Misplaced Pages

LAGEOS

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

LAGEOS ( / l eɪ ʒ iː oʊ s / ), Laser Geodynamics Satellite or Laser Geometric Environmental Observation Survey , are a series of two scientific research satellites designed to provide an orbiting laser ranging benchmark for geodynamical studies of the Earth . Each satellite is a high-density passive laser reflector in a very stable medium Earth orbit (MEO).

#68931

120-821: The spacecraft are aluminum -covered brass spheres with diameters of 60 centimetres (24 in) and masses of 400 and 411 kilograms (882 and 906 pounds), covered with 426 cube-corner retroreflectors , giving them the appearance of disco balls . Of these retroreflectors, 422 are made from fused silica glass while the remaining 4 are made from germanium to obtain measurements in the infrared for experimental studies of reflectivity and satellite orientation. They have no on-board sensors or electronics, and are not attitude-controlled . They orbit at an altitude of 5,900 kilometres (3,700 mi), well above low Earth orbit and well below geostationary orbit , at orbital inclinations of 109.8 and 52.6 degrees. Measurements are made by transmitting pulsed laser beams from Earth ground stations to

240-491: A precipitate of aluminium hydroxide , Al(OH) 3 , forms. This is useful for clarification of water, as the precipitate nucleates on suspended particles in the water, hence removing them. Increasing the pH even further leads to the hydroxide dissolving again as aluminate , [Al(H 2 O) 2 (OH) 4 ] , is formed. Aluminium hydroxide forms both salts and aluminates and dissolves in acid and alkali, as well as on fusion with acidic and basic oxides. This behavior of Al(OH) 3

360-433: A reduction . Such reactions involve the formal transfer of electrons: a net gain in electrons being a reduction, and a net loss of electrons being oxidation. For pure elements, the oxidation state is zero. Oxidation numbers are assigned to elements in a molecule such that the overall sum is zero in a neutral molecule. The number indicates the degree of oxidation of each element caused by molecular bonding. In ionic molecules,

480-515: A "less classical sound". This name persisted: although the -um spelling was occasionally used in Britain, the American scientific language used -ium from the start. Most scientists throughout the world used -ium in the 19th century; and it was entrenched in several other European languages, such as French , German , and Dutch . In 1828, an American lexicographer, Noah Webster , entered only

600-449: A Lewis structure with formal charges : To obtain the oxidation states, the formal charges are summed with the bond-order value taken positively at the carbon and negatively at the oxygen. Applied to molecular ions, this algorithm considers the actual location of the formal (ionic) charge, as drawn in the Lewis structure. As an example, summing bond orders in the ammonium cation yields −4 at

720-492: A Swedish chemist, Jöns Jacob Berzelius , in which the name aluminium is given to the element that would be synthesized from alum. (Another article in the same journal issue also refers to the metal whose oxide is the basis of sapphire , i.e. the same metal, as to aluminium .) A January 1811 summary of one of Davy's lectures at the Royal Society mentioned the name aluminium as a possibility. The next year, Davy published

840-493: A caveat, which concerns rare cases of transition-metal complexes with a type of ligand that is reversibly bonded as a Lewis acid (as an acceptor of the electron pair from the transition metal); termed a "Z-type" ligand in Green's covalent bond classification method . The caveat originates from the simplifying use of electronegativity instead of the MO -based electron allegiance to decide

960-546: A chemistry textbook in which he used the spelling aluminum . Both spellings have coexisted since. Their usage is currently regional: aluminum dominates in the United States and Canada; aluminium is prevalent in the rest of the English-speaking world. In 1812, British scientist Thomas Young wrote an anonymous review of Davy's book, in which he proposed the name aluminium instead of aluminum , which he thought had

1080-419: A density lower than that of other common metals , about one-third that of steel . It has a great affinity towards oxygen , forming a protective layer of oxide on the surface when exposed to air. Aluminium visually resembles silver , both in its color and in its great ability to reflect light. It is soft, nonmagnetic , and ductile . It has one stable isotope, Al, which is highly abundant, making aluminium

1200-465: A more covalent character. The strong affinity of aluminium for oxygen leads to the common occurrence of its oxides in nature. Aluminium is found on Earth primarily in rocks in the crust , where it is the third-most abundant element , after oxygen and silicon , rather than in the mantle , and virtually never as the free metal . It is obtained industrially by mining bauxite , a sedimentary rock rich in aluminium minerals. The discovery of aluminium

1320-441: A probable cause for it being soft with a low melting point and low electrical resistivity . Aluminium metal has an appearance ranging from silvery white to dull gray depending on its surface roughness . Aluminium mirrors are the most reflective of all metal mirrors for near ultraviolet and far infrared light. It is also one of the most reflective for light in the visible spectrum, nearly on par with silver in this respect, and

SECTION 10

#1732851503069

1440-683: A process termed passivation . Because of its general resistance to corrosion, aluminium is one of the few metals that retains silvery reflectance in finely powdered form, making it an important component of silver-colored paints. Aluminium is not attacked by oxidizing acids because of its passivation. This allows aluminium to be used to store reagents such as nitric acid , concentrated sulfuric acid , and some organic acids. In hot concentrated hydrochloric acid , aluminium reacts with water with evolution of hydrogen, and in aqueous sodium hydroxide or potassium hydroxide at room temperature to form aluminates —protective passivation under these conditions

1560-525: A refractory material, and in ceramics , as well as being the starting material for the electrolytic production of aluminium. Sapphire and ruby are impure corundum contaminated with trace amounts of other metals. The two main oxide-hydroxides, AlO(OH), are boehmite and diaspore . There are three main trihydroxides: bayerite , gibbsite , and nordstrandite , which differ in their crystalline structure ( polymorphs ). Many other intermediate and related structures are also known. Most are produced from ores by

1680-474: A stable noble gas configuration. Accordingly, the combined first three ionization energies of aluminium are far lower than the fourth ionization energy alone. Such an electron configuration is shared with the other well-characterized members of its group, boron , gallium , indium , and thallium ; it is also expected for nihonium . Aluminium can surrender its three outermost electrons in many chemical reactions (see below ). The electronegativity of aluminium

1800-815: A variety of wet processes using acid and base. Heating the hydroxides leads to formation of corundum. These materials are of central importance to the production of aluminium and are themselves extremely useful. Some mixed oxide phases are also very useful, such as spinel (MgAl 2 O 4 ), Na-β-alumina (NaAl 11 O 17 ), and tricalcium aluminate (Ca 3 Al 2 O 6 , an important mineral phase in Portland cement ). The only stable chalcogenides under normal conditions are aluminium sulfide (Al 2 S 3 ), selenide (Al 2 Se 3 ), and telluride (Al 2 Te 3 ). All three are prepared by direct reaction of their elements at about 1,000 °C (1,800 °F) and quickly hydrolyze completely in water to yield aluminium hydroxide and

1920-567: A way of purifying bauxite to yield alumina, now known as the Bayer process , in 1889. Modern production of aluminium is based on the Bayer and Hall–Héroult processes. As large-scale production caused aluminium prices to drop, the metal became widely used in jewelry, eyeglass frames, optical instruments, tableware, and foil , and other everyday items in the 1890s and early 20th century. Aluminium's ability to form hard yet light alloys with other metals provided

2040-728: Is Al : while it was present along with stable Al in the interstellar medium from which the Solar System formed, having been produced by stellar nucleosynthesis as well, its half-life is only 717,000 years and therefore a detectable amount has not survived since the formation of the planet. However, minute traces of Al are produced from argon in the atmosphere by spallation caused by cosmic ray protons. The ratio of Al to Be has been used for radiodating of geological processes over 10 to 10  year time scales, in particular transport, deposition, sediment storage, burial times, and erosion. Most meteorite scientists believe that

2160-434: Is Al. Al was present in the early Solar System with abundance of 0.005% relative to Al but its half-life of 728,000 years is too short for any original nuclei to survive; Al is therefore extinct . Unlike for Al, hydrogen burning is the primary source of Al, with the nuclide emerging after a nucleus of Mg catches a free proton. However, the trace quantities of Al that do exist are the most common gamma ray emitter in

2280-407: Is paramagnetic and thus essentially unaffected by static magnetic fields. The high electrical conductivity, however, means that it is strongly affected by alternating magnetic fields through the induction of eddy currents . Aluminium combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier group 13 congeners, it has

2400-483: Is 1.61 (Pauling scale). A free aluminium atom has a radius of 143  pm . With the three outermost electrons removed, the radius shrinks to 39 pm for a 4-coordinated atom or 53.5 pm for a 6-coordinated atom. At standard temperature and pressure , aluminium atoms (when not affected by atoms of other elements) form a face-centered cubic crystal system bound by metallic bonding provided by atoms' outermost electrons; hence aluminium (at these conditions)

2520-548: Is a metal. This crystal system is shared by many other metals, such as lead and copper ; the size of a unit cell of aluminium is comparable to that of those other metals. The system, however, is not shared by the other members of its group: boron has ionization energies too high to allow metallization, thallium has a hexagonal close-packed structure, and gallium and indium have unusual structures that are not close-packed like those of aluminium and thallium. The few electrons that are available for metallic bonding in aluminium are

SECTION 20

#1732851503069

2640-515: Is almost never found in the elemental state; instead it is found in oxides or silicates. Feldspars , the most common group of minerals in the Earth's crust, are aluminosilicates. Aluminium also occurs in the minerals beryl , cryolite , garnet , spinel , and turquoise . Impurities in Al 2 O 3 , such as chromium and iron , yield the gemstones ruby and sapphire , respectively. Native aluminium metal

2760-405: Is also easily machined and cast . Aluminium is an excellent thermal and electrical conductor , having around 60% the conductivity of copper , both thermal and electrical, while having only 30% of copper's density. Aluminium is capable of superconductivity , with a superconducting critical temperature of 1.2 kelvin and a critical magnetic field of about 100 gauss (10 milliteslas ). It

2880-582: Is because most electronegativity scales depend on the atom's bonding state, which makes the assignment of the oxidation state a somewhat circular argument. For example, some scales may turn out unusual oxidation states, such as −6 for platinum in PtH 2− 4 , for Pauling and Mulliken scales. The dipole moments would, sometimes, also turn out abnormal oxidation numbers, such as in CO and NO , which are oriented with their positive end towards oxygen. Therefore, this leaves

3000-400: Is called the resonance formulas ). Consider the sulfate anion ( SO 2− 4 ) with 32 valence electrons; 24 from oxygens, 6 from sulfur, 2 of the anion charge obtained from the implied cation. The bond orders to the terminal oxygens do not affect the oxidation state so long as the oxygens have octets. Already the skeletal structure, top left, yields the correct oxidation states, as does

3120-546: Is extremely rare and can only be found as a minor phase in low oxygen fugacity environments, such as the interiors of certain volcanoes. Native aluminium has been reported in cold seeps in the northeastern continental slope of the South China Sea . It is possible that these deposits resulted from bacterial reduction of tetrahydroxoaluminate Al(OH) 4 . Although aluminium is a common and widespread element, not all aluminium minerals are economically viable sources of

3240-536: Is greatly reduced by aqueous salts, particularly in the presence of dissimilar metals. Aluminium reacts with most nonmetals upon heating, forming compounds such as aluminium nitride (AlN), aluminium sulfide (Al 2 S 3 ), and the aluminium halides (AlX 3 ). It also forms a wide range of intermetallic compounds involving metals from every group on the periodic table. The vast majority of compounds, including all aluminium-containing minerals and all commercially significant aluminium compounds, feature aluminium in

3360-492: Is in fact more basic than that of gallium. Aluminium also bears minor similarities to the metalloid boron in the same group: AlX 3 compounds are valence isoelectronic to BX 3 compounds (they have the same valence electronic structure), and both behave as Lewis acids and readily form adducts . Additionally, one of the main motifs of boron chemistry is regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including

3480-528: Is indicated with a 0 and both forward and backward arrows. Then the estimated arrangement of the continents in 8.4 million years with a right facing arrow and 8,388,608 in binary (2). LAGEOS itself is shown at launch on the 0 year, and falling to the Earth in the 8.4 million year diagram. Aluminum Aluminium (or aluminum in North American English ) is a chemical element ; it has symbol   Al and atomic number  13. Aluminium has

3600-409: Is known to metabolize aluminium salts , but this aluminium is well tolerated by plants and animals. Because of the abundance of these salts, the potential for a biological role for them is of interest, and studies are ongoing. Of aluminium isotopes, only Al is stable. This situation is common for elements with an odd atomic number. It is the only primordial aluminium isotope, i.e.

3720-500: Is negligible. Aqua regia also dissolves aluminium. Aluminium is corroded by dissolved chlorides , such as common sodium chloride , which is why household plumbing is never made from aluminium. The oxide layer on aluminium is also destroyed by contact with mercury due to amalgamation or with salts of some electropositive metals. As such, the strongest aluminium alloys are less corrosion-resistant due to galvanic reactions with alloyed copper , and aluminium's corrosion resistance

LAGEOS - Misplaced Pages Continue

3840-515: Is not as important. It is a polymer with the formula (AlH 3 ) n , in contrast to the corresponding boron hydride that is a dimer with the formula (BH 3 ) 2 . Aluminium's per-particle abundance in the Solar System is 3.15 ppm (parts per million). It is the twelfth most abundant of all elements and third most abundant among the elements that have odd atomic numbers, after hydrogen and nitrogen. The only stable isotope of aluminium, Al,

3960-406: Is not straightforward. If only an experiment can determine the oxidation state, the rule-based determination is ambiguous (insufficient). There are also truly dichotomous values that are decided arbitrarily. Seemingly ambiguous oxidation states are derived from a set of resonance formulas of equal weights for a molecule having heteronuclear bonds where the atom connectivity does not correspond to

4080-452: Is obtained by summing the heteronuclear-bond orders at the atom as positive if that atom is the electropositive partner in a particular bond and as negative if not, and the atom’s formal charge (if any) is added to that sum. The same caveat as above applies. An example of a Lewis structure with no formal charge, illustrates that, in this algorithm, homonuclear bonds are simply ignored (the bond orders are in blue). Carbon monoxide exemplifies

4200-468: Is performed on a Lewis structure (a diagram that shows all valence electrons ). Oxidation state equals the charge of an atom after each of its heteronuclear bonds has been assigned to the more electronegative partner of the bond ( except when that partner is a reversibly bonded Lewis-acid ligand ) and homonuclear bonds have been divided equally: where each "—" represents an electron pair (either shared between two atoms or solely on one atom), and "OS"

4320-416: Is quite soft and lacking in strength. In most applications various aluminium alloys are used instead because of their higher strength and hardness. The yield strength of pure aluminium is 7–11 MPa , while aluminium alloys have yield strengths ranging from 200 MPa to 600 MPa. Aluminium is ductile , with a percent elongation of 50-70%, and malleable allowing it to be easily drawn and extruded . It

4440-422: Is surrounded by six fluorine atoms in a distorted octahedral arrangement, with each fluorine atom being shared between the corners of two octahedra. Such {AlF 6 } units also exist in complex fluorides such as cryolite , Na 3 AlF 6 . AlF 3 melts at 1,290 °C (2,354 °F) and is made by reaction of aluminium oxide with hydrogen fluoride gas at 700 °C (1,300 °F). With heavier halides,

4560-547: Is termed amphoterism and is characteristic of weakly basic cations that form insoluble hydroxides and whose hydrated species can also donate their protons. One effect of this is that aluminium salts with weak acids are hydrolyzed in water to the aquated hydroxide and the corresponding nonmetal hydride: for example, aluminium sulfide yields hydrogen sulfide . However, some salts like aluminium carbonate exist in aqueous solution but are unstable as such; and only incomplete hydrolysis takes place for salts with strong acids, such as

4680-416: Is that of the preceding noble gas , whereas those of its heavier congeners gallium , indium , thallium , and nihonium also include a filled d-subshell and in some cases a filled f-subshell. Hence, the inner electrons of aluminium shield the valence electrons almost completely, unlike those of aluminium's heavier congeners. As such, aluminium is the most electropositive metal in its group, and its hydroxide

4800-537: Is the Bettendorf reaction using tin dichloride ( SnCl 2 ) to prove the presence of arsenite ions in a concentrated HCl extract. When arsenic(III) is present, a brown coloration appears forming a dark precipitate of arsenic , according to the following simplified reaction: Here three tin atoms are oxidized from oxidation state +2 to +4, yielding six electrons that reduce two arsenic atoms from oxidation state +3 to 0. The simple one-line balancing goes as follows:

4920-433: Is the eighteenth most abundant nucleus in the universe. It is created almost entirely after fusion of carbon in massive stars that will later become Type II supernovas : this fusion creates Mg, which upon capturing free protons and neutrons, becomes aluminium. Some smaller quantities of Al are created in hydrogen burning shells of evolved stars, where Mg can capture free protons. Essentially all aluminium now in existence

LAGEOS - Misplaced Pages Continue

5040-455: Is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic . It describes the degree of oxidation (loss of electrons ) of an atom in a chemical compound . Conceptually, the oxidation state may be positive, negative or zero. Beside nearly-pure ionic bonding , many covalent bonds exhibit a strong ionicity, making oxidation state a useful predictor of charge. The oxidation state of an atom does not represent

5160-411: Is the oxidation state as a numerical variable. After the electrons have been assigned according to the vertical red lines on the formula, the total number of valence electrons that now "belong" to each atom is subtracted from the number N of valence electrons of the neutral atom (such as 5 for nitrogen in group 15 ) to yield that atom's oxidation state. This example shows the importance of describing

5280-469: Is −5, as for boron in Al 3 BC and gallium in pentamagnesium digallide ( Mg 5 Ga 2 ). In Stock nomenclature , which is commonly used for inorganic compounds, the oxidation state is represented by a Roman numeral placed after the element name inside parentheses or as a superscript after the element symbol, e.g. Iron(III) oxide . The term oxidation was first used by Antoine Lavoisier to signify

5400-488: The -ium spelling as primary, and they list both where it is appropriate. The production of aluminium starts with the extraction of bauxite rock from the ground. The bauxite is processed and transformed using the Bayer process into alumina , which is then processed using the Hall–Héroult process , resulting in the final aluminium. Oxidation state In chemistry , the oxidation state , or oxidation number ,

5520-452: The First and Second World Wars, aluminium was a crucial strategic resource for aviation . In 1954, aluminium became the most produced non-ferrous metal , surpassing copper . In the 21st century, most aluminium was consumed in transportation, engineering, construction, and packaging in the United States, Western Europe, and Japan. Despite its prevalence in the environment, no living organism

5640-455: The Friedel–Crafts reactions . Aluminium trichloride has major industrial uses involving this reaction, such as in the manufacture of anthraquinones and styrene ; it is also often used as the precursor for many other aluminium compounds and as a reagent for converting nonmetal fluorides into the corresponding chlorides (a transhalogenation reaction ). Aluminium forms one stable oxide with

5760-466: The London Metal Exchange , the oldest industrial metal exchange in the world, in 1978. The output continued to grow: the annual production of aluminium exceeded 50,000,000 metric tons in 2013. The real price for aluminium declined from $ 14,000 per metric ton in 1900 to $ 2,340 in 1948 (in 1998 United States dollars). Extraction and processing costs were lowered over technological progress and

5880-467: The aluminum spelling in his American Dictionary of the English Language . In the 1830s, the -um spelling gained usage in the United States; by the 1860s, it had become the more common spelling there outside science. In 1892, Hall used the -um spelling in his advertising handbill for his new electrolytic method of producing the metal, despite his constant use of the -ium spelling in all

6000-516: The auride anion. The bond graph summarizes these connectivities. The bond orders (also called bond valences ) sum up to oxidation states according to the attached sign of the bond's ionic approximation (there are no formal charges in bond graphs). Determination of oxidation states from a bond graph can be illustrated on ilmenite , FeTiO 3 . We may ask whether the mineral contains Fe and Ti , or Fe and Ti . Its crystal structure has each metal atom bonded to six oxygens and each of

6120-423: The chemical formula Al 2 O 3 , commonly called alumina . It can be found in nature in the mineral corundum , α-alumina; there is also a γ-alumina phase. Its crystalline form, corundum, is very hard ( Mohs hardness 9), has a high melting point of 2,045 °C (3,713 °F), has very low volatility, is chemically inert, and a good electrical insulator, it is often used in abrasives (such as toothpaste), as

SECTION 50

#1732851503069

6240-542: The interstellar gas ; if the original Al were still present, gamma ray maps of the Milky Way would be brighter. Overall, the Earth is about 1.59% aluminium by mass (seventh in abundance by mass). Aluminium occurs in greater proportion in the Earth's crust than in the universe at large. This is because aluminium easily forms the oxide and becomes bound into rocks and stays in the Earth's crust , while less reactive metals sink to

6360-431: The twelfth-most common element in the universe. The radioactivity of Al leads to it being used in radiometric dating . Chemically, aluminium is a post-transition metal in the boron group ; as is common for the group, aluminium forms compounds primarily in the +3 oxidation state . The aluminium cation Al is small and highly charged ; as such, it has more polarizing power , and bonds formed by aluminium have

6480-421: The "real" charge on that atom, or any other actual atomic property. This is particularly true of high oxidation states, where the ionization energy required to produce a multiply positive ion is far greater than the energies available in chemical reactions. Additionally, the oxidation states of atoms in a given compound may vary depending on the choice of electronegativity scale used in their calculation. Thus,

6600-516: The 5th century BCE. The ancients are known to have used alum as a dyeing mordant and for city defense. After the Crusades , alum, an indispensable good in the European fabric industry, was a subject of international commerce; it was imported to Europe from the eastern Mediterranean until the mid-15th century. The nature of alum remained unknown. Around 1530, Swiss physician Paracelsus suggested alum

6720-472: The Al–Zn–Mg class. Aluminium has a high chemical affinity to oxygen, which renders it suitable for use as a reducing agent in the thermite reaction. A fine powder of aluminium reacts explosively on contact with liquid oxygen ; under normal conditions, however, aluminium forms a thin oxide layer (~5 nm at room temperature) that protects the metal from further corrosion by oxygen, water, or dilute acid,

6840-421: The Lewis structure, top right (one of the resonance formulas): The bond-order formula at the bottom is closest to the reality of four equivalent oxygens each having a total bond order of 2. That total includes the bond of order ⁠ 1 / 2 ⁠ to the implied cation and follows the 8 −  N rule requiring that the main-group atom's bond-order total equals 8 −  N valence electrons of

6960-418: The United States dollar, and alumina prices. The BRIC countries' combined share in primary production and primary consumption grew substantially in the first decade of the 21st century. China is accumulating an especially large share of the world's production thanks to an abundance of resources, cheap energy, and governmental stimuli; it also increased its consumption share from 2% in 1972 to 40% in 2010. In

7080-510: The United States, Western Europe, and Japan, most aluminium was consumed in transportation, engineering, construction, and packaging. In 2021, prices for industrial metals such as aluminium have soared to near-record levels as energy shortages in China drive up costs for electricity. The names aluminium and aluminum are derived from the word alumine , an obsolete term for alumina , the primary naturally occurring oxide of aluminium . Alumine

7200-578: The aluminium atoms have tetrahedral four-coordination and the other half have trigonal bipyramidal five-coordination. Four pnictides – aluminium nitride (AlN), aluminium phosphide (AlP), aluminium arsenide (AlAs), and aluminium antimonide (AlSb) – are known. They are all III-V semiconductors isoelectronic to silicon and germanium , all of which but AlN have the zinc blende structure. All four can be made by high-temperature (and possibly high-pressure) direct reaction of their component elements. Aluminium alloys well with most other metals (with

7320-431: The atom's contribution to the bonding MO, the atomic-orbital energy, and from quantum-chemical calculations of charges, as the only viable criteria with cogent values for ionic approximation. However, for a simple estimate for the ionic approximation, we can use Allen electronegativities , as only that electronegativity scale is truly independent of the oxidation state, as it relates to the average valence‐electron energy of

SECTION 60

#1732851503069

7440-437: The average oxidation state of an element is a fraction, such as ⁠ 8 / 3 ⁠ for iron in magnetite Fe 3 O 4 ( see below ). The highest known oxidation state is reported to be +9, displayed by iridium in the tetroxoiridium(IX) cation ( IrO + 4 ). It is predicted that even a +10 oxidation state may be achieved by platinum in tetroxoplatinum(X), PtO 2+ 4 . The lowest oxidation state

7560-469: The bonding. Its summary formula, HNO 3 , corresponds to two structural isomers ; the peroxynitrous acid in the above figure and the more stable nitric acid . With the formula HNO 3 , the simple approach without bonding considerations yields −2 for all three oxygens and +5 for nitrogen, which is correct for nitric acid. For the peroxynitrous acid, however, both oxygens in the O–O bond have OS = −1, and

7680-417: The changes in the oxidized atoms have to be balanced by the changes in the reduced atoms. For example, in the reaction of acetaldehyde with Tollens' reagent to form acetic acid (shown below), the carbonyl carbon atom changes its oxidation state from +1 to +3 (loses two electrons). This oxidation is balanced by reducing two Ag cations to Ag (gaining two electrons in total). An inorganic example

7800-436: The characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances. Furthermore, as Al is a small and highly charged cation, it is strongly polarizing and bonding in aluminium compounds tends towards covalency ; this behavior is similar to that of beryllium (Be ), and the two display an example of a diagonal relationship . The underlying core under aluminium's valence shell

7920-419: The coordination numbers are lower. The other trihalides are dimeric or polymeric with tetrahedral four-coordinate aluminium centers. Aluminium trichloride (AlCl 3 ) has a layered polymeric structure below its melting point of 192.4 °C (378 °F) but transforms on melting to Al 2 Cl 6 dimers. At higher temperatures those increasingly dissociate into trigonal planar AlCl 3 monomers similar to

8040-428: The core. In the Earth's crust, aluminium is the most abundant metallic element (8.23% by mass ) and the third most abundant of all elements (after oxygen and silicon). A large number of silicates in the Earth's crust contain aluminium. In contrast, the Earth's mantle is only 2.38% aluminium by mass. Aluminium also occurs in seawater at a concentration of 2 μg/kg. Because of its strong affinity for oxygen, aluminium

8160-569: The electrons cross out. In general, these redox balances (the one-line balance or each half-reaction) need to be checked for the ionic and electron charge sums on both sides of the equation being indeed equal. If they are not equal, suitable ions are added to balance the charges and the non-redox elemental balance. A nominal oxidation state is a general term with two different definitions: Lewis formulae are rule-based approximations of chemical reality, as are Allen electronegativities . Still, oxidation states may seem ambiguous when their determination

8280-497: The energy released by the decay of Al was responsible for the melting and differentiation of some asteroids after their formation 4.55 billion years ago. The remaining isotopes of aluminium, with mass numbers ranging from 21 to 43, all have half-lives well under an hour. Three metastable states are known, all with half-lives under a minute. An aluminium atom has 13 electrons, arranged in an electron configuration of [ Ne ] 3s 3p , with three electrons beyond

8400-533: The equivalent oxygens to two irons and two titaniums , as in the bond graph below. Experimental data show that three metal-oxygen bonds in the octahedron are short and three are long (the metals are off-center). The bond orders (valences), obtained from the bond lengths by the bond valence method , sum up to 2.01 at Fe and 3.99 at Ti; which can be rounded off to oxidation states +2 and +4, respectively: Oxidation states can be useful for balancing chemical equations for oxidation-reduction (or redox ) reactions, because

8520-478: The exception of most alkali metals and group 13 metals) and over 150 intermetallics with other metals are known. Preparation involves heating fixed metals together in certain proportion, followed by gradual cooling and annealing . Bonding in them is predominantly metallic and the crystal structure primarily depends on efficiency of packing. There are few compounds with lower oxidation states. A few aluminium(I) compounds exist: AlF, AlCl, AlBr, and AlI exist in

8640-520: The fact that its nuclei are much lighter, while difference in the unit cell size does not compensate for this difference. The only lighter metals are the metals of groups 1 and 2 , which apart from beryllium and magnesium are too reactive for structural use (and beryllium is very toxic). Aluminium is not as strong or stiff as steel, but the low density makes up for this in the aerospace industry and for many other applications where light weight and relatively high strength are crucial. Pure aluminium

8760-401: The formula may be more clearly represented as FeO· Fe 2 O 3 . Likewise, propane , C 3 H 8 , has been described as having a carbon oxidation state of − ⁠ 8 / 3 ⁠ . Again, this is an average value since the structure of the molecule is H 3 C−CH 2 −CH 3 , with the first and third carbon atoms each having an oxidation state of −3 and

8880-546: The free atom: While introductory levels of chemistry teaching use postulated oxidation states, the IUPAC recommendation and the Gold Book entry list two entirely general algorithms for the calculation of the oxidation states of elements in chemical compounds. Introductory chemistry uses postulates: the oxidation state for an element in a chemical formula is calculated from the overall charge and postulated oxidation states for all

9000-730: The gas phase after explosion and in stellar absorption spectra. More thoroughly investigated are compounds of the formula R 4 Al 2 which contain an Al–Al bond and where R is a large organic ligand . A variety of compounds of empirical formula AlR 3 and AlR 1.5 Cl 1.5 exist. The aluminium trialkyls and triaryls are reactive, volatile, and colorless liquids or low-melting solids. They catch fire spontaneously in air and react with water, thus necessitating precautions when handling them. They often form dimers, unlike their boron analogues, but this tendency diminishes for branched-chain alkyls (e.g. Pr , Bu , Me 3 CCH 2 ); for example, triisobutylaluminium exists as an equilibrium mixture of

9120-453: The gaseous phase when the respective trihalide is heated with aluminium, and at cryogenic temperatures. A stable derivative of aluminium monoiodide is the cyclic adduct formed with triethylamine , Al 4 I 4 (NEt 3 ) 4 . Al 2 O and Al 2 S also exist but are very unstable. Very simple aluminium(II) compounds are invoked or observed in the reactions of Al metal with oxidants. For example, aluminium monoxide , AlO, has been detected in

9240-646: The halides, nitrate , and sulfate . For similar reasons, anhydrous aluminium salts cannot be made by heating their "hydrates": hydrated aluminium chloride is in fact not AlCl 3 ·6H 2 O but [Al(H 2 O) 6 ]Cl 3 , and the Al–O bonds are so strong that heating is not sufficient to break them and form Al–Cl bonds instead: All four trihalides are well known. Unlike the structures of the three heavier trihalides, aluminium fluoride (AlF 3 ) features six-coordinate aluminium, which explains its involatility and insolubility as well as high heat of formation . Each aluminium atom

9360-449: The ionic sign. One early example is the O 2 S−RhCl(CO)( PPh 3 ) 2 complex with sulfur dioxide ( SO 2 ) as the reversibly-bonded acceptor ligand (released upon heating). The Rh−S bond is therefore extrapolated ionic against Allen electronegativities of rhodium and sulfur, yielding oxidation state +1 for rhodium: This algorithm works on Lewis structures and bond graphs of extended (non-molecular) solids: Oxidation state

9480-433: The low-pressure polymerization of ethene and propene . There are also some heterocyclic and cluster organoaluminium compounds involving Al–N bonds. The industrially most important aluminium hydride is lithium aluminium hydride (LiAlH 4 ), which is used as a reducing agent in organic chemistry . It can be produced from lithium hydride and aluminium trichloride . The simplest hydride, aluminium hydride or alane,

9600-529: The metal remained rare; its cost exceeded that of gold. The first industrial production of aluminium was established in 1856 by French chemist Henri Etienne Sainte-Claire Deville and companions. Deville had discovered that aluminium trichloride could be reduced by sodium, which was more convenient and less expensive than potassium, which Wöhler had used. Even then, aluminium was still not of great purity and produced aluminium differed in properties by sample. Because of its electricity-conducting capacity, aluminium

9720-628: The metal to be isolated from alum was alumium , which Davy suggested in an 1808 article on his electrochemical research, published in Philosophical Transactions of the Royal Society . It appeared that the name was created from the English word alum and the Latin suffix -ium ; but it was customary then to give elements names originating in Latin, so this name was not adopted universally. This name

9840-465: The metal with many uses at the time. During World War I , major governments demanded large shipments of aluminium for light strong airframes; during World War II , demand by major governments for aviation was even higher. By the mid-20th century, aluminium had become a part of everyday life and an essential component of housewares. In 1954, production of aluminium surpassed that of copper , historically second in production only to iron, making it

9960-486: The metal. Almost all metallic aluminium is produced from the ore bauxite (AlO x (OH) 3–2 x ). Bauxite occurs as a weathering product of low iron and silica bedrock in tropical climatic conditions. In 2017, most bauxite was mined in Australia, China, Guinea, and India. The history of aluminium has been shaped by usage of alum . The first written record of alum, made by Greek historian Herodotus , dates back to

10080-485: The monomer and dimer. These dimers, such as trimethylaluminium (Al 2 Me 6 ), usually feature tetrahedral Al centers formed by dimerization with some alkyl group bridging between both aluminium atoms. They are hard acids and react readily with ligands, forming adducts. In industry, they are mostly used in alkene insertion reactions, as discovered by Karl Ziegler , most importantly in "growth reactions" that form long-chain unbranched primary alkenes and alcohols, and in

10200-506: The most produced non-ferrous metal . During the mid-20th century, aluminium emerged as a civil engineering material, with building applications in both basic construction and interior finish work, and increasingly being used in military engineering, for both airplanes and land armor vehicle engines. Earth's first artificial satellite , launched in 1957, consisted of two separate aluminium semi-spheres joined and all subsequent space vehicles have used aluminium to some extent. The aluminium can

10320-480: The most stable chemical compounds follow trends in the periodic table. IUPAC has published a "Comprehensive definition of oxidation state (IUPAC Recommendations 2016)". It is a distillation of an IUPAC technical report "Toward a comprehensive definition of oxidation state" from 2014. The current IUPAC Gold Book definition of oxidation state is: The oxidation state of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds. and

10440-604: The neutral atom, enforced with a priority that proportionately increases with electronegativity. This algorithm works equally for molecular cations composed of several atoms. An example is the ammonium cation of 8 valence electrons (5 from nitrogen, 4 from hydrogens, minus 1 electron for the cation's positive charge): Drawing Lewis structures with electron pairs as dashes emphasizes the essential equivalence of bond pairs and lone pairs when counting electrons and moving bonds onto atoms. Structures drawn with electron dot pairs are of course identical in every way: The algorithm contains

10560-551: The next decade, the -um spelling dominated American usage. In 1925, the American Chemical Society adopted this spelling. The International Union of Pure and Applied Chemistry (IUPAC) adopted aluminium as the standard international name for the element in 1990. In 1993, they recognized aluminum as an acceptable variant; the most recent 2005 edition of the IUPAC nomenclature of inorganic chemistry also acknowledges this spelling. IUPAC official publications use

10680-438: The nitrogen has OS = +3, which requires a structure to understand. Organic compounds are treated in a similar manner; exemplified here on functional groups occurring in between methane ( CH 4 ) and carbon dioxide ( CO 2 ): Analogously for transition-metal compounds; CrO(O 2 ) 2 on the left has a total of 36 valence electrons (18 pairs to be distributed), and hexacarbonylchromium ( Cr(CO) 6 ) on

10800-430: The nitrogen of formal charge +1, with the two numbers adding to the oxidation state of −3: The sum of oxidation states in the ion equals its charge (as it equals zero for a neutral molecule). Also in anions, the formal (ionic) charges have to be considered when nonzero. For sulfate this is exemplified with the skeletal or Lewis structures (top), compared with the bond-order formula of all oxygens equivalent and fulfilling

10920-423: The number of two-electron bonds dictated by the 8 −  N rule. An example is S 2 N 2 where four resonance formulas featuring one S=N double bond have oxidation states +2 and +4 for the two sulfur atoms, which average to +3 because the two sulfur atoms are equivalent in this square-shaped molecule. Fractional oxidation states are often used to represent the average oxidation state of several atoms of

11040-492: The octet and 8 −  N rules (bottom): A bond graph in solid-state chemistry is a chemical formula of an extended structure, in which direct bonding connectivities are shown. An example is the AuORb 3 perovskite , the unit cell of which is drawn on the left and the bond graph (with added numerical values) on the right: We see that the oxygen atom bonds to the six nearest rubidium cations, each of which has 4 bonds to

11160-507: The only one that has existed on Earth in its current form since the formation of the planet. It is therefore a mononuclidic element and its standard atomic weight is virtually the same as that of the isotope. This makes aluminium very useful in nuclear magnetic resonance (NMR), as its single stable isotope has a high NMR sensitivity. The standard atomic weight of aluminium is low in comparison with many other metals. All other isotopes of aluminium are radioactive . The most stable of these

11280-470: The other atoms. A simple example is based on two postulates, where OS stands for oxidation state. This approach yields correct oxidation states in oxides and hydroxides of any single element, and in acids such as sulfuric acid ( H 2 SO 4 ) or dichromic acid ( H 2 Cr 2 O 7 ). Its coverage can be extended either by a list of exceptions or by assigning priority to the postulates. The latter works for hydrogen peroxide ( H 2 O 2 ) where

11400-587: The oxidation numbers are the same as the element's ionic charge. Thus for KCl, potassium is assigned +1 and chlorine is assigned -1. The complete set of rules for assigning oxidation numbers are discussed in the following sections. Oxidation numbers are fundamental the chemical nomenclature of ionic compounds. For example, Cu compounds with Cu oxidation state +2 are call cupric and those with state +1 are cuprous . The oxidation numbers of elements allow predictions of chemical formula and reactions, especially oxidation-reduction reactions . The oxidation numbers of

11520-407: The oxidation state 3+. The coordination number of such compounds varies, but generally Al is either six- or four-coordinate. Almost all compounds of aluminium(III) are colorless. In aqueous solution, Al exists as the hexaaqua cation [Al(H 2 O) 6 ] , which has an approximate K a of 10 . Such solutions are acidic as this cation can act as a proton donor and progressively hydrolyze until

11640-404: The oxidation state of an atom in a compound is purely a formalism. It is nevertheless important in understanding the nomenclature conventions of inorganic compounds . Also, several observations regarding chemical reactions may be explained at a basic level in terms of oxidation states. Oxidation states are typically represented by integers which may be positive, zero, or negative. In some cases,

11760-460: The patents he filed between 1886 and 1903. It is unknown whether this spelling was introduced by mistake or intentionally, but Hall preferred aluminum since its introduction because it resembled platinum , the name of a prestigious metal. By 1890, both spellings had been common in the United States, the -ium spelling being slightly more common; by 1895, the situation had reversed; by 1900, aluminum had become twice as common as aluminium ; in

11880-516: The precise, stable ( attitude -independent) geometry of the LAGEOS spacecraft, together with their extremely regular orbits, make these satellites the most precise position references available. The LAGEOS mission consists of the following key goals: Ground tracking stations located in many countries (including the US, Mexico, France, Germany, Poland, Australia, Egypt, China, Peru, Italy, and Japan) have ranged to

12000-666: The priority of rule 1 leaves both oxygens with oxidation state −1. Additional postulates and their ranking may expand the range of compounds to fit a textbook's scope. As an example, one postulatory algorithm from many possible; in a sequence of decreasing priority: This set of postulates covers oxidation states of fluorides, chlorides, bromides, oxides, hydroxides, and hydrides of any single element. It covers all oxoacids of any central atom (and all their fluoro-, chloro-, and bromo-relatives), as well as salts of such acids with group 1 and 2 metals. It also covers iodides , sulfides , and similar simple salts of these metals. This algorithm

12120-400: The reaction of a substance with oxygen . Much later, it was realized that the substance, upon being oxidized, loses electrons, and the meaning was extended to include other reactions in which electrons are lost, regardless of whether oxygen was involved. The increase in the oxidation state of an atom, through a chemical reaction, is known as oxidation; a decrease in oxidation state is known as

12240-423: The respective hydrogen chalcogenide . As aluminium is a small atom relative to these chalcogens, these have four-coordinate tetrahedral aluminium with various polymorphs having structures related to wurtzite , with two-thirds of the possible metal sites occupied either in an orderly (α) or random (β) fashion; the sulfide also has a γ form related to γ-alumina, and an unusual high-temperature hexagonal form where half

12360-559: The right has 66 valence electrons (33 pairs): A key step is drawing the Lewis structure of the molecule (neutral, cationic, anionic): Atom symbols are arranged so that pairs of atoms can be joined by single two-electron bonds as in the molecule (a sort of "skeletal" structure), and the remaining valence electrons are distributed such that sp atoms obtain an octet (duet for hydrogen) with a priority that increases in proportion with electronegativity. In some cases, this leads to alternative formulae that differ in bond orders (the full set of which

12480-417: The same element in a structure. For example, the formula of magnetite is Fe 3 O 4 , implying an average oxidation state for iron of + ⁠ 8 / 3 ⁠ . However, this average value may not be representative if the atoms are not equivalent. In a Fe 3 O 4 crystal below 120 K (−153 °C), two-thirds of the cations are Fe and one-third are Fe , and

12600-537: The satellites and data from these stations are available worldwide to investigators studying crustal dynamics. There are two LAGEOS spacecraft, LAGEOS-1 launched in 1976, and LAGEOS-2 launched in 1992. As of 2024, both LAGEOS spacecraft are routinely tracked by the ILRS network . LAGEOS-1 (which is predicted to re-enter the atmosphere in 8.4 million years) also contains a 4 in × 7 in plaque designed by Carl Sagan to indicate to future humanity when LAGEOS-1

12720-457: The satellites. The laser beams then return to Earth after hitting the reflecting surfaces; the travel times are precisely measured, permitting ground stations in different parts of the Earth to measure their separations to better than one inch in thousands of miles. The LAGEOS satellites make it possible to determine positions of points on the Earth with extremely high accuracy due to the stability of their orbits. The high mass-to-area ratio and

12840-485: The scale of the economies. However, the need to exploit lower-grade poorer quality deposits and the use of fast increasing input costs (above all, energy) increased the net cost of aluminium; the real price began to grow in the 1970s with the rise of energy cost. Production moved from the industrialized countries to countries where production was cheaper. Production costs in the late 20th century changed because of advances in technology, lower energy prices, exchange rates of

12960-408: The structure of BCl 3 . Aluminium tribromide and aluminium triiodide form Al 2 X 6 dimers in all three phases and hence do not show such significant changes of properties upon phase change. These materials are prepared by treating aluminium with the halogen. The aluminium trihalides form many addition compounds or complexes; their Lewis acidic nature makes them useful as catalysts for

13080-412: The term oxidation number is nearly synonymous. The ionic approximation means extrapolating bonds to ionic. Several criteria were considered for the ionic approximation: In a bond between two different elements, the bond's electrons are assigned to its main atomic contributor typically of higher electronegativity; in a bond between two atoms of the same element, the electrons are divided equally. This

13200-464: The two redox couples are written down as they react; One tin is oxidized from oxidation state +2 to +4, a two-electron step, hence 2 is written in front of the two arsenic partners. One arsenic is reduced from +3 to 0, a three-electron step, hence 3 goes in front of the two tin partners. An alternative three-line procedure is to write separately the half-reactions for oxidation and reduction, each balanced with electrons, and then to sum them up such that

13320-536: The two therefore look similar. Aluminium is also good at reflecting solar radiation , although prolonged exposure to sunlight in air adds wear to the surface of the metal; this may be prevented if aluminium is anodized , which adds a protective layer of oxide on the surface. The density of aluminium is 2.70 g/cm , about 1/3 that of steel, much lower than other commonly encountered metals, making aluminium parts easily identifiable through their lightness. Aluminium's low density compared to most other metals arises from

13440-461: Was a salt of an earth of alum. In 1595, German doctor and chemist Andreas Libavius experimentally confirmed this. In 1722, German chemist Friedrich Hoffmann announced his belief that the base of alum was a distinct earth. In 1754, German chemist Andreas Sigismund Marggraf synthesized alumina by boiling clay in sulfuric acid and subsequently adding potash . Attempts to produce aluminium date back to 1760. The first successful attempt, however,

13560-527: Was announced in 1825 by Danish physicist Hans Christian Ørsted . The first industrial production of aluminium was initiated by French chemist Henri Étienne Sainte-Claire Deville in 1856. Aluminium became much more available to the public with the Hall–Héroult process developed independently by French engineer Paul Héroult and American engineer Charles Martin Hall in 1886, and the mass production of aluminium led to its extensive use in industry and everyday life. In

13680-485: Was borrowed from French, which in turn derived it from alumen , the classical Latin name for alum , the mineral from which it was collected. The Latin word alumen stems from the Proto-Indo-European root *alu- meaning "bitter" or "beer". British chemist Humphry Davy , who performed a number of experiments aimed to isolate the metal, is credited as the person who named the element. The first name proposed for

13800-422: Was completed in 1824 by Danish physicist and chemist Hans Christian Ørsted . He reacted anhydrous aluminium chloride with potassium amalgam , yielding a lump of metal looking similar to tin. He presented his results and demonstrated a sample of the new metal in 1825. In 1827, German chemist Friedrich Wöhler repeated Ørsted's experiments but did not identify any aluminium. (The reason for this inconsistency

13920-492: Was criticized by contemporary chemists from France, Germany, and Sweden, who insisted the metal should be named for the oxide, alumina, from which it would be isolated. The English name alum does not come directly from Latin, whereas alumine / alumina obviously comes from the Latin word alumen (upon declension , alumen changes to alumin- ). One example was Essai sur la Nomenclature chimique (July 1811), written in French by

14040-418: Was invented in 1956 and employed as a storage for drinks in 1958. Throughout the 20th century, the production of aluminium rose rapidly: while the world production of aluminium in 1900 was 6,800 metric tons, the annual production first exceeded 100,000 metric tons in 1916; 1,000,000 tons in 1941; 10,000,000 tons in 1971. In the 1970s, the increased demand for aluminium made it an exchange commodity; it entered

14160-514: Was launched. The plaque includes the numbers 1 to 10 in binary. In the upper right is a diagram of the Earth orbiting the Sun, with a binary number 1 indicating one revolution, equaling one year. It then shows 268,435,456 years in the past (binary: 2), indicated by a left arrow and the arrangement of the Earth's continents at that time (during the Permian period). The present arrangement of the Earth's continents

14280-433: Was only discovered in 1921.) He conducted a similar experiment in the same year by mixing anhydrous aluminium chloride with potassium and produced a powder of aluminium. In 1845, he was able to produce small pieces of the metal and described some physical properties of this metal. For many years thereafter, Wöhler was credited as the discoverer of aluminium. As Wöhler's method could not yield great quantities of aluminium,

14400-571: Was used as the cap of the Washington Monument , completed in 1885. The tallest building in the world at the time, the non-corroding metal cap was intended to serve as a lightning rod peak. The first industrial large-scale production method was independently developed in 1886 by French engineer Paul Héroult and American engineer Charles Martin Hall ; it is now known as the Hall–Héroult process . The Hall–Héroult process converts alumina into metal. Austrian chemist Carl Joseph Bayer discovered

#68931