The Lanz Bulldog was a series of tractors manufactured by Heinrich Lanz AG in Mannheim , Baden-Württemberg, Germany . Production started in 1921 with the Lanz HL , and various versions of the Bulldog were produced up to 1960, one of them being the Lanz Bulldog D 9506 . John Deere purchased Lanz in 1956 and started using the name "John Deere Lanz" for the Lanz product line. A few years after the Bulldog was discontinued the Lanz name fell into disuse. The Lanz Bulldog was one of the most popular German tractors, with over 220,000 of them produced in its long production life. The name "Bulldog" is widely used in Germany as a synonym for tractors even today, especially in Bavaria .
135-434: The Lanz Bulldog was built with a single-cylinder, two-stroke Akroyd engine – the so-called Bulldog engine – that was designed by Fritz Huber . The Bulldog engine was installed horizontally, with the ignition device – the hot bulb – facing forward. It has crankcase scavenging , and intake ports instead of valves. Due to its few moving parts – the piston, crank assembly and flywheel, the fuel injection system and oil system are
270-433: A carburetor or fuel injection as port injection or direct injection . Most SI engines have a single spark plug per cylinder but some have 2 . A head gasket prevents the gas from leaking between the cylinder head and the engine block. The opening and closing of the valves is controlled by one or several camshafts and springs—or in some engines—a desmodromic mechanism that uses no springs. The camshaft may press directly
405-409: A deflector head . Pistons are open at the bottom and hollow except for an integral reinforcement structure (the piston web). When an engine is working, the gas pressure in the combustion chamber exerts a force on the piston crown which is transferred through its web to a gudgeon pin . Each piston has rings fitted around its circumference that mostly prevent the gases from leaking into the crankcase or
540-428: A gas engine . Also in 1794, Robert Street patented an internal combustion engine, which was also the first to use liquid fuel , and built an engine around that time. In 1798, John Stevens built the first American internal combustion engine. In 1807, French engineers Nicéphore Niépce (who went on to invent photography ) and Claude Niépce ran a prototype internal combustion engine, using controlled dust explosions,
675-470: A locomotive operated by electricity.) In boating, an internal combustion engine that is installed in the hull is referred to as an engine, but the engines that sit on the transom are referred to as motors. Reciprocating piston engines are by far the most common power source for land and water vehicles , including automobiles , motorcycles , ships and to a lesser extent, locomotives (some are electrical but most use diesel engines ). Rotary engines of
810-606: A piston inside a cylinder connected to a flywheel by a connecting rod and crankshaft . Akroyd-Stuart's original engine operated on the four-stroke cycle (induction, compression, power and exhaust), and Hornsby continued to build engines to this design, as did several other British manufacturers such as Blackstone and Crossley . Manufacturers in Europe , Scandinavia and in the United States (and some British firms including Petter , Gardner and Allen ) built engines working on
945-410: A rotor (Wankel engine) , or a nozzle ( jet engine ). This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. The first commercially successful internal combustion engine was created by Étienne Lenoir around 1860, and the first modern internal combustion engine, known as
1080-440: A semi-diesel or Akroyd engine , is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen
1215-594: A battery and charging system; nevertheless, this system is secondary and is added by manufacturers as a luxury for the ease of starting, turning fuel on and off (which can also be done via a switch or mechanical apparatus), and for running auxiliary electrical components and accessories. Most new engines rely on electrical and electronic engine control units (ECU) that also adjust the combustion process to increase efficiency and reduce emissions. Surfaces in contact and relative motion to other surfaces require lubrication to reduce wear, noise and increase efficiency by reducing
1350-418: A blow torch, then the engine is hand-cranked with the steering wheel. Late Bulldog engines have a redesigned hot-bulb with direct injection; they were offered with electric glowplugs and an electric starter motor. Lanz sold these as "Halbdiesel" (half diesel) and "Volldiesel" (full diesel) models, albeit that the engine was not a diesel engine. The Bulldog engine was made with various different displacements, with
1485-404: A carefully timed high-voltage to the proper cylinder. This spark, via the spark plug, ignites the air-fuel mixture in the engine's cylinders. While gasoline internal combustion engines are much easier to start in cold weather than diesel engines, they can still have cold weather starting problems under extreme conditions. For years, the solution was to park the car in heated areas. In some parts of
SECTION 10
#17328582596171620-499: A common power source for lawnmowers , string trimmers , chain saws , leafblowers , pressure washers , snowmobiles , jet skis , outboard motors , mopeds , and motorcycles . There are several possible ways to classify internal combustion engines. By number of strokes: By type of ignition: By mechanical/thermodynamic cycle (these cycles are infrequently used but are commonly found in hybrid vehicles , along with other vehicles manufactured for fuel efficiency ): The base of
1755-819: A copy of the 45 HP Bulldog at the ZM Ursus factory (Zakłady Mechanicze Ursus) in Poland in Ursus near Warsaw from 1947, called the C-45 . It was replaced by the C-451 in 1957, and from 1960 the production was moved to Zakłady Mechaniczne in Gorzów Wielkopolski . About 55,000 Ursus C-45/C-451 were built from 1947 until 1965. In 1951 a copy of the 55 HP Bulldog was produced by Industrias Aeronáuticas y Mecánicas del Estado in Argentina. The tractor
1890-451: A flat hot spot. Over time the compression ratios were increased from 3:1 to 14:1. Fuel injection started from 135 degrees before top dead center with low compression down to 20 degrees before top dead center with later higher compression engines increasing the hot air factor for ignition and increasing the fuel efficiency . Glowplugs finally replaced the preheating with a blowtorch methods and engine speeds were increased, resulting in what
2025-407: A fresh charge of air into the crankcase and completing the cycle. Induction and compression are carried out on the upward stroke, while power and exhaust occur on the downward stroke. A supply of lubricating oil must be fed to the crankcase to supply the crankshaft bearings . Since the crankcase is also used to supply air to the engine, the engine's lubricating oil is carried into the cylinder with
2160-596: A given engine size due to the more efficient combustion method. They had no hot bulb, relying purely on compression-ignition, and offered greater ease of use, as they required no pre-heating. The hot bulb engine was limited in its scope in terms of speed and overall power-to-size ratio. To make a hot bulb engine capable of powering a ship or locomotive, it would have been prohibitively large and heavy. The hot bulb engines used in Landini tractors were as much as 20 litres in capacity for relatively low power outputs. The main limit of
2295-452: A hand crank. Larger engines typically power their starting motors and ignition systems using the electrical energy stored in a lead–acid battery . The battery's charged state is maintained by an automotive alternator or (previously) a generator which uses engine power to create electrical energy storage. The battery supplies electrical power for starting when the engine has a starting motor system, and supplies electrical power when
2430-449: A lower compression ratio than Diesel's compression-ignition engines. The hot-bulb engine is much simpler to construct and operate than the steam engine. Boilers require at least one person to add water and fuel as needed and to monitor pressure to prevent overpressure and a resulting explosion. If fitted with automatic lubrication systems and a governor to control engine speed, a hot-bulb engine could be left running unattended for hours at
2565-487: A maximum speed of around 100 rpm, while by the 1930s high-speed diesel engines capable of 2,000 rpm were being built. Also, due to the design of hot bulbs and the limitations of current technology in regard to the injector system, most hot bulb engines were single-speed engines, running at a fixed speed, or in a very narrow speed range. Diesel engines can be designed to operate over a much wider speed range, making them more versatile. This made these medium-sized diesels
2700-406: A popular choice for applications requiring a steady power output, such as farm tractors, generators , pumps and canal boat propulsion. Air is drawn into the cylinder through the intake valve as the piston descends (the induction stroke). During the same stroke, fuel is sprayed into the vaporizer by a mechanical (jerk-type) fuel pump through a nozzle. The injected fuel vapourises on contact with
2835-408: A problem would occur as the compression ratio increased as the fuel was igniting due to the rise in temperature that resulted. Charles Kettering developed a lead additive which allowed higher compression ratios, which was progressively abandoned for automotive use from the 1970s onward, partly due to lead poisoning concerns. The fuel mixture is ignited at different progressions of the piston in
SECTION 20
#17328582596172970-731: A reciprocating internal combustion engine is the engine block , which is typically made of cast iron (due to its good wear resistance and low cost) or aluminum . In the latter case, the cylinder liners are made of cast iron or steel, or a coating such as nikasil or alusil . The engine block contains the cylinders . In engines with more than one cylinder they are usually arranged either in 1 row ( straight engine ) or 2 rows ( boxer engine or V engine ); 3 or 4 rows are occasionally used ( W engine ) in contemporary engines, and other engine configurations are possible and have been used. Single-cylinder engines (or thumpers ) are common for motorcycles and other small engines found in light machinery. On
3105-422: A separate ICE as an auxiliary power unit . Wankel engines are fitted to many unmanned aerial vehicles . ICEs drive large electric generators that power electrical grids. They are found in the form of combustion turbines with a typical electrical output in the range of some 100 MW. Combined cycle power plants use the high temperature exhaust to boil and superheat water steam to run a steam turbine . Thus,
3240-475: A separate blower avoids many of the shortcomings of crankcase scavenging, at the expense of increased complexity which means a higher cost and an increase in maintenance requirement. An engine of this type uses ports or valves for intake and valves for exhaust, except opposed piston engines , which may also use ports for exhaust. The blower is usually of the Roots-type but other types have been used too. This design
3375-416: A separate crankcase ventilation system. The cylinder head is attached to the engine block by numerous bolts or studs . It has several functions. The cylinder head seals the cylinders on the side opposite to the pistons; it contains short ducts (the ports ) for intake and exhaust and the associated intake valves that open to let the cylinder be filled with fresh air and exhaust valves that open to allow
3510-470: A small percentage of the overall running period. This included marine use — especially in fishing boats — and pumping or drainage duties. The hot bulb engine was invented at the same time that dynamos and electric light systems were perfected, and electricity generation was one of the hot bulb engine's main uses. The engine could achieve higher R.P.M. than a standard reciprocating steam engine, although high-speed steam engines were developed during
3645-468: A special fuel to operate; it can burn regular fuels like diesel fuel or petrol, but also a wide variety of low grade fuel oils – even waste oils. This made the Bulldog engine reasonably economical to operate, despite its high fuel consumption. The original Bulldog had evaporative cooling. Later models use a thermosiphon cooler. For starting, the ignition device has to be heated to ignition temperature using
3780-424: A strong jet of fuel oil into the core of the hot bulb where temperatures would be greatest, rather than the normal wide spray of atomised fuel, to maintain self-combustion under prolonged low load running or idling. Equally, as the engine's load increases, so does the temperature of the bulb. This causes the start of combustion to advance (occurring earlier in the cycle) which reduces power and efficiency. If combustion
3915-444: A time. Another attraction was their safety. A steam engine, with its exposed fire and hot boiler, steam pipes and working cylinder could not be used in flammable conditions, such as munitions factories or fuel refineries. Hot-bulb engines also produced cleaner exhaust fumes. A big danger with the steam engine was that if the boiler pressure grew too high and the safety valve failed, a highly dangerous explosion could occur, although this
4050-466: A use, it is not uncommon to find vessels still fitted with their original hot bulb engines today. Although there is a common misconception that model glow plug engines are a variation of the hot bulb engine, this is not the case. Model glow engines are catalytic ignition engines. They take advantage of a reaction between platinum in the glow plug coil and methyl alcohol vapour whereby at certain temperatures and pressures platinum will glow in contact with
4185-458: A very popular choice for use in generator sets, replacing the hot bulb engine as the engine of choice for small-scale power generation. The development of small-capacity, high-speed diesel engines in the 1930s and 1940s, led to hot bulb engines falling dramatically out of favour. The last large-scale manufacturer of hot bulb engines stopped producing them in the 1950s and they are now virtually extinct in commercial use, except in very remote areas of
Lanz Bulldog - Misplaced Pages Continue
4320-460: Is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high- temperature and high- pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons ( piston engine ), turbine blades ( gas turbine ),
4455-405: Is a fly-back system, using interruption of electrical primary system current through some type of synchronized interrupter. The interrupter can be either contact points or a power transistor. The problem with this type of ignition is that as RPM increases the availability of electrical energy decreases. This is especially a problem, since the amount of energy needed to ignite a more dense fuel mixture
4590-473: Is allowed to advance too much then damaging pre-ignition can occur. This was a limiting factor on the power output of hot-bulb engines and in order to circumvent this limit some hot-bulb engines feature a system whereby water is dripped into the air intake to reduce the temperature of the air charge and counteract pre-ignition, thus allowing higher power outputs. The fact that the engine can be left unattended for long periods while running made hot-bulb engines
4725-421: Is also why diesel and HCCI engines are more susceptible to cold-starting issues, although they run just as well in cold weather once started. Light duty diesel engines with indirect injection in automobiles and light trucks employ glowplugs (or other pre-heating: see Cummins ISB#6BT ) that pre-heat the combustion chamber just before starting to reduce no-start conditions in cold weather. Most diesels also have
4860-497: Is commonplace in CI engines, and has been occasionally used in SI engines. CI engines that use a blower typically use uniflow scavenging . In this design the cylinder wall contains several intake ports placed uniformly spaced along the circumference just above the position that the piston crown reaches when at BDC. An exhaust valve or several like that of 4-stroke engines is used. The final part of
4995-529: Is driven downward with power, it first uncovers the exhaust port where the burned fuel is expelled under high pressure and then the intake port where the process has been completed and will keep repeating. Later engines used a type of porting devised by the Deutz company to improve performance. It was called the Schnurle Reverse Flow system. DKW licensed this design for all their motorcycles. Their DKW RT 125
5130-415: Is held in place relative to the engine block by main bearings , which allow it to rotate. Bulkheads in the crankcase form a half of every main bearing; the other half is a detachable cap. In some cases a single main bearing deck is used rather than several smaller caps. A connecting rod is connected to offset sections of the crankshaft (the crankpins ) in one end and to the piston in the other end through
5265-406: Is higher. The result was often a high RPM misfire. Capacitor discharge ignition was developed. It produces a rising voltage that is sent to the spark plug. CD system voltages can reach 60,000 volts. CD ignitions use step-up transformers . The step-up transformer uses energy stored in a capacitance to generate electric spark . With either system, a mechanical or electrical control system provides
5400-532: Is no electrical system as found on a petrol engine, and no external boiler and steam system as on a steam engine. Another big attraction with the hot-bulb engine was its ability to run on a wide range of fuels. Even poorly combustible fuels could be used, since a combination of vaporiser and compression ignition meant that such fuels could be made to burn. The usual fuel was fuel oil, similar to modern-day diesel fuel , but natural gas , kerosene , crude oil , vegetable oil or creosote could also be used. This made
5535-434: Is normally a bung or stopcock that allows draining of the crankcase before starting. The lack of valves and the doubled-up working cycle also means that a two-stroke hot-bulb engine can run equally well in both directions. A common starting technique for smaller two-stroke engines is to turn the engine over against the normal direction of rotation. The piston will "bounce" off the compression phase with sufficient force to spin
Lanz Bulldog - Misplaced Pages Continue
5670-445: Is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consists of: While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either
5805-445: Is now classified as an indirect-injection diesel. Hot bulb or prechambered engines were always easier to produce, more reliable and could handle smaller amounts of fuel in smaller engines than the direct-injected "pure" diesels could. Hot-bulb engines were built by a large number of manufacturers, usually in modest series. These engines were slow-running (300-400 rpm) and mostly with cast-iron parts, including pistons. The fuel pump
5940-432: Is supplied to the hot-bulb chamber on the compression stroke of the engine. Most hot-bulb engines were produced as one or two-cylinder, low-speed two-stroke crankcase scavenged units. The concept of this engine was established by Herbert Akroyd Stuart , an English inventor. The first prototypes were built in 1886 and production started in 1891 by Richard Hornsby & Sons of Grantham, Lincolnshire, England under
6075-504: Is the Wärtsilä-Sulzer RTA96-C turbocharged 2-stroke diesel, used in large container ships. It is the most efficient and powerful reciprocating internal combustion engine in the world with a thermal efficiency over 50%. For comparison, the most efficient small four-stroke engines are around 43% thermally-efficient (SAE 900648); size is an advantage for efficiency due to the increase in the ratio of volume to surface area. See
6210-450: Is the best known; in the 1920s they had about 80% of the world market. The Norwegian Sabb was a very popular hot bulb engine for small fishing boats, and many of them are still in working order. In America, Standard, Weber, Reid, Stickney, Oil City, and Fairbanks Morse built hot bulb engines. A limitation of the design of the engine was that it could only run over quite a narrow (and low) speed band, typically 50 to 300 rpm . This made
6345-412: Is then turned over, usually by hand, but sometimes by compressed air or an electric motor. Once the engine is running, the heat of compression and ignition maintains the hot bulb at the necessary temperature, and the blow-lamp or other heat source can be removed. Thereafter, the engine requires no external heat and requires only a supply of air, fuel oil and lubricating oil to run. However, under low power
6480-410: Is used to turn the engine when power is not being produced. The piston rises, expelling exhaust gases through the exhaust valve (the exhaust stroke). The cycle then starts again. The basic action of fuel injection and combustion is common to all hot-bulb engines, whether four- or two-stroke. The cycle starts with the piston at the bottom of its stroke. As it rises, it draws air into the crankcase through
6615-546: The Landini tractor from Italy, and the HSCS from Hungary. The Field Marshall that was produced in England, was a similar design to the Bulldog hot-bulb engine with the exception of an internally designed vaporing plate which replaced the conventional externally located hot-bulb, this internal design required ignition papers in place of the external blow lamp to start the engine. Akroyd engine The hot-bulb engine , also known as
6750-745: The Lanz HL tractor. Other well known tractor manufacturers that used bulb engines were Bubba , Gambino , Landini and Orsi in Italy , HSCS in Hungary , SFV in France , and Ursus in Poland (who produced the Ursus C-45 , a direct copy of the 1934 Lanz Bulldog D 9506 , after World War II). At the start of the 20th century there were several hundred European manufacturers of hot bulb engines for marine use. In Sweden alone there were over 70 manufacturers, of which Bolinder
6885-603: The Otto engine , was created in 1876 by Nicolaus Otto . The term internal combustion engine usually refers to an engine in which combustion is intermittent , such as the more familiar two-stroke and four-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine . A second class of internal combustion engines use continuous combustion: gas turbines , jet engines and most rocket engines , each of which are internal combustion engines on
SECTION 50
#17328582596177020-604: The Pyréolophore , which was granted a patent by Napoleon Bonaparte . This engine powered a boat on the Saône river in France. In the same year, Swiss engineer François Isaac de Rivaz invented a hydrogen-based internal combustion engine and powered the engine by electric spark. In 1808, De Rivaz fitted his invention to a primitive working vehicle – "the world's first internal combustion powered automobile". In 1823, Samuel Brown patented
7155-473: The external links for an in-cylinder combustion video in a 2-stroke, optically accessible motorcycle engine. Dugald Clerk developed the first two-cycle engine in 1879. It used a separate cylinder which functioned as a pump in order to transfer the fuel mixture to the cylinder. In 1899 John Day simplified Clerk's design into the type of 2 cycle engine that is very widely used today. Day cycle engines are crankcase scavenged and port timed. The crankcase and
7290-434: The steam engine , which was then the dominant source of power in industry. Condenserless steam engines achieved an average thermal efficiency (the fraction of generated heat that is actually turned into useful work) of around 6%. Hot-bulb engines could easily achieve 12% thermal efficiency. From the 1910s to the 1950s, hot-bulb engines were more economical to manufacture with their low-pressure crude-fuel injection and had
7425-404: The two-stroke cycle with crankcase scavenging. The latter type formed the majority of hot-bulb engine production. The flow of gases through the engine is controlled by valves in four-stroke engines, and by the piston covering and uncovering ports in the cylinder wall in two-strokes. In the hot bulb engine combustion takes place in a separated combustion chamber called the "vaporizer" (also called
7560-548: The " hot tube " engine (which allowed the volume of the vaporiser to be altered with engine speed, thus changing the overall compression ratio) added complexity and cost and still could not provide power-to-weight ratios in the same league as the rapidly developing diesel engine . To create even combustion throughout the multiple hot bulbs in multi-cylinder engines is difficult. The hot bulb engine's low compression ratio in comparison to diesel engines limited its efficiency, power output and speed. Most hot bulb engines could run at
7695-418: The "hot bulb") usually mounted on the cylinder head, into which fuel is sprayed. It is connected to the cylinder by a narrow passage and is heated by combustion gases while running; an external flame, such as a blow torch or slow-burning wick, is used for starting; on later models, electric heating or pyrotechnics were sometimes used. Another method was the inclusion of a spark plug and vibrator-coil ignition;
7830-425: The 1890s, and its low fuel and maintenance requirements, including the ability to be operated and maintained by only one person, made it ideal for small-scale power generation. Generator sets driven by hot bulb engines were installed in numerous large houses in Europe , especially in rural areas, as well as in factories, theatres, lighthouses , radio stations and many other locations where a centralised electrical grid
7965-427: The 1950s, especially on hilly and mountainous terrain. The Bulldog design was copied in other countries by several different manufacturers. While some of these copies were legitimately produced under license from Bulldog, most of them were built with each respective builder's own frame and body design, being powered by unlicensed copies of the patented Bulldog hot-bulb engine. Some of these examples are: "Le Percheron"
8100-573: The 4.8 and 10.3 litre versions being the most common ones. Bulldogs were also produced in Spain by Lanz Iberica S.A. at Getafe near Madrid. A total of 17,100 tractors were built from 1956 to 1963. From 1951-57, Lanz manufactured a rear-engined derivative of the Bulldog, known as the Lanz Alldog. This had a large bed over the front wheels, for transporting cargo over ground unsuitable for a trailer. Tractors of this type were popular among Israeli farmers during
8235-615: The Wankel design are used in some automobiles, aircraft and motorcycles. These are collectively known as internal-combustion-engine vehicles (ICEV). Where high power-to-weight ratios are required, internal combustion engines appear in the form of combustion turbines , or sometimes Wankel engines. Powered aircraft typically use an ICE which may be a reciprocating engine. Airplanes can instead use jet engines and helicopters can instead employ turboshafts ; both of which are types of turbines. In addition to providing propulsion, aircraft may employ
SECTION 60
#17328582596178370-421: The air charge, burnt during combustion and carried out of the exhaust. The oil carried from the crankcase to the cylinder is used to lubricate the piston . This means that a two-stroke hot-bulb engine will gradually burn its supply of lubricating oil, a design known as a "total-loss" lubricating system. There were also designs that employed a scavenge pump or similar to remove oil from the crankcase and return it to
8505-489: The associated process. While an engine is in operation, the crankshaft rotates continuously at a nearly constant speed . In a 4-stroke ICE, each piston experiences 2 strokes per crankshaft revolution in the following order. Starting the description at TDC, these are: The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it
8640-475: The bulb could cool off too much. If the load on the engine is low, combustion temperatures may not be sufficient to maintain the temperature of the hot bulb. Many hot-bulb engines cannot be run off-load without auxiliary heating for this reason. Some engines had a throttle valve in their air intakes to cut down the supply of excess cold air for when running at light load and/or low speed, and others had adjustable fuel sprayer nozzles that could be adjusted to deliver
8775-619: The combustion gases to escape. The valves are often poppet valves but they can also be rotary valves or sleeve valves . However, 2-stroke crankcase scavenged engines connect the gas ports directly to the cylinder wall without poppet valves; the piston controls their opening and occlusion instead. The cylinder head also holds the spark plug in the case of spark ignition engines and the injector for engines that use direct injection. All CI (compression ignition) engines use fuel injection, usually direct injection but some engines instead use indirect injection . SI (spark ignition) engines can use
8910-455: The compressed air and combustion products and slide continuously within it while the engine is in operation. In smaller engines, the pistons are made of aluminum; while in larger applications, they are typically made of cast iron. In performance applications, pistons can also be titanium or forged steel for greater strength. The top surface of the piston is called its crown and is typically flat or concave. Some two-stroke engines use pistons with
9045-432: The compressed charge, four-cycle engine. In 1879, Karl Benz patented a reliable two-stroke gasoline engine. Later, in 1886, Benz began the first commercial production of motor vehicles with an internal combustion engine, in which a three-wheeled, four-cycle engine and chassis formed a single unit. In 1892, Rudolf Diesel developed the first compressed charge, compression ignition engine. In 1926, Robert Goddard launched
9180-410: The corresponding ports. The intake manifold connects to the air filter directly, or to a carburetor when one is present, which is then connected to the air filter . It distributes the air incoming from these devices to the individual cylinders. The exhaust manifold is the first component in the exhaust system . It collects the exhaust gases from the cylinders and drives it to the following component in
9315-400: The crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging. SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging. Some SI engines are crankcase scavenged and do not use poppet valves. Instead, the crankcase and the part of
9450-401: The crankcase pressure is slightly below intake pressure, to let it be filled with a new charge; this happens when the piston is moving upwards. When the piston is moving downwards the pressure in the crankcase increases and the reed valve closes promptly, then the charge in the crankcase is compressed. When the piston is moving downwards, it also uncovers the exhaust port and the transfer port and
9585-413: The crankcase to the port in the cylinder to provide for intake and another from the exhaust port to the exhaust pipe. The height of the port in relationship to the length of the cylinder is called the "port timing". On the first upstroke of the engine there would be no fuel inducted into the cylinder as the crankcase was empty. On the downstroke, the piston now compresses the fuel mix, which has lubricated
9720-431: The cylinder below the piston is used as a pump. The intake port is connected to the crankcase through a reed valve or a rotary disk valve driven by the engine. For each cylinder, a transfer port connects in one end to the crankcase and in the other end to the cylinder wall. The exhaust port is connected directly to the cylinder wall. The transfer and exhaust port are opened and closed by the piston. The reed valve opens when
9855-411: The cylinder block has fins protruding away from it to cool the engine by directly transferring heat to the air. The cylinder walls are usually finished by honing to obtain a cross hatch , which is able to retain more oil. A too rough surface would quickly harm the engine by excessive wear on the piston. The pistons are short cylindrical parts which seal one end of the cylinder from the high pressure of
9990-407: The cylinder. Because there is no obstruction in the cylinder of the fuel to move directly out of the exhaust port prior to the piston rising far enough to close the port, early engines used a high domed piston to slow down the flow of fuel. Later the fuel was "resonated" back into the cylinder using an expansion chamber design. When the piston rose close to TDC, a spark ignited the fuel. As the piston
10125-414: The cylinder. At low rpm, the spark is timed to occur close to the piston achieving top dead center. In order to produce more power, as rpm rises the spark is advanced sooner during piston movement. The spark occurs while the fuel is still being compressed progressively more as rpm rises. The necessary high voltage, typically 10,000 volts, is supplied by an induction coil or transformer. The induction coil
10260-439: The descending piston uncovers the transfer port. The piston is now pressurising the air in the crankcase, which is forced through the transfer port and into the space above the piston. Part of the incoming air charge is lost out of the still-open exhaust port to ensure all the exhaust gases are cleared from the cylinder, a process known as "scavenging". The piston then reaches the bottom of its stroke and begins to rise again, drawing
10395-533: The developing world. An exception to this is marine use; hot bulb engines were widely fitted to inland barges and narrowboats in Europe. The United Kingdom's first two self-powered "motor" narrowboats— Cadbury's Bournville I and Bournville II in 1911 —were powered by 15 horsepower Bolinder single-cylinder hot bulb engines, and this type became common between the 1920s and the 1950s. With hot bulb engines being generally long-lived and ideally suited to such
10530-461: The driver noticing until the tractor drove in the opposite direction to that intended. Lanz Bulldog tractors featured a dial, mechanically driven by the engine, that showed a spinning arrow. The arrow pointed in the direction of normal engine rotation; if the dial spun the other way, the engine had reversed itself. At the time the hot-bulb engine was invented, its great attractions were its efficiency, simplicity, and ease of operation in comparison to
10665-413: The early engines which used Hot Tube ignition. When Bosch developed the magneto it became the primary system for producing electricity to energize a spark plug. Many small engines still use magneto ignition. Small engines are started by hand cranking using a recoil starter or hand crank. Prior to Charles F. Kettering of Delco's development of the automotive starter all gasoline engined automobiles used
10800-453: The efficiency is higher because more energy is extracted from the fuel than what could be extracted by the combustion engine alone. Combined cycle power plants achieve efficiencies in the range of 50–60%. In a smaller scale, stationary engines like gas engines or diesel generators are used for backup or for providing electrical power to areas not connected to an electric grid . Small engines (usually 2‐stroke gasoline/petrol engines) are
10935-543: The engine is off. The battery also supplies electrical power during rare run conditions where the alternator cannot maintain more than 13.8 volts (for a common 12 V automotive electrical system). As alternator voltage falls below 13.8 volts, the lead-acid storage battery increasingly picks up electrical load. During virtually all running conditions, including normal idle conditions, the alternator supplies primary electrical power. Some systems disable alternator field (rotor) power during wide-open throttle conditions. Disabling
11070-408: The engine the correct way and start it. This bi-directional running was an advantage in marine applications, as the engine could, like the steam engine , drive a vessel forward or in reverse without the need for a gearbox . The direction could be reversed either by stopping the engine and starting it again in the other direction, or, with sufficient skill and timing on the part of the operator, slowing
11205-464: The engine until it carried just enough momentum to bounce against its own compression and run the other way. Because fuel injection takes place before compression and because combustion is not directly linked to a specific point in the engine's rotation (as with injection/combustion in a diesel engine or ignition/combustion in a spark-ignition engine), it is also possible to set the fueling on a two-stroke hot-bulb engine so that combustion occurs just before
11340-401: The engine would be started on petrol (gasoline) and switched over to oil after warming to running temperature. The pre-heating time depends on the engine design, the type of heating used and the ambient temperature, but for most engines in a temperate climate generally ranges from 2 to 5 minutes to as much as half an hour if operating in extreme cold or the engine is especially large. The engine
11475-423: The engine's internal parts, especially the piston. In the hot bulb engine this problem could only be overcome by keeping the overall engine speeds low, the fuel quantity injected in each cycle small and the engine's components very heavily built. This resulted in a very durable engine, which was also large and heavy while producing a relatively low power output. Ideas such as water injection (to reduce preignition) and
11610-435: The field reduces alternator pulley mechanical loading to nearly zero, maximizing crankshaft power. In this case, the battery supplies all primary electrical power. Gasoline engines take in a mixture of air and gasoline and compress it by the movement of the piston from bottom dead center to top dead center when the fuel is at maximum compression. The reduction in the size of the swept area of the cylinder and taking into account
11745-648: The first internal combustion engine to be applied industrially. In 1854, in the UK, the Italian inventors Eugenio Barsanti and Felice Matteucci obtained the certification: "Obtaining Motive Power by the Explosion of Gases". In 1857 the Great Seal Patent Office conceded them patent No.1655 for the invention of an "Improved Apparatus for Obtaining Motive Power from Gases". Barsanti and Matteucci obtained other patents for
11880-589: The first liquid-fueled rocket. In 1939, the Heinkel He 178 became the world's first jet aircraft . At one time, the word engine (via Old French , from Latin ingenium , "ability") meant any piece of machinery —a sense that persists in expressions such as siege engine . A "motor" (from Latin motor , "mover") is any machine that produces mechanical power . Traditionally, electric motors are not referred to as "engines"; however, combustion engines are often referred to as "motors". (An electric engine refers to
12015-601: The following conditions: The main advantage of 2-stroke engines of this type is mechanical simplicity and a higher power-to-weight ratio than their 4-stroke counterparts. Despite having twice as many power strokes per cycle, less than twice the power of a comparable 4-stroke engine is attainable in practice. In the US, 2-stroke engines were banned for road vehicles due to the pollution. Off-road only motorcycles are still often 2-stroke but are rarely road legal. However, many thousands of 2-stroke lawn maintenance engines are in use. Using
12150-458: The formation of national grid systems throughout the world and the replacement of the hot bulb engine by the diesel engine caused a drop in demand. The engines were also used in areas where the fire of a steam engine would be an unacceptable fire risk. Akroyd-Stuart developed the world's first locomotive powered by a hot bulb oil engine, the "Lachesis", for the Royal Arsenal , Woolwich , where
12285-517: The gudgeon pin and thus transfers the force and translates the reciprocating motion of the pistons to the circular motion of the crankshaft. The end of the connecting rod attached to the gudgeon pin is called its small end, and the other end, where it is connected to the crankshaft, the big end. The big end has a detachable half to allow assembly around the crankshaft. It is kept together to the connecting rod by removable bolts. The cylinder head has an intake manifold and an exhaust manifold attached to
12420-517: The heat of compression alone. An Akroyd engine will have a compression ratio between 3:1 and 5:1 whereas a typical diesel engine will have a much higher compression ratio, usually between 15:1 and 20:1 making it more efficient. In an Akroyd engine the fuel is injected during the early intake stroke (at 140° BTDC ) and not at the peak of compression (at 15° BTDC) as in a diesel engine. The hot-bulb engine shares its basic layout with nearly all other internal combustion engines in that it has
12555-505: The high temperature and pressure created by the engine in its compression process. The compression level that occurs is usually twice or more than a gasoline engine. Diesel engines take in air only, and shortly before peak compression, spray a small quantity of diesel fuel into the cylinder via a fuel injector that allows the fuel to instantly ignite. HCCI type engines take in both air and fuel, but continue to rely on an unaided auto-combustion process, due to higher pressures and temperature. This
12690-416: The higher pressure of the charge in the crankcase makes it enter the cylinder through the transfer port, blowing the exhaust gases. Lubrication is accomplished by adding two-stroke oil to the fuel in small ratios. Petroil refers to the mix of gasoline with the aforesaid oil. This kind of 2-stroke engine has a lower efficiency than comparable 4-strokes engines and releases more polluting exhaust gases for
12825-451: The highest thermal efficiencies among internal combustion engines of any kind. Some diesel–electric locomotive engines operate on the 2-stroke cycle. The most powerful of them have a brake power of around 4.5 MW or 6,000 HP . The EMD SD90MAC class of locomotives are an example of such. The comparable class GE AC6000CW , whose prime mover has almost the same brake power, uses a 4-stroke engine. An example of this type of engine
12960-438: The hot bulb engine difficult to adapt to automotive uses, other than vehicles such as tractors, where speed was not a major requirement. This limitation was of little consequence for stationary applications, where the hot bulb engine was very popular. Owing to the lengthy pre-heating time, hot bulb engines only found favour with users who needed to run engines for long periods of time, where the pre-heating process only represented
13095-408: The hot bulb engine's power and speed was its method of combustion. In a diesel engine combustion is controlled by injecting fuel into compressed air; since no combustion can take place until fuel is injected, the timing and duration of combustion can be tightly controlled. In the hot bulb engine fuel was injected into the cylinder before compression began, and combustion would start as the air charge met
13230-897: The hot bulb engine, their ability to run on many fuels and the fact that they can be left running for hours or days at a time made them extremely popular with agricultural, forestry and marine users, where they were used for pumping and for powering milling, sawing and threshing machinery. Hot bulb engines were also used on road rollers and tractors . J. V. Svenssons Motorfabrik , i Augustendal in Stockholm Sweden used hot bulb engines in their Typ 1 motor plough , produced from 1912 to 1925. Munktells Mekaniska Verkstads AB , in Eskilstuna , Sweden , produced agricultural tractors with hot bulb engines from 1913 onwards. Heinrich Lanz AG , in Mannheim , Germany , started to use hot bulb engines in 1921, in
13365-409: The hot interior of the vaporizer but the heat is not sufficient to cause ignition. The air in the cylinder is then forced through the opening into the vaporizer as the piston rises (the compression stroke), where it is lightly compressed (a ratio of around 3:1) - this is not sufficient to cause significant temperature rise of the air charge, which is mostly caused by the air being heated by contact with
13500-759: The hot-bulb engine very cheap to run, since it could be run on readily available fuels. Some operators even ran engines on used engine oil, thus providing almost free power. Recently, this multi-fuel ability has led to an interest in using hot-bulb engines in developing nations, where they can be run on locally produced biofuel. Due to the lengthy pre-heating time, hot-bulb engines usually started easily, even in extremely cold conditions. This made them popular choices in cold regions, such as Canada and Scandinavia , where steam engines were not viable and early petrol and diesel engines could not be relied upon to operate. However, it also makes them unsuitable for short time running use, especially in an automobile. The reliability of
13635-409: The inlet port. At the same time fuel is sprayed into the vaporiser. The charge of air on top of the piston is driven into the vaporiser, where it mixes with the atomised fuel and combustion takes place. The piston is driven down the cylinder. As it descends, the piston first uncovers the exhaust port. The pressurised exhaust gases flow out of the cylinder. A fraction after the exhaust port is uncovered,
13770-419: The intake manifold is an air sleeve that feeds the intake ports. The intake ports are placed at a horizontal angle to the cylinder wall (I.e: they are in plane of the piston crown) to give a swirl to the incoming charge to improve combustion. The largest reciprocating IC are low speed CI engines of this type; they are used for marine propulsion (see marine diesel engine ) or electric power generation and achieve
13905-407: The internal surfaces of the hot bulb ( red hot due to external heating applied before starting or due to the maintained heat of combustion as the engine runs). The compression stroke mostly serves to create a turbulent movement of air from the cylinder into the vaporizer, which mixes with the pre-vaporized fuel oil. This mixing, and the increase in oxygen content as the air is lightly compressed into
14040-429: The inventor of the diesel engine, Rudolf Diesel , was using peanut oil to run his engines. Renewable fuels are commonly blended with fossil fuels. Hydrogen , which is rarely used, can be obtained from either fossil fuels or renewable energy. Various scientists and engineers contributed to the development of internal combustion engines. In 1791, John Barber developed the gas turbine . In 1794 Thomas Mead patented
14175-406: The lubricating-oil reservoir. Lanz hot-bulb tractors and their many imitators had this feature, which reduced oil consumption considerably. In addition, if excess crankcase oil is present on start up, there is a danger of the engine starting and accelerating uncontrollably to well past the speed limits of the rotating and reciprocating components. This can result in destruction of the engine. There
14310-407: The oil into the combustion chamber. A ventilation system drives the small amount of gas that escapes past the pistons during normal operation (the blow-by gases) out of the crankcase so that it does not accumulate contaminating the oil and creating corrosion. In two-stroke gasoline engines the crankcase is part of the air–fuel path and due to the continuous flow of it, two-stroke engines do not need
14445-416: The only parts that move – it was simple to manufacture, operate and maintain. In the Bulldog engine, fuel is sprayed under low pressure onto the hot-bulb ignition device, where the fuel is ignited and gradually undergoes combustion. This makes the Bulldog engine thermodynamically inefficient, but it requires neither a carburettor like an Otto engine, nor high compression like a Diesel engine. It does not require
14580-402: The outer side of the cylinder, passages that contain cooling fluid are cast into the engine block whereas, in some heavy duty engines, the passages are the types of removable cylinder sleeves which can be replaceable. Water-cooled engines contain passages in the engine block where cooling fluid circulates (the water jacket ). Some small engines are air-cooled, and instead of having a water jacket
14715-457: The part of the cylinder below the exhaust port is used as a pump. The operation of the Day cycle engine begins when the crankshaft is turned so that the piston moves from BDC upward (toward the head) creating a vacuum in the crankcase/cylinder area. The carburetor then feeds the fuel mixture into the crankcase through a reed valve or a rotary disk valve (driven by the engine). There are cast in ducts from
14850-427: The path. The exhaust system of an ICE may also include a catalytic converter and muffler . The final section in the path of the exhaust gases is the tailpipe . The top dead center (TDC) of a piston is the position where it is nearest to the valves; bottom dead center (BDC) is the opposite position where it is furthest from them. A stroke is the movement of a piston from TDC to BDC or vice versa, together with
14985-412: The piston in the cylinder and the bearings due to the fuel mix having oil added to it. As the piston moves downward it first uncovers the exhaust, but on the first stroke there is no burnt fuel to exhaust. As the piston moves downward further, it uncovers the intake port which has a duct that runs to the crankcase. Since the fuel mix in the crankcase is under pressure, the mix moves through the duct and into
15120-414: The piston reaches top dead centre , causing the engine to reverse direction of rotation until the piston next approaches TDC, when combustion takes place and rotation reverses again - the engine can run indefinitely in this way without ever completing a full rotation of the crankshaft. The hot-bulb engine is unique amongst internal combustion engines in being able to run at 'zero revolutions per minute'. This
15255-453: The point that oil engines could run faster than 150 rpm. The structure of these engines were similar to steam engines, and without pressure-fed lubrication. In hot bulb engines, fuel is injected at low pressure, using a more economical and more reliable, and simpler configuration. However, by not using compressed air injection it is less efficient. In this period diesel and hot bulb engines were four stroke . In 1902 F. Rundlof invented
15390-409: The power wasting in overcoming friction , or to make the mechanism work at all. Also, the lubricant used can reduce excess heat and provide additional cooling to components. At the very least, an engine requires lubrication in the following parts: In 2-stroke crankcase scavenged engines, the interior of the crankcase, and therefore the crankshaft, connecting rod and bottom of the pistons are sprayed by
15525-403: The primary power supply for vehicles such as cars , aircraft and boats . ICEs are typically powered by hydrocarbon -based fuels like natural gas , gasoline , diesel fuel , or ethanol . Renewable fuels like biodiesel are used in compression ignition (CI) engines and bioethanol or ETBE (ethyl tert-butyl ether) produced from bioethanol in spark ignition (SI) engines. As early as 1900
15660-452: The same invention in France, Belgium and Piedmont between 1857 and 1859. In 1860, Belgian engineer Jean Joseph Etienne Lenoir produced a gas-fired internal combustion engine. In 1864, Nicolaus Otto patented the first atmospheric gas engine. In 1872, American George Brayton invented the first commercial liquid-fueled internal combustion engine. In 1876, Nicolaus Otto began working with Gottlieb Daimler and Wilhelm Maybach , patented
15795-684: The same principle as previously described. ( Firearms are also a form of internal combustion engine, though of a type so specialized that they are commonly treated as a separate category, along with weaponry such as mortars and anti-aircraft cannons.) In contrast, in external combustion engines , such as steam or Stirling engines , energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids for external combustion engines include air, hot water, pressurized water or even boiler -heated liquid sodium . While there are many stationary applications, most ICEs are used in mobile applications and are
15930-400: The stem of the valve or may act upon a rocker arm , again, either directly or through a pushrod . The crankcase is sealed at the bottom with a sump that collects the falling oil during normal operation to be cycled again. The cavity created between the cylinder block and the sump houses a crankshaft that converts the reciprocating motion of the pistons to rotational motion. The crankshaft
16065-724: The title Hornsby Akroyd Patent Oil Engine under licence. Some years later, Akroyd-Stuart's design was further developed in the United States by the German emigrants Mietz and Weiss, who combined the hot-bulb engine with the two-stroke scavenging principle, developed by Joseph Day to provide nearly twice the power, as compared to a four-stroke engine of the same size. Similar engines, for agricultural and marine use, were built by J. V. Svensons Motorfabrik , Bolinders , Lysekils Mekaniska Verkstad , AB Pythagoras and many other factories in Sweden. Akroyd-Stuart's engine
16200-625: The two-stroke crankcase scavenged engine that went on to become the prevalent hot bulb type engine. Small direct-injected diesel engines still were not practical and the prechambered indirect injection engine was invented, along with the requirement of glowplugs to be used for starting. With technology developed by Robert Bosch GmbH pump and injector systems could be built to run at a much higher pressure. Combined with high-precision injectors, high-speed diesels were produced from 1927. The hot bulbs started to develop cracks and breakups and were gradually replaced by water cooled cylinder heads with
16335-495: The use of locomotives had previously been impossible due to the risk. Hot bulb engines proved very popular for industrial engines in the early 20th century, but lacked the power to be used in anything larger. From around 1910, the diesel engine was improved dramatically, with more power being available at greater efficiencies than the hot bulb engine could manage. Diesel engines can achieve over 50% efficiency if designed with maximum economy in mind, and they offered greater power for
16470-433: The vaporised fuel in the hot bulb during the compression stroke. This meant that combustion was difficult to control to any degree of precision. Parts of the fuel charge throughout the hot bulb would ignite at different times, often before the piston had completed the compression stroke. This is identical to preignition in a conventional spark-ignition engine and leads to uneven forces and high thermal and physical stresses on
16605-461: The vaporizer, causes the fuel oil vapour to spontaneously ignite. The combustion of the fuel charge is completed in the hot bulb, but creates an expanding charge of exhaust gases and superheated air. The resulting pressure drives the piston down (the power stroke). The piston's action is converted to a rotary motion by the crankshaft-flywheel assembly, to which equipment can be attached for work to be performed. The flywheel stores momentum, some of which
16740-460: The vapour. The hot bulb engine is often confused with the diesel engine, and it is true that the two engines are very similar. A hot bulb engine features a prominent hot bulb vaporiser; a diesel engine does not. Other significant differences are: There is also a crucial difference in the timing of the fuel injection process: There is another, detailed difference in the method of fuel injection: Before World War I technology had not advanced to
16875-423: The volume of the combustion chamber is described by a ratio. Early engines had compression ratios of 6 to 1. As compression ratios were increased, the efficiency of the engine increased as well. With early induction and ignition systems the compression ratios had to be kept low. With advances in fuel technology and combustion management, high-performance engines can run reliably at 12:1 ratio. With low octane fuel,
17010-549: The world, the oil was actually drained and heated overnight and returned to the engine for cold starts. In the early 1950s, the gasoline Gasifier unit was developed, where, on cold weather starts, raw gasoline was diverted to the unit where part of the fuel was burned causing the other part to become a hot vapor sent directly to the intake valve manifold. This unit was quite popular until electric engine block heaters became standard on gasoline engines sold in cold climates. For ignition, diesel, PPC and HCCI engines rely solely on
17145-699: Was a leak. If the cooling water ran low, the engine would seize through overheating — a major problem, but it carried no danger of explosion. Some engines, including those used in Lanz Bulldog tractors, had a fusible plug fitted in the hot bulb. If the engine overheated the plug would melt, preventing compression and combustion and stopping the engine before major damage could occur – a particularly desirable feature on engines that were to run unattended. Compared with steam, petrol (Otto-cycle), and compression-ignition (Diesel-cycle) engines, hot-bulb engines are simpler, and therefore have fewer potential problems. There
17280-438: Was a licensed copy of the 25 HP hot-bulb Bulldog, built by Société Nationale de Construction Aeronautic du Centre ( SNCAC ) at Colombe in France from about 1939. It is believed that nearly 3,700 were built before production ceased in 1956. The KL Bulldog was produced by Kelly & Lewis of Springvale, Victoria, Australia from 1948 to December 1952. Just over 860 were built, based on the 35 HP Model N Bulldog. Ursus produced
17415-454: Was a relatively rare occurrence by the time the hot-bulb engine was invented. A more common problem was that if the water level in the boiler of a steam engine dropped too low, the lead plug in the crown of the furnace would melt, extinguishing the fire. If a hot-bulb engine ran out of fuel, it would simply stop and could be immediately restarted with more fuel. The water cooling was usually closed-circuit, so no water loss would occur unless there
17550-484: Was also an attractive characteristic of the engine for marine use, since it could be left 'running' without generating meaningful thrust, avoiding the need to shut the engine down and later carry out the lengthy starting procedure. The bi-directional abilities of the engine were an undesirable quality in hot-bulb-powered tractors equipped with gearboxes. At very low engine speeds the engine could reverse itself almost without any change in sound or running quality and without
17685-472: Was called "Pampa" and the badge on the front read IAME. From 1955 the tractor was produced by Dirección Nacional de Fabricaciones e Investigaciones Aeronáuticas and the badge was changed to DINFIA. A total of 3,760 Pampas were produced from 1951 to 1960. The Bulldog was similar to other European hot-bulb tractors that were being produced around the same time. Some of these examples are the SF Vierzon from France,
17820-399: Was not available. Usually, the dynamo or alternator would be driven off the engine's flywheel by a flat belt, to allow the necessary "gearing up" — making the generator turn at a faster speed than the engine. Companies such as Armstrong Whitworth and Boulton Paul manufactured and supplied complete generating sets, both the engine and generator, from the 1900s to the late 1920s, when
17955-405: Was one of the first motor vehicles to achieve over 100 mpg as a result. Internal combustion engines require ignition of the mixture, either by spark ignition (SI) or compression ignition (CI) . Before the invention of reliable electrical methods, hot tube and flame methods were used. Experimental engines with laser ignition have been built. The spark-ignition engine was a refinement of
18090-422: Was the first internal combustion engine to use a pressurised fuel injection system and also the first using a separate vapourising combustion chamber. It is the forerunner of all hot-bulb engines, which is considered the predecessor to diesel engines with antechamber injection. The Hornsby-Akroyd oil engine and other hot-bulb engines are different from Rudolf Diesel 's design where ignition occurs through
18225-698: Was usually made with a brass housing and steel plunger, operating with a variable stroke length. This resulted in a simple, rugged heavy engine. Therefore, they could be machined in an average machine shop without special tools. The Pythagoras Engine Factory in Norrtälje in Sweden is kept as a museum (the Pythagoras Mechanical Workshop Museum ) and has a functioning production line and extensive factory archives. Internal combustion engine An internal combustion engine ( ICE or IC engine )
#616383