The poise (symbol P ; / p ɔɪ z , p w ɑː z / ) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation ). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself.
109-437: Lava is molten or partially molten rock ( magma ) that has been expelled from the interior of a terrestrial planet (such as Earth ) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust , on land or underwater, usually at temperatures from 800 to 1,200 °C (1,470 to 2,190 °F). The volcanic rock resulting from subsequent cooling is also often called lava . A lava flow
218-969: A r e a {\displaystyle \mathrm {force\times time/area} } , that is, [ M 1 L − 1 T − 1 ] {\displaystyle [{\mathsf {M}}^{1}{\mathsf {L}}^{-1}{\mathsf {T}}^{-1}]} . 1 P = 0.1 m − 1 ⋅ kg ⋅ s − 1 = 1 cm − 1 ⋅ g ⋅ s − 1 = 1 dyn ⋅ s ⋅ cm − 2 . {\displaystyle 1~{\text{P}}=0.1~{\text{m}}^{-1}{\cdot }{\text{kg}}{\cdot }{\text{s}}^{-1}=1~{\text{cm}}^{-1}{\cdot }{\text{g}}{\cdot }{\text{s}}^{-1}=1~{\text{dyn}}{\cdot }{\text{s}}{\cdot }{\text{cm}}^{-2}.} The analogous unit in
327-452: A combination of these processes. Other mechanisms, such as melting from a meteorite impact , are less important today, but impacts during the accretion of the Earth led to extensive melting, and the outer several hundred kilometers of the early Earth was probably a magma ocean . Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for
436-417: A continued supply of lava and its pressure on a solidified crust. Most basaltic lavas are of ʻaʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas , which are rather similar to entrail-type pahoehoe lavas on land. Ultramafic lavas, such as komatiite and highly magnesian magmas that form boninite , take the composition and temperatures of eruptions to the extreme. All have
545-452: A darker groundmass , including amphibole or pyroxene phenocrysts. Mafic or basaltic lavas are typified by relatively high magnesium oxide and iron oxide content (whose molecular formulas provide the consonants in mafic) and have a silica content limited to a range of 52% to 45%. They generally erupt at temperatures of 1,100 to 1,200 °C (2,010 to 2,190 °F) and at relatively low viscosities, around 10 to 10 cP (10 to 100 Pa⋅s). This
654-420: A depth of 2,488 m (8,163 ft). The temperature of this magma was estimated at 1,050 °C (1,920 °F). Temperatures of deeper magmas must be inferred from theoretical computations and the geothermal gradient. Most magmas contain some solid crystals suspended in the liquid phase. This indicates that the temperature of the magma lies between the solidus , which is defined as the temperature at which
763-427: A dissolved water content in excess of 10%. Water is somewhat less soluble in low-silica magma than high-silica magma, so that at 1,100 °C and 0.5 GPa , a basaltic magma can dissolve 8% H 2 O while a granite pegmatite magma can dissolve 11% H 2 O . However, magmas are not necessarily saturated under typical conditions. Carbon dioxide is much less soluble in magmas than water, and frequently separates into
872-406: A distinct fluid phase even at great depth. This explains the presence of carbon dioxide fluid inclusions in crystals formed in magmas at great depth. Viscosity is a key melt property in understanding the behaviour of magmas. Whereas temperatures in common silicate lavas range from about 800 °C (1,470 °F) for felsic lavas to 1,200 °C (2,190 °F) for mafic lavas, the viscosity of
981-419: A dome forms on an inclined surface it can flow in short thick flows called coulées (dome flows). These flows often travel only a few kilometres from the vent. Lava tubes are formed when a flow of relatively fluid lava cools on the upper surface sufficiently to form a crust. Beneath this crust, which being made of rock is an excellent insulator, the lava can continue to flow as a liquid. When this flow occurs over
1090-435: A high charge (the high-field-strength elements, or HSFEs), which include such elements as zirconium , niobium , hafnium , tantalum , the rare-earth elements , and the actinides . Potassium can become so enriched in melt produced by a very low degree of partial melting that, when the magma subsequently cools and solidifies, it forms unusual potassic rock such as lamprophyre , lamproite , or kimberlite . When enough rock
1199-546: A hypothetical magma formed entirely from melted silica, NBO/T would be 0, while in a hypothetical magma so low in network formers that no polymerization takes place, NBO/T would be 4. Neither extreme is common in nature, but basalt magmas typically have NBO/T between 0.6 and 0.9, andesitic magmas have NBO/T of 0.3 to 0.5, and rhyolitic magmas have NBO/T of 0.02 to 0.2. Water acts as a network modifier, and dissolved water drastically reduces melt viscosity. Carbon dioxide neutralizes network modifiers, so dissolved carbon dioxide increases
SECTION 10
#17328489502061308-474: A layer that appears to contain silicate melt and that stretches for at least 1,000 kilometers within the middle crust along the southern margin of the Tibetan Plateau. Granite and rhyolite are types of igneous rock commonly interpreted as products of the melting of continental crust because of increases in temperature. Temperature increases also may contribute to the melting of lithosphere dragged down in
1417-420: A magma. In practice, it is difficult to unambiguously identify primary magmas, though it has been suggested that boninite is a variety of andesite crystallized from a primary magma. The Great Dyke of Zimbabwe has also been interpreted as rock crystallized from a primary magma. The interpretation of leucosomes of migmatites as primary magmas is contradicted by zircon data, which suggests leucosomes are
1526-463: A massive dense core, which is the most active part of the flow. As pasty lava in the core travels downslope, the clinkers are carried along at the surface. At the leading edge of an ʻaʻā flow, however, these cooled fragments tumble down the steep front and are buried by the advancing flow. This produces a layer of lava fragments both at the bottom and top of an ʻaʻā flow. Accretionary lava balls as large as 3 metres (10 feet) are common on ʻaʻā flows. ʻAʻā
1635-650: A prolonged period of time the lava conduit can form a tunnel-like aperture or lava tube , which can conduct molten rock many kilometres from the vent without cooling appreciably. Often these lava tubes drain out once the supply of fresh lava has stopped, leaving a considerable length of open tunnel within the lava flow. Lava tubes are known from the modern day eruptions of Kīlauea, and significant, extensive and open lava tubes of Tertiary age are known from North Queensland , Australia , some extending for 15 kilometres (9 miles). Magma Magma (from Ancient Greek μάγμα ( mágma ) 'thick unguent ')
1744-528: A residue (a cumulate rock ) left by extraction of a primary magma. When it is impossible to find the primitive or primary magma composition, it is often useful to attempt to identify a parental magma. A parental magma is a magma composition from which the observed range of magma chemistries has been derived by the processes of igneous differentiation . It need not be a primitive melt. Centipoise Dynamic viscosity has dimensions of f o r c e × t i m e /
1853-425: A rock type commonly enriched in incompatible elements. Bowen's reaction series is important for understanding the idealised sequence of fractional crystallisation of a magma. Magma composition can be determined by processes other than partial melting and fractional crystallization. For instance, magmas commonly interact with rocks they intrude, both by melting those rocks and by reacting with them. Assimilation near
1962-952: A silica content greater than 63%. They include rhyolite and dacite lavas. With such a high silica content, these lavas are extremely viscous, ranging from 10 cP (10 Pa⋅s) for hot rhyolite lava at 1,200 °C (2,190 °F) to 10 cP (10 Pa⋅s) for cool rhyolite lava at 800 °C (1,470 °F). For comparison, water has a viscosity of about 1 cP (0.001 Pa⋅s). Because of this very high viscosity, felsic lavas usually erupt explosively to produce pyroclastic (fragmental) deposits. However, rhyolite lavas occasionally erupt effusively to form lava spines , lava domes or "coulees" (which are thick, short lava flows). The lavas typically fragment as they extrude, producing block lava flows. These often contain obsidian . Felsic magmas can erupt at temperatures as low as 800 °C (1,470 °F). Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in
2071-448: A silica content under 45%. Komatiites contain over 18% magnesium oxide and are thought to have erupted at temperatures of 1,600 °C (2,910 °F). At this temperature there is practically no polymerization of the mineral compounds, creating a highly mobile liquid. Viscosities of komatiite magmas are thought to have been as low as 100 to 1000 cP (0.1 to 1 Pa⋅s), similar to that of light motor oil. Most ultramafic lavas are no younger than
2180-441: A similar manner to ʻaʻā flows but their more viscous nature causes the surface to be covered in smooth-sided angular fragments (blocks) of solidified lava instead of clinkers. As with ʻaʻā flows, the molten interior of the flow, which is kept insulated by the solidified blocky surface, advances over the rubble that falls off the flow front. They also move much more slowly downhill and are thicker in depth than ʻaʻā flows. Pillow lava
2289-523: A solid crust that insulates the remaining liquid lava, helping to keep it hot and inviscid enough to continue flowing. The word lava comes from Italian and is probably derived from the Latin word labes , which means a fall or slide. An early use of the word in connection with extrusion of magma from below the surface is found in a short account of the 1737 eruption of Vesuvius , written by Francesco Serao , who described "a flow of fiery lava" as an analogy to
SECTION 20
#17328489502062398-567: A solidified crust. Most basalt lavas are of ʻAʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas , which are rather similar to entrail-type pahoehoe lavas on land. Ultramafic magmas, such as picritic basalt, komatiite , and highly magnesian magmas that form boninite , take the composition and temperatures to the extreme. All have a silica content under 45%. Komatiites contain over 18% magnesium oxide, and are thought to have erupted at temperatures of 1,600 °C (2,910 °F). At this temperature there
2507-407: A subduction zone. When rocks melt, they do so over a range of temperature, because most rocks are made of several minerals , which all have different melting points. The temperature at which the first melt appears (the solidus) is lower than the melting temperature of any one of the pure minerals. This is similar to the lowering of the melting point of ice when it is mixed with salt. The first melt
2616-519: A temperature of 1,100 to 1,200 °C (2,010 to 2,190 °F). On the Earth, most lava flows are less than 10 km (6.2 mi) long, but some pāhoehoe flows are more than 50 km (31 mi) long. Some flood basalt flows in the geologic record extend for hundreds of kilometres. The rounded texture makes pāhoehoe a poor radar reflector, and is difficult to see from an orbiting satellite (dark on Magellan picture). Block lava flows are typical of andesitic lavas from stratovolcanoes. They behave in
2725-439: A tetrahedral arrangement around the much smaller silicon ion. This is called a silica tetrahedron . In a magma that is low in silicon, these silica tetrahedra are isolated, but as the silicon content increases, silica tetrahedra begin to partially polymerize, forming chains, sheets, and clumps of silica tetrahedra linked by bridging oxygen ions. These greatly increase the viscosity of the magma. The tendency towards polymerization
2834-638: A typical viscosity of 3.5 × 10 cP (3,500 Pa⋅s) at 1,200 °C (2,190 °F). This is slightly greater than the viscosity of smooth peanut butter . Intermediate magmas show a greater tendency to form phenocrysts . Higher iron and magnesium tends to manifest as a darker groundmass , including amphibole or pyroxene phenocrysts. Mafic or basaltic magmas have a silica content of 52% to 45%. They are typified by their high ferromagnesian content, and generally erupt at temperatures of 1,100 to 1,200 °C (2,010 to 2,190 °F). Viscosities can be relatively low, around 10 to 10 cP (10 to 100 Pa⋅s), although this
2943-633: A viscosity of about 1 cP (0.001 Pa⋅s). Because of this very high viscosity, felsic lavas usually erupt explosively to produce pyroclastic (fragmental) deposits. However, rhyolite lavas occasionally erupt effusively to form lava spines , lava domes or "coulees" (which are thick, short lava flows). The lavas typically fragment as they extrude, producing block lava flows . These often contain obsidian . Felsic lavas can erupt at temperatures as low as 800 °C (1,470 °F). Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in
3052-494: A volcano extrudes silicic lava, it can form an inflation dome or endogenous dome , gradually building up a large, pillow-like structure which cracks, fissures, and may release cooled chunks of rock and rubble. The top and side margins of an inflating lava dome tend to be covered in fragments of rock, breccia and ash. Examples of lava dome eruptions include the Novarupta dome, and successive lava domes of Mount St Helens . When
3161-400: Is a large subsidence crater, can form in a stratovolcano, if the magma chamber is partially or wholly emptied by large explosive eruptions; the summit cone no longer supports itself and thus collapses in on itself afterwards. Such features may include volcanic crater lakes and lava domes after the event. However, calderas can also form by non-explosive means such as gradual magma subsidence. This
3270-409: Is added to the rock, the temperature remains at 1274 °C until either the anorthite or diopside is fully melted. The temperature then rises as the remaining mineral continues to melt, which shifts the melt composition away from the eutectic. For example, if the content of anorthite is greater than 43%, the entire supply of diopside will melt at 1274 °C., along with enough of the anorthite to keep
3379-411: Is an outpouring of lava during an effusive eruption . (An explosive eruption , by contrast, produces a mixture of volcanic ash and other fragments called tephra , not lava flows.) The viscosity of most lava is about that of ketchup , roughly 10,000 to 100,000 times that of water. Even so, lava can flow great distances before cooling causes it to solidify, because lava exposed to air quickly develops
Lava - Misplaced Pages Continue
3488-413: Is basaltic lava that has a smooth, billowy, undulating, or ropy surface. These surface features are due to the movement of very fluid lava under a congealing surface crust. The Hawaiian word was introduced as a technical term in geology by Clarence Dutton . A pāhoehoe flow typically advances as a series of small lobes and toes that continually break out from a cooled crust. It also forms lava tubes where
3597-444: Is called the eutectic and has a composition that depends on the combination of minerals present. For example, a mixture of anorthite and diopside , which are two of the predominant minerals in basalt , begins to melt at about 1274 °C. This is well below the melting temperatures of 1392 °C for pure diopside and 1553 °C for pure anorthite. The resulting melt is composed of about 43 wt% anorthite. As additional heat
3706-716: Is concentrated in a thin layer in the toothpaste next to the tube and only there does the toothpaste behave as a fluid. Thixotropic behavior also hinders crystals from settling out of the lava. Once the crystal content reaches about 60%, the lava ceases to behave like a fluid and begins to behave like a solid. Such a mixture of crystals with melted rock is sometimes described as crystal mush . Lava flow speeds vary based primarily on viscosity and slope. In general, lava flows slowly, with typical speeds for Hawaiian basaltic flows of 0.40 km/h (0.25 mph) and maximum speeds of 10 to 48 km/h (6 to 30 mph) on steep slopes. An exceptional speed of 32 to 97 km/h (20 to 60 mph)
3815-410: Is concentrated in a thin layer in the toothpaste next to the tube, and only here does the toothpaste behave as a fluid. Thixotropic behavior also hinders crystals from settling out of the magma. Once the crystal content reaches about 60%, the magma ceases to behave like a fluid and begins to behave like a solid. Such a mixture of crystals with melted rock is sometimes described as crystal mush . Magma
3924-456: Is driven out of the oceanic lithosphere in subduction zones , and it causes melting in the overlying mantle. Hydrous magmas with the composition of basalt or andesite are produced directly and indirectly as results of dehydration during the subduction process. Such magmas, and those derived from them, build up island arcs such as those in the Pacific Ring of Fire . These magmas form rocks of
4033-417: Is expressed as NBO/T, where NBO is the number of non-bridging oxygen ions and T is the number of network-forming ions. Silicon is the main network-forming ion, but in magmas high in sodium, aluminium also acts as a network former, and ferric iron can act as a network former when other network formers are lacking. Most other metallic ions reduce the tendency to polymerize and are described as network modifiers. In
4142-466: Is magma extruded onto the surface, are almost all in the range 700 to 1,400 °C (1,300 to 2,600 °F), but very rare carbonatite magmas may be as cool as 490 °C (910 °F), and komatiite magmas may have been as hot as 1,600 °C (2,900 °F). Magma has occasionally been encountered during drilling in geothermal fields, including drilling in Hawaii that penetrated a dacitic magma body at
4251-647: Is melted before the heat supply is exhausted. Pegmatite may be produced by low degrees of partial melting of the crust. Some granite -composition magmas are eutectic (or cotectic) melts, and they may be produced by low to high degrees of partial melting of the crust, as well as by fractional crystallization . Most magmas are fully melted only for small parts of their histories. More typically, they are mixes of melt and crystals, and sometimes also of gas bubbles. Melt, crystals, and bubbles usually have different densities, and so they can separate as magmas evolve. As magma cools, minerals typically crystallize from
4360-416: Is melted, the small globules of melt (generally occurring between mineral grains) link up and soften the rock. Under pressure within the earth, as little as a fraction of a percent of partial melting may be sufficient to cause melt to be squeezed from its source. Melt rapidly separates from its source rock once the degree of partial melting exceeds 30%. However, usually much less than 30% of a magma source rock
4469-542: Is mostly determined by composition but also depends on temperature and shear rate. Lava viscosity determines the kind of volcanic activity that takes place when the lava is erupted. The greater the viscosity, the greater the tendency for eruptions to be explosive rather than effusive. As a result, most lava flows on Earth, Mars, and Venus are composed of basalt lava. On Earth, 90% of lava flows are mafic or ultramafic, with intermediate lava making up 8% of flows and felsic lava making up just 2% of flows. Viscosity also determines
Lava - Misplaced Pages Continue
4578-473: Is often used with the metric prefix centi- because the viscosity of water at 20 °C ( standard conditions for temperature and pressure ) is almost exactly 1 centipoise. A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 Pa⋅s = 1 mPa⋅s). The CGS symbol for the centipoise is cP. The abbreviations cps, cp, and cPs are sometimes seen. Liquid water has
4687-441: Is one of three basic types of flow lava. ʻAʻā is basaltic lava characterized by a rough or rubbly surface composed of broken lava blocks called clinker. The word is Hawaiian meaning "stony rough lava", but also to "burn" or "blaze"; it was introduced as a technical term in geology by Clarence Dutton . The loose, broken, and sharp, spiny surface of an ʻaʻā flow makes hiking difficult and slow. The clinkery surface actually covers
4796-615: Is practically no polymerization of the mineral compounds, creating a highly mobile liquid. Viscosities of komatiite magmas are thought to have been as low as 100 to 1000 cP (0.1 to 1 Pa⋅s), similar to that of light motor oil. Most ultramafic lavas are no younger than the Proterozoic , with a few ultramafic magmas known from the Phanerozoic in Central America that are attributed to a hot mantle plume . No modern komatiite lavas are known, as
4905-545: Is produced by melting of the mantle or the crust in various tectonic settings, which on Earth include subduction zones , continental rift zones , mid-ocean ridges and hotspots . Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During magma's storage in the crust, its composition may be modified by fractional crystallization , contamination with crustal melts, magma mixing, and degassing. Following its ascent through
5014-473: Is similar to the viscosity of ketchup , although it is still many orders of magnitude higher than that of water. Mafic lavas tend to produce low-profile shield volcanoes or flood basalts , because the less viscous lava can flow for long distances from the vent. The thickness of a solidified basaltic lava flow, particularly on a low slope, may be much greater than the thickness of the moving molten lava flow at any one time, because basaltic lavas may "inflate" by
5123-448: Is still many orders of magnitude higher than water. This viscosity is similar to that of ketchup . Basalt lavas tend to produce low-profile shield volcanoes or flood basalts , because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may "inflate" by supply of lava beneath
5232-454: Is the lava structure typically formed when lava emerges from an underwater volcanic vent or subglacial volcano or a lava flow enters the ocean. The viscous lava gains a solid crust on contact with the water, and this crust cracks and oozes additional large blobs or "pillows" as more lava emerges from the advancing flow. Since water covers the majority of Earth 's surface and most volcanoes are situated near or under bodies of water, pillow lava
5341-459: Is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as lava ) is found beneath the surface of the Earth , and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites . Besides molten rock, magma may also contain suspended crystals and gas bubbles . Magma
5450-420: Is typical of many shield volcanoes. Cinder cones and spatter cones are small-scale features formed by lava accumulation around a small vent on a volcanic edifice. Cinder cones are formed from tephra or ash and tuff which is thrown from an explosive vent. Spatter cones are formed by accumulation of molten volcanic slag and cinders ejected in a more liquid form. Another Hawaiian English term derived from
5559-413: Is typically also viscoelastic , meaning it flows like a liquid under low stresses, but once the applied stress exceeds a critical value, the melt cannot dissipate the stress fast enough through relaxation alone, resulting in transient fracture propagation. Once stresses are reduced below the critical threshold, the melt viscously relaxes once more and heals the fracture. Temperatures of molten lava, which
SECTION 50
#17328489502065668-408: Is typically the most abundant magmatic gas, followed by carbon dioxide and sulfur dioxide . Other principal magmatic gases include hydrogen sulfide , hydrogen chloride , and hydrogen fluoride . The solubility of magmatic gases in magma depends on pressure, magma composition, and temperature. Magma that is extruded as lava is extremely dry, but magma at depth and under great pressure can contain
5777-511: Is usually of higher viscosity than pāhoehoe. Pāhoehoe can turn into ʻaʻā if it becomes turbulent from meeting impediments or steep slopes. The sharp, angled texture makes ʻaʻā a strong radar reflector, and can easily be seen from an orbiting satellite (bright on Magellan pictures). ʻAʻā lavas typically erupt at temperatures of 1,050 to 1,150 °C (1,920 to 2,100 °F) or greater. Pāhoehoe (also spelled pahoehoe , from Hawaiian [paːˈhoweˈhowe] meaning "smooth, unbroken lava")
5886-644: Is very common. Because it is formed from viscous molten rock, lava flows and eruptions create distinctive formations, landforms and topographical features from the macroscopic to the microscopic. Volcanoes are the primary landforms built by repeated eruptions of lava and ash over time. They range in shape from shield volcanoes with broad, shallow slopes formed from predominantly effusive eruptions of relatively fluid basaltic lava flows, to steeply-sided stratovolcanoes (also known as composite volcanoes) made of alternating layers of ash and more viscous lava flows typical of intermediate and felsic lavas. A caldera , which
5995-488: The Hawaiian language , a kīpuka denotes an elevated area such as a hill, ridge or old lava dome inside or downslope from an area of active volcanism. New lava flows will cover the surrounding land, isolating the kīpuka so that it appears as a (usually) forested island in a barren lava flow. Lava domes are formed by the extrusion of viscous felsic magma. They can form prominent rounded protuberances, such as at Valles Caldera . As
6104-670: The International System of Units is the pascal-second (Pa⋅s): 1 Pa ⋅ s = 1 N ⋅ s ⋅ m − 2 = 1 m − 1 ⋅ kg ⋅ s − 1 = 10 P . {\displaystyle 1~{\text{Pa}}{\cdot }{\text{s}}=1~{\text{N}}{\cdot }{\text{s}}{\cdot }{\text{m}}^{-2}=1~{\text{m}}^{-1}{\cdot }{\text{kg}}{\cdot }{\text{s}}^{-1}=10~{\text{P}}.} The poise
6213-653: The Proterozoic , with a few ultramafic magmas known from the Phanerozoic in Central America that are attributed to a hot mantle plume . No modern komatiite lavas are known, as the Earth's mantle has cooled too much to produce highly magnesian magmas. Some silicate lavas have an elevated content of alkali metal oxides (sodium and potassium), particularly in regions of continental rifting , areas overlying deeply subducted plates , or at intraplate hotspots . Their silica content can range from ultramafic ( nephelinites , basanites and tephrites ) to felsic ( trachytes ). They are more likely to be generated at greater depths in
6322-666: The Snake River Plain of the northwestern United States. Intermediate or andesitic magmas contain 52% to 63% silica, and are lower in aluminium and usually somewhat richer in magnesium and iron than felsic magmas. Intermediate lavas form andesite domes and block lavas, and may occur on steep composite volcanoes , such as in the Andes . They are also commonly hotter, in the range of 850 to 1,100 °C (1,560 to 2,010 °F)). Because of their lower silica content and higher eruptive temperatures, they tend to be much less viscous, with
6431-400: The Snake River Plain of the northwestern United States. Intermediate or andesitic lavas contain 52% to 63% silica, and are lower in aluminium and usually somewhat richer in magnesium and iron than felsic lavas. Intermediate lavas form andesite domes and block lavas and may occur on steep composite volcanoes , such as in the Andes . They are also commonly hotter than felsic lavas, in
6540-458: The calc-alkaline series, an important part of the continental crust . With low density and viscosity, hydrous magmas are highly buoyant and will move upwards in Earth's mantle. The addition of carbon dioxide is relatively a much less important cause of magma formation than the addition of water, but genesis of some silica-undersaturated magmas has been attributed to the dominance of carbon dioxide over water in their mantle source regions. In
6649-453: The convection of solid mantle, it will cool slightly as it expands in an adiabatic process , but the cooling is only about 0.3 °C per kilometer. Experimental studies of appropriate peridotite samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometer. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from
SECTION 60
#17328489502066758-416: The most abundant elements of the Earth's crust , with smaller quantities of aluminium , calcium , magnesium , iron , sodium , and potassium and minor amounts of many other elements. Petrologists routinely express the composition of a silicate lava in terms of the weight or molar mass fraction of the oxides of the major elements (other than oxygen) present in the lava. The silica component dominates
6867-472: The Earth's mantle has cooled too much to produce highly magnesian magmas. Some silicic magmas have an elevated content of alkali metal oxides (sodium and potassium), particularly in regions of continental rifting , areas overlying deeply subducted plates , or at intraplate hotspots . Their silica content can range from ultramafic ( nephelinites , basanites and tephrites ) to felsic ( trachytes ). They are more likely to be generated at greater depths in
6976-465: The Earth's upper crust, but this varies widely by region, from a low of 5–10 °C/km within oceanic trenches and subduction zones to 30–80 °C/km along mid-ocean ridges or near mantle plumes . The gradient becomes less steep with depth, dropping to just 0.25 to 0.3 °C/km in the mantle, where slow convection efficiently transports heat. The average geothermal gradient is not normally steep enough to bring rocks to their melting point anywhere in
7085-476: The anorthite is melted. If the anorthite content of the mixture is less than 43%, then all the anorthite will melt at the eutectic temperature, along with part of the diopside, and the remaining diopside will then gradually melt as the temperature continues to rise. Because of eutectic melting, the composition of the melt can be quite different from the source rock. For example, a mixture of 10% anorthite with diopside could experience about 23% partial melting before
7194-983: The aspect (thickness relative to lateral extent) of flows, the speed with which flows move, and the surface character of the flows. When highly viscous lavas erupt effusively rather than in their more common explosive form, they almost always erupt as high-aspect flows or domes. These flows take the form of block lava rather than ʻaʻā or pāhoehoe. Obsidian flows are common. Intermediate lavas tend to form steep stratovolcanoes, with alternating beds of lava from effusive eruptions and tephra from explosive eruptions. Mafic lavas form relatively thin flows that can move great distances, forming shield volcanoes with gentle slopes. In addition to melted rock, most lavas contain solid crystals of various minerals, fragments of exotic rocks known as xenoliths , and fragments of previously solidified lava. The crystal content of most lavas gives them thixotropic and shear thinning properties. In other words, most lavas do not behave like Newtonian fluids, in which
7303-458: The crust or upper mantle, so magma is produced only where the geothermal gradient is unusually steep or the melting point of the rock is unusually low. However, the ascent of magma towards the surface in such settings is the most important process for transporting heat through the crust of the Earth. Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to
7412-603: The crust, magma may feed a volcano and be extruded as lava, or it may solidify underground to form an intrusion , such as a dike , a sill , a laccolith , a pluton , or a batholith . While the study of magma has relied on observing magma after its transition into a lava flow , magma has been encountered in situ three times during geothermal drilling projects , twice in Iceland (see Use in energy production ) and once in Hawaii. Magma consists of liquid rock that usually contains suspended solid crystals. As magma approaches
7521-455: The crystallization process would not change the overall composition of the melt plus solid minerals. This situation is described as equillibrium crystallization . However, in a series of experiments culminating in his 1915 paper, Crystallization-differentiation in silicate liquids , Norman L. Bowen demonstrated that crystals of olivine and diopside that crystallized out of a cooling melt of forsterite , diopside, and silica would sink through
7630-417: The eruption. A cooling lava flow shrinks, and this fractures the flow. Basalt flows show a characteristic pattern of fractures. The uppermost parts of the flow show irregular downward-splaying fractures, while the lower part of the flow shows a very regular pattern of fractures that break the flow into five- or six-sided columns. The irregular upper part of the solidified flow is called the entablature , while
7739-399: The eutectic temperature of 1274 °C. This shifts the remaining melt towards its eutectic composition of 43% diopside. The eutectic is reached at 1274 °C, the temperature at which diopside and anorthite begin crystallizing together. If the melt was 90% diopside, the diopside would begin crystallizing first until the eutectic was reached. If the crystals remained suspended in the melt,
7848-512: The extensive basalt magmatism of several large igneous provinces. Decompression melting occurs because of a decrease in pressure. It is the most important mechanism for producing magma from the upper mantle. The solidus temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water. Peridotite at depth in the Earth's mantle may be hotter than its solidus temperature at some shallower level. If such rock rises during
7957-651: The flood basalts of South America formed in this manner. Flood basalts typically crystallize little before they cease flowing, and, as a result, flow textures are uncommon in less silicic flows. On the other hand, flow banding is common in felsic flows. The morphology of lava describes its surface form or texture. More fluid basaltic lava flows tend to form flat sheet-like bodies, whereas viscous rhyolite lava flows form knobbly, blocky masses of rock. Lava erupted underwater has its own distinctive characteristics. ʻAʻā (also spelled aa , aʻa , ʻaʻa , and a-aa , and pronounced [ʔəˈʔaː] or / ˈ ɑː ( ʔ ) ɑː / )
8066-512: The flow of water and mud down the flanks of the volcano (a lahar ) after heavy rain . Solidified lava on the Earth's crust is predominantly silicate minerals : mostly feldspars , feldspathoids , olivine , pyroxenes , amphiboles , micas and quartz . Rare nonsilicate lavas can be formed by local melting of nonsilicate mineral deposits or by separation of a magma into immiscible silicate and nonsilicate liquid phases . Silicate lavas are molten mixtures dominated by oxygen and silicon ,
8175-485: The icy satellites of the Solar System 's giant planets . The lava's viscosity mostly determines the behavior of lava flows. While the temperature of common silicate lava ranges from about 800 °C (1,470 °F) for felsic lavas to 1,200 °C (2,190 °F) for mafic lavas, its viscosity ranges over seven orders of magnitude, from 10 cP (10 Pa⋅s) for felsic lavas to 10 cP (10 Pa⋅s) for mafic lavas. Lava viscosity
8284-420: The importance of each mechanism being a topic of continuing research. The change of rock composition most responsible for the creation of magma is the addition of water. Water lowers the solidus temperature of rocks at a given pressure. For example, at a depth of about 100 kilometers, peridotite begins to melt near 800 °C in the presence of excess water, but near 1,500 °C in the absence of water. Water
8393-402: The lava's chemical composition. This temperature range is similar to the hottest temperatures achievable with a forced air charcoal forge. Lava is most fluid when first erupted, becoming much more viscous as its temperature drops. Lava flows quickly develop an insulating crust of solid rock as a result of radiative loss of heat. Thereafter, the lava cools by a very slow conduction of heat through
8502-606: The lava. Other cations , such as ferrous iron, calcium, and magnesium, bond much more weakly to oxygen and reduce the tendency to polymerize. Partial polymerization makes the lava viscous, so lava high in silica is much more viscous than lava low in silica. Because of the role of silica in determining viscosity and because many other properties of a lava (such as its temperature) are observed to correlate with silica content, silicate lavas are divided into four chemical types based on silica content: felsic , intermediate , mafic , and ultramafic . Felsic or silicic lavas have
8611-464: The lower and upper boundaries. These are described as pipe-stem vesicles or pipe-stem amygdales . Liquids expelled from the cooling crystal mush rise upwards into the still-fluid center of the cooling flow and produce vertical vesicle cylinders . Where these merge towards the top of the flow, they form sheets of vesicular basalt and are sometimes capped with gas cavities that sometimes fill with secondary minerals. The beautiful amethyst geodes found in
8720-466: The lower part that shows columnar jointing is called the colonnade . (The terms are borrowed from Greek temple architecture.) Likewise, regular vertical patterns on the sides of columns, produced by cooling with periodic fracturing, are described as chisel marks . Despite their names, these are natural features produced by cooling, thermal contraction, and fracturing. As lava cools, crystallizing inwards from its edges, it expels gases to form vesicles at
8829-476: The magma completely solidifies, and the liquidus , defined as the temperature at which the magma is completely liquid. Calculations of solidus temperatures at likely depths suggests that magma generated beneath areas of rifting starts at a temperature of about 1,300 to 1,500 °C (2,400 to 2,700 °F). Magma generated from mantle plumes may be as hot as 1,600 °C (2,900 °F). The temperature of magma generated in subduction zones, where water vapor lowers
8938-408: The magma. Gabbro may have a liquidus temperature near 1,200 °C, and the derivative granite-composition melt may have a liquidus temperature as low as about 700 °C. Incompatible elements are concentrated in the last residues of magma during fractional crystallization and in the first melts produced during partial melting: either process can form the magma that crystallizes to pegmatite ,
9047-419: The mantle than subalkaline magmas. Olivine nephelinite magmas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the Earth than other magmas. Tholeiitic basalt magma Rhyolite magma Some lavas of unusual composition have erupted onto the surface of the Earth. These include: The concentrations of different gases can vary considerably. Water vapor
9156-420: The mantle than subalkaline magmas. Olivine nephelinite lavas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the Earth than other lavas. Tholeiitic basalt lava Rhyolite lava Some lavas of unusual composition have erupted onto the surface of the Earth. These include: The term "lava" can also be used to refer to molten "ice mixtures" in eruptions on
9265-424: The melt at different temperatures. This resembles the original melting process in reverse. However, because the melt has usually separated from its original source rock and moved to a shallower depth, the reverse process of crystallization is not precisely identical. For example, if a melt was 50% each of diopside and anorthite, then anorthite would begin crystallizing from the melt at a temperature somewhat higher than
9374-438: The melt at the eutectic composition. Further heating causes the temperature to slowly rise as the remaining anorthite gradually melts and the melt becomes increasingly rich in anorthite liquid. If the mixture has only a slight excess of anorthite, this will melt before the temperature rises much above 1274 °C. If the mixture is almost all anorthite, the temperature will reach nearly the melting point of pure anorthite before all
9483-449: The melt deviated from the eutectic, which has the composition of about 43% anorthite. This effect of partial melting is reflected in the compositions of different magmas. A low degree of partial melting of the upper mantle (2% to 4%) can produce highly alkaline magmas such as melilitites , while a greater degree of partial melting (8% to 11%) can produce alkali olivine basalt. Oceanic magmas likely result from partial melting of 3% to 15% of
9592-402: The melt on geologically relevant time scales. Geologists subsequently found considerable field evidence of such fractional crystallization . When crystals separate from a magma, then the residual magma will differ in composition from the parent magma. For instance, a magma of gabbroic composition can produce a residual melt of granitic composition if early formed crystals are separated from
9701-429: The melting temperature, may be as low as 1,060 °C (1,940 °F). Magma densities depend mostly on composition, iron content being the most important parameter. Magma expands slightly at lower pressure or higher temperature. When magma approaches the surface, its dissolved gases begin to bubble out of the liquid. These bubbles had significantly reduced the density of the magma at depth and helped drive it toward
9810-518: The minimal heat loss maintains a low viscosity. The surface texture of pāhoehoe flows varies widely, displaying all kinds of bizarre shapes often referred to as lava sculpture. With increasing distance from the source, pāhoehoe flows may change into ʻaʻā flows in response to heat loss and consequent increase in viscosity. Experiments suggest that the transition takes place at a temperature between 1,200 and 1,170 °C (2,190 and 2,140 °F), with some dependence on shear rate. Pahoehoe lavas typically have
9919-481: The more abundant elements in the source rock. The ions of these elements fit rather poorly in the structure of the minerals making up the source rock, and readily leave the solid minerals to become highly concentrated in melts produced by a low degree of partial melting. Incompatible elements commonly include potassium , barium , caesium , and rubidium , which are large and weakly charged (the large-ion lithophile elements, or LILEs), as well as elements whose ions carry
10028-415: The most abundant chemical elements in the Earth's crust, with smaller quantities of aluminium , calcium , magnesium , iron , sodium , and potassium , and minor amounts of many other elements. Petrologists routinely express the composition of a silicate magma in terms of the weight or molar mass fraction of the oxides of the major elements (other than oxygen) present in the magma. Because many of
10137-446: The physical behavior of silicate magmas. Silicon ions in lava strongly bind to four oxygen ions in a tetrahedral arrangement. If an oxygen ion is bound to two silicon ions in the melt, it is described as a bridging oxygen, and lava with many clumps or chains of silicon ions connected by bridging oxygen ions is described as partially polymerized. Aluminium in combination with alkali metal oxides (sodium and potassium) also tends to polymerize
10246-439: The presence of carbon dioxide, experiments document that the peridotite solidus temperature decreases by about 200 °C in a narrow pressure interval at pressures corresponding to a depth of about 70 km. At greater depths, carbon dioxide can have more effect: at depths to about 200 km, the temperatures of initial melting of a carbonated peridotite composition were determined to be 450 °C to 600 °C lower than for
10355-630: The properties of a magma (such as its viscosity and temperature) are observed to correlate with silica content, silicate magmas are divided into four chemical types based on silica content: felsic , intermediate , mafic , and ultramafic . Felsic or silicic magmas have a silica content greater than 63%. They include rhyolite and dacite magmas. With such a high silica content, these magmas are extremely viscous, ranging from 10 cP (10 Pa⋅s) for hot rhyolite magma at 1,200 °C (2,190 °F) to 10 cP (10 Pa⋅s) for cool rhyolite magma at 800 °C (1,470 °F). For comparison, water has
10464-437: The range of 850 to 1,100 °C (1,560 to 2,010 °F). Because of their lower silica content and higher eruptive temperatures, they tend to be much less viscous, with a typical viscosity of 3.5 × 10 cP (3,500 Pa⋅s) at 1,200 °C (2,190 °F). This is slightly greater than the viscosity of smooth peanut butter . Intermediate lavas show a greater tendency to form phenocrysts . Higher iron and magnesium tends to manifest as
10573-408: The rate of flow is proportional to the shear stress . Instead, a typical lava is a Bingham fluid , which shows considerable resistance to flow until a stress threshold, called the yield stress, is crossed. This results in plug flow of partially crystalline lava. A familiar example of plug flow is toothpaste squeezed out of a toothpaste tube. The toothpaste comes out as a semisolid plug, because shear
10682-411: The rate of flow is proportional to the shear stress . Instead, a typical magma is a Bingham fluid , which shows considerable resistance to flow until a stress threshold, called the yield stress, is crossed. This results in plug flow of partially crystalline magma. A familiar example of plug flow is toothpaste squeezed out of a toothpaste tube. The toothpaste comes out as a semisolid plug, because shear
10791-606: The rocky crust. For instance, geologists of the United States Geological Survey regularly drilled into the Kilauea Iki lava lake, formed in an eruption in 1959. After three years, the solid surface crust, whose base was at a temperature of 1,065 °C (1,949 °F), was still only 14 m (46 ft) thick, even though the lake was about 100 m (330 ft) deep. Residual liquid was still present at depths of around 80 m (260 ft) nineteen years after
10900-405: The roof of a magma chamber and fractional crystallization near its base can even take place simultaneously. Magmas of different compositions can mix with one another. In rare cases, melts can separate into two immiscible melts of contrasting compositions. When rock melts, the liquid is a primary magma . Primary magmas have not undergone any differentiation and represent the starting composition of
11009-405: The same composition with no carbon dioxide. Magmas of rock types such as nephelinite , carbonatite , and kimberlite are among those that may be generated following an influx of carbon dioxide into mantle at depths greater than about 70 km. Increase in temperature is the most typical mechanism for formation of magma within continental crust. Such temperature increases can occur because of
11118-442: The same lavas ranges over seven orders of magnitude, from 10 cP (10 Pa⋅s) for mafic lava to 10 cP (10 Pa⋅s) for felsic magmas. The viscosity is mostly determined by composition but is also dependent on temperature. The tendency of felsic lava to be cooler than mafic lava increases the viscosity difference. The silicon ion is small and highly charged, and so it has a strong tendency to coordinate with four oxygen ions, which form
11227-404: The source rock. Some calk-alkaline granitoids may be produced by a high degree of partial melting, as much as 15% to 30%. High-magnesium magmas, such as komatiite and picrite , may also be the products of a high degree of partial melting of mantle rock. Certain chemical elements, called incompatible elements , have a combination of ionic radius and ionic charge that is unlike that of
11336-468: The surface and the overburden pressure drops, dissolved gases bubble out of the liquid, so that magma near the surface consists of materials in solid, liquid, and gas phases . Most magma is rich in silica . Rare nonsilicate magma can form by local melting of nonsilicate mineral deposits or by separation of a magma into separate immiscible silicate and nonsilicate liquid phases. Silicate magmas are molten mixtures dominated by oxygen and silicon ,
11445-401: The surface in the first place. The temperature within the interior of the earth is described by the geothermal gradient , which is the rate of temperature change with depth. The geothermal gradient is established by the balance between heating through radioactive decay in the Earth's interior and heat loss from the surface of the earth. The geothermal gradient averages about 25 °C/km in
11554-613: The upward intrusion of magma from the mantle. Temperatures can also exceed the solidus of a crustal rock in continental crust thickened by compression at a plate boundary . The plate boundary between the Indian and Asian continental masses provides a well-studied example, as the Tibetan Plateau just north of the boundary has crust about 80 kilometers thick, roughly twice the thickness of normal continental crust. Studies of electrical resistivity deduced from magnetotelluric data have detected
11663-462: The upward movement of solid mantle is critical in the evolution of the Earth. Decompression melting creates the ocean crust at mid-ocean ridges , making it by far the most important source of magma on Earth. It also causes volcanism in intraplate regions, such as Europe, Africa and the Pacific sea floor. Intraplate volcanism is attributed to the rise of mantle plumes or to intraplate extension, with
11772-467: The viscosity. Higher-temperature melts are less viscous, since more thermal energy is available to break bonds between oxygen and network formers. Most magmas contain solid crystals of various minerals, fragments of exotic rocks known as xenoliths and fragments of previously solidified magma. The crystal content of most magmas gives them thixotropic and shear thinning properties. In other words, most magmas do not behave like Newtonian fluids, in which
11881-477: Was recorded following the collapse of a lava lake at Mount Nyiragongo . The scaling relationship for lavas is that the average speed of a flow scales as the square of its thickness divided by its viscosity. This implies that a rhyolite flow would have to be about a thousand times thicker than a basalt flow to flow at a similar speed. The temperature of most types of molten lava ranges from about 800 °C (1,470 °F) to 1,200 °C (2,190 °F) depending on
#205794