Misplaced Pages

LaRa

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

LaRa (Lander Radioscience) is a Belgian radio science experiment that will be placed onboard Kazachok , planned to be launched in 2022. LaRa will monitor the Doppler frequency shift of a radio signal traveling between the Martian lander and the Earth . These Doppler measurements will be used to precisely observe the orientation and rotation of Mars , leading to a better knowledge of the internal structure of the planet.

#698301

71-561: LaRa will obtain coherent two-way Doppler measurements from the X band radio link between Kazachok and large antennas on Earth, like those of the Deep space network . The relative radial velocity between the Earth and the Martian lander is inferred from Doppler shifts measured at the Earth ground stations. Masers at the Earth's ground stations ensure the frequency stability. Véronique Dehant , scientist at

142-418: A fractal surface, such as rocks or soil, and are used by navigation radars. A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon . Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore,

213-424: A transmitter that emits radio waves known as radar signals in predetermined directions. When these signals contact an object they are usually reflected or scattered in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable electrical conductivity —such as most metals, seawater , and wet ground. This makes

284-482: A different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum , or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to

355-535: A full radar system, that he called a telemobiloscope . It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in Cologne and Rotterdam harbour but was rejected. In 1915, Robert Watson-Watt used radio technology to provide advance warning of thunderstorms to airmen and during

426-788: A more-or-less experimental basis, such as in the K band .) Notable deep space probe programs that have employed X band communications include the Viking Mars landers ; the Voyager missions to Jupiter , Saturn , and beyond; the Galileo Jupiter orbiter ; the New Horizons mission to Pluto and the Kuiper belt , the Curiosity rover and the Cassini-Huygens Saturn orbiter. An important use of

497-729: A physics instructor at the Imperial Russian Navy school in Kronstadt , developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter . In 1897, while testing this equipment for communicating between two ships in the Baltic Sea , he took note of an interference beat caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor Christian Hülsmeyer

568-495: A proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931,

639-698: A pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page , working at the Naval Research Laboratory . The following year, the United States Army successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by Rudolf Kühnhold and

710-442: A rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking stealth aircraft . These precautions do not totally eliminate reflection because of diffraction , especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff , are very reflective but do not direct

781-514: A single coaxial cable with a power adapter connecting to an ordinary cable modem. The local oscillator is usually 9750 MHz, the same as for K u band satellite TV LNB. Two way applications such as broadband typically use a 350 MHz TX offset. Small portions of the X band are assigned by the International Telecommunication Union (ITU) exclusively for deep space telecommunications. The primary user of this allocation

SECTION 10

#1732855676699

852-662: A system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding , the Air Member for Supply and Research , was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented

923-514: A wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become

994-855: A writeup on the apparatus was entered in the Inventions Book maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low) . Before the Second World War , researchers in the United Kingdom, France , Germany , Italy , Japan , the Netherlands , the Soviet Union , and

1065-452: Is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of multipath and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered. Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects

1136-436: Is a system that uses radio waves to determine the distance ( ranging ), direction ( azimuth and elevation angles ), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft , ships , spacecraft , guided missiles , motor vehicles , map weather formations , and terrain . A radar system consists of a transmitter producing electromagnetic waves in

1207-451: Is as follows, where F D {\displaystyle F_{D}} is Doppler frequency, F T {\displaystyle F_{T}} is transmit frequency, V R {\displaystyle V_{R}} is radial velocity, and C {\displaystyle C} is the speed of light: Passive radar is applicable to electronic countermeasures and radio astronomy as follows: Only

1278-560: Is intended. Radar relies on its own transmissions rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called illumination , although radio waves are invisible to the human eye as well as optical cameras. If electromagnetic waves travelling through one material meet another material, having

1349-545: Is not authorised to allocate frequency bands for military radio communication . This is also the case pertaining to X band military communications satellites . However, in order to meet military radio spectrum requirements, e.g. for fixed-satellite service and mobile-satellite service , the NATO nations negotiated the NATO Joint Civil/Military Frequency Agreement (NJFA). 2. 7250-7300 MHz

1420-471: Is often used in modern radars. The shorter wavelengths of the ;band provide higher-resolution imagery from high-resolution imaging radars for target identification and discrimination. X-band weather radars offer significant potential for short-range observations, but the loss of signal strength ( attenuation ) under rainy conditions limits their use at longer range. X band 10.15 to 10.7 GHz segment

1491-496: Is paired with 7975-8025 MHz for the MOBILE-SATELLlTE allocation. 3. The FIXED and MOBILE services are not to be implemented in the band 7250-7300 MHz in most NATO countries, including ITU Region 2. 4. In the band 7300-7750 MHz the transportable earth stations cannot claim protection from the other services. The Radio Regulations of the International Telecommunication Union allow amateur radio operations in

SECTION 20

#1732855676699

1562-682: Is the American NASA Deep Space Network (DSN). DSN facilities are in Goldstone, California (in the Mojave Desert ), near Canberra, Australia , and near Madrid, Spain , and provide continual communications from the Earth to almost any point in the Solar System independent of Earth rotation. (DSN stations are also capable of using the older and lower S band deep-space radio communications allocations, and some higher frequencies on

1633-417: Is the range. This yields: This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance , which can be used to increase detection range and reduce transmit power. The equation above with F = 1

1704-842: Is the second harmonic of C-band and fourth harmonic of S-band . The European X-band frequency is used for the Compact Linear Collider (CLIC) . ELF 3 Hz/100 Mm 30 Hz/10 Mm SLF 30 Hz/10 Mm 300 Hz/1 Mm ULF 300 Hz/1 Mm 3 kHz/100 km VLF 3 kHz/100 km 30 kHz/10 km LF 30 kHz/10 km 300 kHz/1 km MF 300 kHz/1 km 3 MHz/100 m HF 3 MHz/100 m 30 MHz/10 m VHF 30 MHz/10 m 300 MHz/1 m UHF 300 MHz/1 m 3 GHz/100 mm SHF 3 GHz/100 mm 30 GHz/10 mm EHF 30 GHz/10 mm 300 GHz/1 mm THF 300 GHz/1 mm 3 THz/0.1 mm Radar Radar

1775-420: Is used for terrestrial broadband in many countries, such as Brazil, Mexico, Saudi Arabia, Denmark, Ukraine, Spain and Ireland. Alvarion , CBNL , CableFree and Ogier make systems for this, though each has a proprietary airlink. DOCSIS (Data Over Cable Service Interface Specification) the standard used for providing cable internet to customers, uses some X band frequencies. The home / Business CPE has

1846-420: Is used in radar applications, including continuous-wave , pulsed, single- polarization , dual-polarization, synthetic aperture radar , and phased arrays . X-band radar frequency sub-bands are used in civil , military , and government institutions for weather monitoring , air traffic control , maritime vessel traffic control , defense tracking , and vehicle speed detection for law enforcement. X band

1917-623: The Nyquist frequency , since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: Or when substituting with F D {\displaystyle F_{D}} : As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most 150 m/s (340 mph), thus cannot reliably determine radial velocity of aircraft moving 1,000 m/s (2,200 mph). In all electromagnetic radiation ,

1988-714: The RAF's Pathfinder . The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In aviation , aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft

2059-639: The Royal Observatory of Belgium , is the Principal Investigator of the experiment. Antwerp Space N.V., a subsidiary of OHB SE , is the manufacturer of the LaRa instrument. The main parts of the transponder are the coherent detector, the transmitter with the Solid-State Power Amplifier, the micro controller unit , the receiver and the power supply unit . The Allan deviation (quantifying

2130-486: The electromagnetic spectrum . In some cases, such as in communication engineering , the frequency range of the X band is rather indefinitely set at approximately 7.0–11.2  GHz . In radar engineering, the frequency range is specified by the Institute of Electrical and Electronics Engineers (IEEE) as 8.0–12.0 GHz. The X band is used for radar , satellite communication , and wireless computer networks . X band

2201-440: The electromagnetic spectrum . One example is lidar , which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents. As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov ,

LaRa - Misplaced Pages Continue

2272-457: The nutations , and the length-of-day variations , as well as the polar motion . The precession and the nutations are variations in the orientation of Mars's rotation axis in space, the precession being the very long term motion (about 170 000 years for Mars) while the nutations are the variations with a shorter period (annual, semi-annual, ter-annual,... periods). A precise measurement of the Martian nutations enables an independent determination of

2343-460: The radio or microwaves domain, a transmitting antenna , a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds. Radar was developed secretly for military use by several countries in

2414-407: The reflective surfaces . A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during

2485-527: The "new boy" Arnold Frederic Wilkins to conduct an extensive review of available shortwave units. Wilkins would select a General Post Office model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. By placing a transmitter and receiver on opposite sides of the Potomac River in 1922, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through

2556-413: The 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the ionosphere and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of radio direction finding before turning his inquiry to shortwave transmission. Requiring a suitable receiver for such studies, he told

2627-770: The United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, Hungary and Sweden generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron , the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on

2698-417: The X band communications came with the two Viking program landers. When the planet Mars was passing near or behind the Sun, as seen from the Earth, a Viking lander would transmit two simultaneous continuous-wave carriers, one in the S band and one in the X band in the direction of the Earth, where they were picked up by DSN ground stations. By making simultaneous measurements at the two different frequencies,

2769-533: The arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2 , entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as

2840-475: The beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later, Lawrence A. Hyland at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as

2911-408: The detection of aircraft and ships. Radar absorbing material , containing resistive and sometimes magnetic substances, is used on military vehicles to reduce radar reflection . This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of

LaRa - Misplaced Pages Continue

2982-471: The detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems, semi-active radar homing , active radar homing , weather radar , military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during

3053-411: The detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar

3124-606: The device in patent GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry , Bawdsey Research Station located in Bawdsey Manor , near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home " along the East and South coasts of England in time for

3195-538: The electric field is perpendicular to the direction of propagation, and the electric field direction is the polarization of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate

3266-473: The entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies. A key development was the cavity magnetron in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared

3337-461: The firm GEMA  [ de ] in Germany and then another in June 1935 by an Air Ministry team led by Robert Watson-Watt in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such

3408-760: The frequency range 10.000 to 10.500 GHz, and amateur satellite operations are allowed in the range 10.450 to 10.500 GHz. This is known as the 3-centimeter band by amateurs and the X-band by AMSAT . Motion detectors often use 10.525 GHz. 10.4 GHz is proposed for traffic light crossing detectors. Comreg in Ireland has allocated 10.450 GHz for Traffic Sensors as SRD. Many electron paramagnetic resonance (EPR) spectrometers operate near 9.8 GHz. Particle accelerators may be powered by X-band RF sources. The frequencies are then standardized at 11.9942 GHz (Europe) or 11.424 GHz (US), which

3479-578: The frequency stability of the signal) of the measurements is expected to be lower than 10 − 13 {\displaystyle 10^{-13}} at 60 second integration time. The LaRa high-performance antennas were designed at the Université catholique de Louvain in Belgium to obtain an optimal antenna gain centered on an elevation (angle of the line-of-sight from the lander to Earth) of about 30° to 55°. There will be three antennas: two for

3550-423: The liquid state of the core and to determine some core properties. LaRa will also measure variations in the rotation angular momentum due to the redistribution of masses, such as the migration of ice from the polar caps to the atmosphere and the sublimation/condensation cycle of atmospheric CO 2 . X band The X band is the designation for a band of frequencies in the microwave radio region of

3621-494: The ocean liner Normandie in 1935. During the same period, Soviet military engineer P.K. Oshchepkov , in collaboration with the Leningrad Electrotechnical Institute , produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following

SECTION 50

#1732855676699

3692-520: The outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain ; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. The radar formed part of the " Dowding system " for collecting reports of enemy aircraft and coordinating

3763-1355: The period before and during World War II . A key development was the cavity magnetron in the United Kingdom , which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym , a common noun, losing all capitalization . The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy , air-defense systems , anti-missile systems , marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, radar remote sensing , altimetry and flight control systems , guided missile target locating systems, self-driving cars , and ground-penetrating radar for geological observations. Modern high tech radar systems use digital signal processing and machine learning and are capable of extracting useful information from very high noise levels. Other systems which are similar to radar make use of other parts of

3834-706: The primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms , tornadoes , winter storms , precipitation types, etc. Geologists use specialized ground-penetrating radars to map the composition of Earth's crust . Police forces use radar guns to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency breaking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of Intelligent Transport Systems , fixed-position stopped vehicle detection (SVD) radars are mounted on

3905-432: The radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Objects moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency ( F T {\displaystyle F_{T}} ) is pulsed, using a pulse repeat frequency of F R {\displaystyle F_{R}} ,

3976-414: The response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting

4047-473: The resulting data enabled theoretical physicists to verify the mathematical predictions of Albert Einstein 's General Theory of Relativity . These results are some of the best confirmations of the General Theory of Relativity. The new European double Mars Mission ExoMars will also use X band communication, on the instrument LaRa, to study the internal structure of Mars, and to make precise measurements of

4118-410: The resulting frequency spectrum will contain harmonic frequencies above and below F T {\displaystyle F_{T}} with a distance of F R {\displaystyle F_{R}} . As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F R {\displaystyle F_{R}} , called

4189-427: The roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects. Smaller radar systems are used to detect human movement . Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common. A radar system has

4260-408: The rotation and orientation of Mars by monitoring two-way Doppler frequency shifts between the surface platform and Earth. It will also detect variations in angular momentum due to the redistribution of masses, such as the migration of ice from the polar caps to the atmosphere. The International Telecommunication Union (ITU), the international body which allocates radio frequencies for civilian use,

4331-407: The scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross-section . The power P r returning to the receiving antenna is given by the equation: where In the common case where the transmitter and the receiver are at the same location, R t = R r and the term R t ² R r ² can be replaced by R , where R

SECTION 60

#1732855676699

4402-402: The size and density of the liquid core because of a resonance in the nutation amplitudes. The resonant amplification of the low-frequency forced nutations depends sensibly on the size, moment of inertia , and flattening of the core . This amplification is expected to correspond to a displacement of between a few to forty centimeters on Mars surface. Observing the amplification allows to confirm

4473-491: The target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror . If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering , an effect that creates Earth's blue sky and red sunsets. When

4544-569: The technology with the U.S. during the 1940 Tizard Mission . In April 1940, Popular Science showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 Popular Mechanics had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt

4615-506: The transmission (for redundancy purposes) and one for reception. Cables connect the transponder to the three antennas. Belgium and the Belgian Federal Science Policy Office (BELSPO) fund the development and the manufacturing of LaRa through ESA 's PRODEX program. LaRa will study the rotation of Mars as well as its internal structure, with particular focus on its core . It will observe the Martian precession rate,

4686-879: The transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers . More sophisticated methods of signal processing are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light , infrared light , and ultraviolet light , are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection

4757-487: The two length scales are comparable, there may be resonances . Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between

4828-467: The use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is moving either toward or away from the transmitter, there will be a slight change in the frequency of the radio waves due to the Doppler effect . Radar receivers are usually, but not always, in the same location as

4899-608: Was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted ground-controlled approach systems in which the plane's position is observed on precision approach radar screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over

4970-748: Was sent to the U.S. in 1941 to advise on air defense after Japan's attack on Pearl Harbor . Alfred Lee Loomis organized the secret MIT Radiation Laboratory at Massachusetts Institute of Technology , Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including small, lightweight sets to equip night fighters ( aircraft interception radar ) and maritime patrol aircraft ( air-to-surface-vessel radar ), and complementary navigation systems like Oboe used by

5041-459: Was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for

#698301