trunks were often over 1 m (3 ft 3 in) in diameter. They are often known as "scale trees", due to their bark having been covered in diamond shaped leaf-bases, from which leaves grew during earlier stages of growth. However, they are correctly defined as arborescent lycophytes. They thrived during

184-438: A food chain who lose their prey. "Species coextinction is a manifestation of one of the interconnectednesses of organisms in complex ecosystems ... While coextinction may not be the most important cause of species extinctions, it is certainly an insidious one." Coextinction is especially common when a keystone species goes extinct. Models suggest that coextinction is the most common form of biodiversity loss . There may be

276-657: A nautilus to the Royal Society that was more than two feet in diameter, and morphologically distinct from any known living species. Hooke theorized that this was simply because the species lived in the deep ocean and no one had discovered them yet. While he contended that it was possible a species could be "lost", he thought this highly unlikely. Similarly, in 1695, Sir Thomas Molyneux published an account of enormous antlers found in Ireland that did not belong to any extant taxa in that area. Molyneux reasoned that they came from

368-415: A species or a population is the variety of genetic information in its living members. A large gene pool (extensive genetic diversity ) is associated with robust populations that can survive bouts of intense selection . Meanwhile, low genetic diversity (see inbreeding and population bottlenecks ) reduces the range of adaptions possible. Replacing native with alien genes narrows genetic diversity within

460-436: A viable population for species preservation and possible future reintroduction to the wild, through use of carefully planned breeding programs . The extinction of one species' wild population can have knock-on effects, causing further extinctions. These are also called "chains of extinction". This is especially common with extinction of keystone species . A 2018 study indicated that the sixth mass extinction started in

552-474: A Lazarus species when extant individuals were described in 2019. Attenborough's long-beaked echidna ( Zaglossus attenboroughi ) is an example of a Lazarus species from Papua New Guinea that had last been sighted in 1962 and believed to be possibly extinct, until it was recorded again in November 2023. Some species currently thought to be extinct have had continued speculation that they may still exist, and in

644-495: A cascade of coextinction across the trophic levels . Such effects are most severe in mutualistic and parasitic relationships. An example of coextinction is the Haast's eagle and the moa : the Haast's eagle was a predator that became extinct because its food source became extinct. The moa were several species of flightless birds that were a food source for the Haast's eagle. Extinction as

736-408: A cleanly shaped wound that is quickly healed over with protective cork. Stipules may also leave their own scars if they are present. Bundle scars are circular or barred regions within the leaf scar where bundles of vascular tissue that had connected the leaf and the stem broke off. The number of bundle scars in a leaf scar is sometimes used as an identifying mark as they are often consistent across

828-429: A common ancestor with modern horses. Pseudoextinction is much easier to demonstrate for larger taxonomic groups. A Lazarus taxon or Lazarus species refers to instances where a species or taxon was thought to be extinct, but was later rediscovered. It can also refer to instances where large gaps in the fossil record of a taxon result in fossils reappearing much later, although the taxon may have ultimately become extinct at

920-399: A fact that was accepted by most scientists. The primary debate focused on whether this turnover caused by extinction was gradual or abrupt in nature. Cuvier understood extinction to be the result of cataclysmic events that wipe out huge numbers of species, as opposed to the gradual decline of a species over time. His catastrophic view of the nature of extinction garnered him many opponents in

1012-708: A higher risk of extinction and die out faster than less sexually dimorphic species, the least sexually dimorphic species surviving for millions of years while the most sexually dimorphic species die out within mere thousands of years. Earlier studies based on counting the number of currently living species in modern taxa have shown a higher number of species in more sexually dimorphic taxa which have been interpreted as higher survival in taxa with more sexual selection, but such studies of modern species only measure indirect effects of extinction and are subject to error sources such as dying and doomed taxa speciating more due to splitting of habitat ranges into more small isolated groups during

SECTION 10

#1732858838685

1104-405: A large range, a lack of individuals of both sexes (in sexually reproducing species), or other reasons. Pinpointing the extinction (or pseudoextinction ) of a species requires a clear definition of that species . If it is to be declared extinct, the species in question must be uniquely distinguishable from any ancestor or daughter species, and from any other closely related species. Extinction of

1196-592: A later point. The coelacanth , a fish related to lungfish and tetrapods , is an example of a Lazarus taxon that was known only from the fossil record and was considered to have been extinct since the end of the Cretaceous Period . In 1938, however, a living specimen was found off the Chalumna River (now Tyolomnqa) on the east coast of South Africa. Calliostoma bullatum , a species of deepwater sea snail originally described from fossils in 1844 proved to be

1288-419: A length of 8 cm (3 in) and a width of 2 cm ( 3 ⁄ 4  in). The middle of leaf-cushions were smooth, where leaf scars were created when an abscission layer cut a leaf from its base. Each leaf scar was composed of a central circular or triangular scar and two lateral scars that were smaller and oval-shaped. This central scar marks where the main vascular bundle of the leaf connected to

1380-587: A mathematical model that falls in all positions. By contrast, conservation biology uses the extinction vortex model to classify extinctions by cause. When concerns about human extinction have been raised, for example in Sir Martin Rees ' 2003 book Our Final Hour , those concerns lie with the effects of climate change or technological disaster. Human-driven extinction started as humans migrated out of Africa more than 60,000 years ago. Currently, environmental groups and some governments are concerned with

1472-456: A natural part of the evolutionary process. Only recently have extinctions been recorded and scientists have become alarmed at the current high rate of extinctions . Most species that become extinct are never scientifically documented. Some scientists estimate that up to half of presently existing plant and animal species may become extinct by 2100. A 2018 report indicated that the phylogenetic diversity of 300 mammalian species erased during

1564-441: A new mega-predator or by transporting animals and plants from one part of the world to another. Such introductions have been occurring for thousands of years, sometimes intentionally (e.g. livestock released by sailors on islands as a future source of food) and sometimes accidentally (e.g. rats escaping from boats). In most cases, the introductions are unsuccessful, but when an invasive alien species does become established,

1656-610: A population a higher chance in the short term of surviving an adverse change in conditions. Effects that cause or reward a loss in genetic diversity can increase the chances of extinction of a species. Population bottlenecks can dramatically reduce genetic diversity by severely limiting the number of reproducing individuals and make inbreeding more frequent. Extinction sometimes results for species evolved to specific ecologies that are subjected to genetic pollution —i.e., uncontrolled hybridization , introgression and genetic swamping that lead to homogenization or out-competition from

1748-407: A race of animals to become extinct. A series of fossils were discovered in the late 17th century that appeared unlike any living species. As a result, the scientific community embarked on a voyage of creative rationalization, seeking to understand what had happened to these species within a framework that did not account for total extinction. In October 1686, Robert Hooke presented an impression of

1840-502: A reduction in agricultural productivity. Furthermore, increased erosion contributes to poorer water quality by elevating the levels of sediment and pollutants in rivers and streams. Habitat degradation through toxicity can kill off a species very rapidly, by killing all living members through contamination or sterilizing them. It can also occur over longer periods at lower toxicity levels by affecting life span, reproductive capacity, or competitiveness. Habitat degradation can also take

1932-486: A result of climate change has been confirmed by fossil studies. Particularly, the extinction of amphibians during the Carboniferous Rainforest Collapse , 305 million years ago. A 2003 review across 14 biodiversity research centers predicted that, because of climate change, 15–37% of land species would be "committed to extinction" by 2050. The ecologically rich areas that would potentially suffer

SECTION 20

#1732858838685

2024-556: A single vein . The leaves were similar to those of a fir in some species and similar to those of Pinus roxburghii in others, though in general the leaves of Lepidodendron species are indistinguishable from those of Sigillaria species. The decurrent leaves formed a cylindrical shell around branches. The leaves were only present on thin and young branches, indicating that, though the lycopsid were evergreen, they did not retain their needles for as long as modern conifers. The leaf-cushions were fusiform and elongated, growing at most to

2116-479: A species (or replacement by a daughter species) plays a key role in the punctuated equilibrium hypothesis of Stephen Jay Gould and Niles Eldredge . In ecology , extinction is sometimes used informally to refer to local extinction , in which a species ceases to exist in the chosen area of study, despite still existing elsewhere. Local extinctions may be made good by the reintroduction of individuals of that species taken from other locations; wolf reintroduction

2208-439: A species may come suddenly when an otherwise healthy species is wiped out completely, as when toxic pollution renders its entire habitat unliveable; or may occur gradually over thousands or millions of years, such as when a species gradually loses out in competition for food to better adapted competitors. Extinction may occur a long time after the events that set it in motion, a phenomenon known as extinction debt . Assessing

2300-404: A species or group of species. "Just as each species is unique", write Beverly and Stephen C. Stearns , "so is each extinction ... the causes for each are varied—some subtle and complex, others obvious and simple". Most simply, any species that cannot survive and reproduce in its environment and cannot move to a new environment where it can do so, dies out and becomes extinct. Extinction of

2392-518: A subsequent report, IPBES listed unsustainable fishing, hunting and logging as being some of the primary drivers of the global extinction crisis. In June 2019, one million species of plants and animals were at risk of extinction. At least 571 plant species have been lost since 1750, but likely many more. The main cause of the extinctions is the destruction of natural habitats by human activities, such as cutting down forests and converting land into fields for farming. A dagger symbol (†) placed next to

2484-517: Is also evidence to suggest that this event was preceded by another mass extinction, known as Olson's Extinction . The Cretaceous–Paleogene extinction event (K–Pg) occurred 66 million years ago, at the end of the Cretaceous period; it is best known for having wiped out non-avian dinosaurs , among many other species. According to a 1998 survey of 400 biologists conducted by New York 's American Museum of Natural History , nearly 70% believed that

2576-444: Is an example of this. Species that are not globally extinct are termed extant . Those species that are extant, yet are threatened with extinction, are referred to as threatened or endangered species . Currently, an important aspect of extinction is human attempts to preserve critically endangered species. These are reflected by the creation of the conservation status "extinct in the wild" (EW) . Species listed under this status by

2668-585: Is difficult to demonstrate unless one has a strong chain of evidence linking a living species to members of a pre-existing species. For example, it is sometimes claimed that the extinct Hyracotherium , which was an early horse that shares a common ancestor with the modern horse , is pseudoextinct, rather than extinct, because there are several extant species of Equus , including zebra and donkey ; however, as fossil species typically leave no genetic material behind, one cannot say whether Hyracotherium evolved into more modern horse species or merely evolved from

2760-417: Is estimated as 100 to 1,000 times "background" rates (the average extinction rates in the evolutionary time scale of planet Earth), faster than at any other time in human history, while future rates are likely 10,000 times higher. However, some groups are going extinct much faster. Biologists Paul R. Ehrlich and Stuart Pimm , among others, contend that human population growth and overconsumption are

2852-592: Is the destruction of ocean floors by bottom trawling . Diminished resources or introduction of new competitor species also often accompany habitat degradation. Global warming has allowed some species to expand their range, bringing competition to other species that previously occupied that area. Sometimes these new competitors are predators and directly affect prey species, while at other times they may merely outcompete vulnerable species for limited resources. Vital resources including water and food can also be limited during habitat degradation, leading to extinction. In

Lepidodendron - Misplaced Pages Continue

2944-525: Is the most important determinant of genus extinction at background rates but becomes increasingly irrelevant as mass extinction arises. Limited geographic range is a cause both of small population size and of greater vulnerability to local environmental catastrophes. Extinction rates can be affected not just by population size, but by any factor that affects evolvability , including balancing selection , cryptic genetic variation , phenotypic plasticity , and robustness . A diverse or deep gene pool gives

3036-408: Is used when cushions have been removed by deep decay, and Knorria is used when the leaf cushions and the majority of cortical tissues has decayed, with a shallow "fluted" surface remaining. However, it has been suggested that these are more likely growth forms than preserved bark types, as entire fossilized trunks have been discovered with dissimilar forms; if decay is assumed to be constant throughout

3128-529: The Carboniferous Period (358.9 to 298.9 million years ago ), and persisted until the end of the Permian around 252 million years ago. Sometimes erroneously called "giant club mosses ", the genus was actually more closely related to modern quillworts than to modern club mosses. In the form classification system used in paleobotany , Lepidodendron is both used for the whole plant as well as specifically

3220-568: The Cathaysia region comprising what is now China, wet tropical environmental conditions continued to prevail, with Lepidodendron (in its broad sense) only becoming extinct around the end of the Permian, around 252 million years ago, as a result of the extreme environmental disturbance caused by the Permian-Triassic extinction event . Extinct Extinction is the termination of a taxon by

3312-474: The International Union for Conservation of Nature (IUCN) are not known to have any living specimens in the wild and are maintained only in zoos or other artificial environments. Some of these species are functionally extinct, as they are no longer part of their natural habitat and it is unlikely the species will ever be restored to the wild. When possible, modern zoological institutions try to maintain

3404-477: The Late Pleistocene could take up to 5 to 7 million years to restore mammal diversity to what it was before the human era. Extinction of a parent species where daughter species or subspecies are still extant is called pseudoextinction or phyletic extinction. Effectively, the old taxon vanishes, transformed ( anagenesis ) into a successor, or split into more than one ( cladogenesis ). Pseudoextinction

3496-422: The death of its last member . A taxon may become functionally extinct before the death of its last member if it loses the capacity to reproduce and recover. Because a species' potential range may be very large, determining this moment is difficult, and is usually done retrospectively. This difficulty leads to phenomena such as Lazarus taxa , where a species presumed extinct abruptly "reappears" (typically in

3588-619: The fossil record ) after a period of apparent absence. More than 99% of all species that ever lived on Earth , amounting to over five billion species, are estimated to have died out. It is estimated that there are currently around 8.7 million species of eukaryotes globally, and possibly many times more if microorganisms , such as bacteria , are included. Notable extinct animal species include non-avian dinosaurs , saber-toothed cats , dodos , mammoths , ground sloths , thylacines , trilobites , golden toads , and passenger pigeons . Through evolution , species arise through

3680-410: The slender-billed curlew ( Numenius tenuirostris ), not seen since 2007. As long as species have been evolving, species have been going extinct. It is estimated that over 99.9% of all species that ever lived are extinct. The average lifespan of a species is 1–10 million years, although this varies widely between taxa. A variety of causes can contribute directly or indirectly to the extinction of

3772-484: The strata of the Paris basin. They saw alternating saltwater and freshwater deposits, as well as patterns of the appearance and disappearance of fossils throughout the record. From these patterns, Cuvier inferred historic cycles of catastrophic flooding, extinction, and repopulation of the earth with new species. Cuvier's fossil evidence showed that very different life forms existed in the past than those that exist today,

Lepidodendron - Misplaced Pages Continue

3864-619: The 20 biodiversity goals laid out by the Aichi Biodiversity Targets in 2010, only 6 were "partially achieved" by the deadline of 2020. The report warned that biodiversity will continue to decline if the status quo is not changed, in particular the "currently unsustainable patterns of production and consumption, population growth and technological developments". In a 2021 report published in the journal Frontiers in Conservation Science , some top scientists asserted that even if

3956-451: The Aichi Biodiversity Targets set for 2020 had been achieved, it would not have resulted in a significant mitigation of biodiversity loss. They added that failure of the global community to reach these targets is hardly surprising given that biodiversity loss is "nowhere close to the top of any country's priorities, trailing far behind other concerns such as employment, healthcare, economic growth, or currency stability." For much of history,

4048-605: The Earth is currently in the early stages of a human-caused mass extinction, known as the Holocene extinction . In that survey, the same proportion of respondents agreed with the prediction that up to 20% of all living populations could become extinct within 30 years (by 2028). A 2014 special edition of Science declared there is widespread consensus on the issue of human-driven mass species extinctions. A 2020 study published in PNAS stated that

4140-570: The North American moose and that the animal had once been common on the British Isles . Rather than suggest that this indicated the possibility of species going extinct, he argued that although organisms could become locally extinct, they could never be entirely lost and would continue to exist in some unknown region of the globe. The antlers were later confirmed to be from the extinct deer Megaloceros . Hooke and Molyneux's line of thinking

4232-518: The Paris basin, could be formed by a slow rise and fall of sea levels . The concept of extinction was integral to Charles Darwin 's On the Origin of Species , with less fit lineages disappearing over time. For Darwin, extinction was a constant side effect of competition . Because of the wide reach of On the Origin of Species , it was widely accepted that extinction occurred gradually and evenly (a concept now referred to as background extinction ). It

4324-457: The United States government, to force the removal of Native Americans , many of whom relied on the bison for food. Leaf scar Leaf scars are formed naturally, often at the end of the growing season for deciduous plants when a layer of cells called the abscissa layer forms between the petiole and stem. The abscission layer acts as a point of cleavage and the leaf breaks off leaving

4416-429: The accumulation of slightly deleterious mutations , then a population will go extinct. Smaller populations have fewer beneficial mutations entering the population each generation, slowing adaptation. It is also easier for slightly deleterious mutations to fix in small populations; the resulting positive feedback loop between small population size and low fitness can cause mutational meltdown . Limited geographic range

4508-424: The bifacial cambium of modern trees produces both secondary phloem and xylem , the unifacial cambium of Lepidodendron lycopsid produced only secondary xylem. As the lycopods aged, the wood produced by the unifacial cambium decreased towards the top of the plant such that terminal twigs resembled young Lepidodendron stems. Compared to modern trees, the stems and branches of the lycopsids contained little wood with

4600-600: The consequences can be catastrophic. Invasive alien species can affect native species directly by eating them, competing with them, and introducing pathogens or parasites that sicken or kill them; or indirectly by destroying or degrading their habitat. Human populations may themselves act as invasive predators. According to the "overkill hypothesis", the swift extinction of the megafauna in areas such as Australia (40,000 years before present), North and South America (12,000 years before present), Madagascar , Hawaii (AD 300–1000), and New Zealand (AD 1300–1500), resulted from

4692-418: The contemporary extinction crisis "may be the most serious environmental threat to the persistence of civilization, because it is irreversible." Biologist E. O. Wilson estimated in 2002 that if current rates of human destruction of the biosphere continue, one-half of all plant and animal species of life on earth will be extinct in 100 years. More significantly, the current rate of global species extinctions

SECTION 50

#1732858838685

4784-471: The deliberate destruction of some species, such as dangerous viruses , and the total destruction of other problematic species has been suggested. Other species were deliberately driven to extinction, or nearly so, due to poaching or because they were "undesirable", or to push for other human agendas. One example was the near extinction of the American bison , which was nearly wiped out by mass hunts sanctioned by

4876-649: The end of the lycopod growth, the leaves on the lower part of the trunk were shed, and in Lepidodendron , the upper part of the trunk dichotomously branched into a crown . The rate of growth of arborescent lycophytes is disputed, some authors contended that they had a rapid life cycle, growing to their maximum size and dying in only 10 to 15 years, while other authors argue that these growth rates were overestimated. Rather than reproduce with seeds, Lepidodendron lycopsids reproduced with spores. The spores were stored in sporangia situated on fertile stems that grew on or near

4968-403: The endangered wild water buffalo is most threatened with extinction by genetic pollution from the abundant domestic water buffalo ). Such extinctions are not always apparent from morphological (non-genetic) observations. Some degree of gene flow is a normal evolutionary process; nevertheless, hybridization (with or without introgression) threatens rare species' existence. The gene pool of

5060-575: The event of rediscovery would be considered Lazarus species. Examples include the thylacine , or Tasmanian tiger ( Thylacinus cynocephalus ), the last known example of which died in Hobart Zoo in Tasmania in 1936; the Japanese wolf ( Canis lupus hodophilax ), last sighted over 100 years ago; the American ivory-billed woodpecker ( Campephilus principalis ), with the last universally accepted sighting in 1944; and

5152-443: The extinction crisis. According to the International Union for Conservation of Nature (IUCN), 784 extinctions have been recorded since the year 1500, the arbitrary date selected to define "recent" extinctions, up to the year 2004; with many more likely to have gone unnoticed. Several species have also been listed as extinct since 2004. If adaptation increasing population fitness is slower than environmental degradation plus

5244-475: The extinction of species caused by humanity, and they try to prevent further extinctions through a variety of conservation programs. Humans can cause extinction of a species through overharvesting , pollution , habitat destruction , introduction of invasive species (such as new predators and food competitors ), overhunting, and other influences. Explosive, unsustainable human population growth and increasing per capita consumption are essential drivers of

5336-533: The field of zoology , and biology in general, and has also become an area of concern outside the scientific community. A number of organizations, such as the Worldwide Fund for Nature , have been created with the goal of preserving species from extinction. Governments have attempted, through enacting laws, to avoid habitat destruction, agricultural over-harvesting, and pollution . While many human-caused extinctions have been accidental, humans have also engaged in

5428-435: The form of a physical destruction of niche habitats. The widespread destruction of tropical rainforests and replacement with open pastureland is widely cited as an example of this; elimination of the dense forest eliminated the infrastructure needed by many species to survive. For example, a fern that depends on dense shade for protection from direct sunlight can no longer survive without forest to shelter it. Another example

5520-580: The habitat retreat of taxa approaching extinction. Possible causes of the higher extinction risk in species with more sexual selection shown by the comprehensive fossil studies that rule out such error sources include expensive sexually selected ornaments having negative effects on the ability to survive natural selection , as well as sexual selection removing a diversity of genes that under current ecological conditions are neutral for natural selection but some of which may be important for surviving climate change. There have been at least five mass extinctions in

5612-660: The heaviest losses include the Cape Floristic Region and the Caribbean Basin . These areas might see a doubling of present carbon dioxide levels and rising temperatures that could eliminate 56,000 plant and 3,700 animal species. Climate change has also been found to be a factor in habitat loss and desertification . Studies of fossils following species from the time they evolved to their extinction show that species with high sexual dimorphism , especially characteristics in males that are used to compete for mating, are at

SECTION 60

#1732858838685

5704-444: The height of the lycopsids make the plants similar to modern trees, the constant dichotomy of branches created a habit that contrasts with that of modern trees. At the ends of branches were oval-shaped strobili called Lepidostrobus that had a similar shape to modern cones of a spruce or fir . The stem of the lycopsids had a unifacial vascular cambium, contrasting with the bifacial vascular cambium of modern trees. Though

5796-447: The history of life on earth, and four in the last 350 million years in which many species have disappeared in a relatively short period of geological time. A massive eruptive event that released large quantities of tephra particles into the atmosphere is considered to be one likely cause of the " Permian–Triassic extinction event " about 250 million years ago, which is estimated to have killed 90% of species then existing. There

5888-475: The human era since the Late Pleistocene would require 5 to 7 million years to recover. According to the 2019 Global Assessment Report on Biodiversity and Ecosystem Services by IPBES , the biomass of wild mammals has fallen by 82%, natural ecosystems have lost about half their area and a million species are at risk of extinction—all largely as a result of human actions. Twenty-five percent of plant and animal species are threatened with extinction. In

5980-431: The introduced ( or hybrid ) species. Endemic populations can face such extinctions when new populations are imported or selectively bred by people, or when habitat modification brings previously isolated species into contact. Extinction is likeliest for rare species coming into contact with more abundant ones; interbreeding can swamp the rarer gene pool and create hybrids, depleting the purebred gene pool (for example,

6072-425: The leaf scar was a deep triangular impression known as the "ligular pit" for its similarities to the ligule of Isoetes . In some leaf-cushions a second depression was present above the ligular pit. Though its purpose is unclear, it has been suggested that the depression may mark the position of a sporangium . As the branch of a Lepidodendron lycopsid grew the leaf-cushion only grew to a certain extent, past which

6164-459: The leaf-cushion stretched. This stretching widened the groove that separated the leaf-cushions, creating a broad, flat channel. The underground structures of Lepidodendron and similar lycopsid species known from the fossil record including Sigillaria are assigned to the form taxon, Stigmaria . The rootlets were dichotomously branched from the rhizomes similar to Isoetes . These rhizomorphic axes were shoot-like, and dichotomous branching of

6256-485: The main drivers of the modern extinction crisis. In January 2020, the UN's Convention on Biological Diversity drafted a plan to mitigate the contemporary extinction crisis by establishing a deadline of 2030 to protect 30% of the Earth's land and oceans and reduce pollution by 50%, with the goal of allowing for the restoration of ecosystems by 2050. The 2020 United Nations ' Global Biodiversity Outlook report stated that of

6348-437: The main trunk. The fertile stems grew together in cone-like structures that clustered at the tips of branches. The lack of growth rings and dormant buds indicates no seasonal growth patterns, and modern plants with similar characteristics tend to grow in tropical conditions. However, Lepidodendron species were distributed throughout subtropical regions. The lycopsid inhabited an extensive area compared to tropical flora of

6440-409: The majority of mature stems consisting of a massive cortical meristem . The nearly-uniform growth of this cortical tissue indicates no difference in growth during changing seasons, and the absence of dormant buds further indicates the lack of seasonality in Lepidodendron species. The outermost cortex of oldest stems developed into the bark-like lycopodiopsid periderm . The bark of the lycopsid

6532-421: The modern understanding of extinction as the end of a species was incompatible with the prevailing worldview. Prior to the 19th century, much of Western society adhered to the belief that the world was created by God and as such was complete and perfect. This concept reached its heyday in the 1700s with the peak popularity of a theological concept called the great chain of being , in which all life on earth, from

6624-490: The name of a species or other taxon normally indicates its status as extinct. Examples of species and subspecies that are extinct include: A species is extinct when the last existing member dies. Extinction therefore becomes a certainty when there are no surviving individuals that can reproduce and create a new generation. A species may become functionally extinct when only a handful of individuals survive, which cannot reproduce due to poor health, age, sparse distribution over

6716-469: The natural course of events, species become extinct for a number of reasons, including but not limited to: extinction of a necessary host, prey or pollinator, interspecific competition , inability to deal with evolving diseases and changing environmental conditions (particularly sudden changes) which can act to introduce novel predators, or to remove prey. Recently in geological time, humans have become an additional cause of extinction of some species, either as

6808-410: The newly emerging school of uniformitarianism . Jean-Baptiste Lamarck , a gradualist and colleague of Cuvier, saw the fossils of different life forms as evidence of the mutable character of species. While Lamarck did not deny the possibility of extinction, he believed that it was exceptional and rare and that most of the change in species over time was due to gradual change. Unlike Cuvier, Lamarck

6900-399: The original population, thereby increasing the chance of extinction. Habitat degradation is currently the main anthropogenic cause of species extinctions. The main cause of habitat degradation worldwide is agriculture, with urban sprawl , logging, mining, and some fishing practices close behind. The degradation of a species' habitat may alter the fitness landscape to such an extent that

6992-702: The process of speciation —where new varieties of organisms arise and thrive when they are able to find and exploit an ecological niche —and species become extinct when they are no longer able to survive in changing conditions or against superior competition . The relationship between animals and their ecological niches has been firmly established. A typical species becomes extinct within 10 million years of its first appearance, although some species, called living fossils , survive with little to no morphological change for hundreds of millions of years. Mass extinctions are relatively rare events; however, isolated extinctions of species and clades are quite common, and are

7084-410: The relative importance of genetic factors compared to environmental ones as the causes of extinction has been compared to the debate on nature and nurture . The question of whether more extinctions in the fossil record have been caused by evolution or by competition or by predation or by disease or by catastrophe is a subject of discussion; Mark Newman, the author of Modeling Extinction , argues for

7176-473: The rootlets structured the stigmarian systems. Rootlet scars can be seen from Stigmaria fossils where the root hairs used to be attached. Hyphae are occasionally present in the tissues of Lepidodendron lycopsids, indicating the presence of mycorrhizal associations. Different fossil genera have been described to name the various levels of decay in Lepidodendron bark fossils. The name Bergeria describes stems that have lost their epidermises, Aspidiariu

7268-490: The same time period, with lycopods growing as far north as Spitsbergen and as far south as South America , in a latitudinal range of 120°. In Euramerica , Lepidodendron became extinct at the end of the Carboniferous, as part of a broader pattern of ecological change, including the increasing dominance of seed plants in lowland wetland forests, and increasingly arid-adapted vegetation across western Pangea. However, in

7360-460: The species is no longer able to survive and becomes extinct. This may occur by direct effects, such as the environment becoming toxic , or indirectly, by limiting a species' ability to compete effectively for diminished resources or against new competitor species. Habitat destruction, particularly the removal of vegetation that stabilizes soil, enhances erosion and diminishes nutrient availability in terrestrial ecosystems. This degradation can lead to

7452-516: The stems and leaves. The name Lepidodendron comes from the Greek λεπίς lepis , scale, and δένδρον dendron , tree. Lepidodendron species were comparable in size to modern trees. The plants had tapering trunks as wide as 2 m (6.6 ft) at their base that rose to about 40 m (130 ft) and even 50 m (160 ft), arising from an underground system of horizontally spreading branches that were covered with many rootlets. Though

7544-430: The sudden introduction of human beings to environments full of animals that had never seen them before and were therefore completely unadapted to their predation techniques. Coextinction refers to the loss of a species due to the extinction of another; for example, the extinction of parasitic insects following the loss of their hosts. Coextinction can also occur when a species loses its pollinator , or to predators in

7636-412: The tiniest microorganism to God, is linked in a continuous chain. The extinction of a species was impossible under this model, as it would create gaps or missing links in the chain and destroy the natural order. Thomas Jefferson was a firm supporter of the great chain of being and an opponent of extinction, famously denying the extinction of the woolly mammoth on the grounds that nature never allows

7728-555: The total extinction of the dodo and the extirpation of indigenous horses to the British Isles. He similarly argued against mass extinctions , believing that any extinction must be a gradual process. Lyell also showed that Cuvier's original interpretation of the Parisian strata was incorrect. Instead of the catastrophic floods inferred by Cuvier, Lyell demonstrated that patterns of saltwater and freshwater deposits , like those seen in

7820-401: The trunk, then different forms indicate growth rather than levels of decay. It is likely that the trunk of Lepidodendron lycopsids were subject to the growth forms Knorria , Aspidiaria , and Bergeria progressing up the trunk, respectively. During the early stages of growth, Lepidodendron grew as single, unbranched trunk, with leaves growing out of the scale leaf bases (cushions). Towards

7912-411: The vascular system of the stem. This xylem bundle was composed only of primary trachea . The two outer scars mark the forked branches of a strand of vascular tissue that passed from the cortex of the stem into the leaf. This forked strand is sometimes referred to as the "parichnos". Surrounding this strand were parenchyma cells and occasionally thick-walled elements. Surrounding both conducting tissues

8004-577: The wider scientific community of his theory. Cuvier was a well-regarded geologist, lauded for his ability to reconstruct the anatomy of an unknown species from a few fragments of bone. His primary evidence for extinction came from mammoth skulls found in the Paris basin . Cuvier recognized them as distinct from any known living species of elephant, and argued that it was highly unlikely such an enormous animal would go undiscovered. In 1812, Cuvier, along with Alexandre Brongniart and Geoffroy Saint-Hilaire , mapped

8096-400: Was a broad sheath of transfusion tracheids . Below the leaf scar the leaf-cushion tapered to a basal position. In this tapering area, circular impressions with fine pits were present. These impressions were continuous with the parichnos scars near the top of the tapering portion. This is because the impressions are formed by aerenchyma tissue that developed in closely with the parichnos. Above

8188-483: Was difficult to disprove. When parts of the world had not been thoroughly examined and charted, scientists could not rule out that animals found only in the fossil record were not simply "hiding" in unexplored regions of the Earth. Georges Cuvier is credited with establishing the modern conception of extinction in a 1796 lecture to the French Institute , though he would spend most of his career trying to convince

8280-430: Was not until 1982, when David Raup and Jack Sepkoski published their seminal paper on mass extinctions, that Cuvier was vindicated and catastrophic extinction was accepted as an important mechanism . The current understanding of extinction is a synthesis of the cataclysmic extinction events proposed by Cuvier, and the background extinction events proposed by Lyell and Darwin. Extinction is an important research topic in

8372-571: Was skeptical that catastrophic events of a scale large enough to cause total extinction were possible. In his geological history of the earth titled Hydrogeologie, Lamarck instead argued that the surface of the earth was shaped by gradual erosion and deposition by water, and that species changed over time in response to the changing environment. Charles Lyell , a noted geologist and founder of uniformitarianism , believed that past processes should be understood using present day processes. Like Lamarck, Lyell acknowledged that extinction could occur, noting

8464-448: Was somewhat similar to that of Picea species, as leaf scars formed peg-like projections that stretched and tore as the bark stretched. To resist the bending force of wind, Lepidodendron depended on their outer bark rather than their vascular tissues, as compared to modern trees that rely mostly on their central mass of wood. The leaves of the lycopsid were needle-like and were densely spiraled about young shoots, each possessing only

#684315