Misplaced Pages

Centurion C-RAM

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#661338

102-522: The Centurion C-RAM , also called the Land Phalanx Weapon System ( LPWS ), is an American Counter-Rocket, Artillery, and Mortar ( C-RAM ) air defense artillery system. The system was developed in 2004, during and after the Iraq War identified a weakness in ground-based anti-projectile artillery . The system is produced by Northrop Grumman , Raytheon , and Oshkosh Corporation . The Phalanx

204-406: A hypersonic missile against Ukraine, Joe Biden characterized the weapon as "almost impossible to stop". Boost-glide hypersonic weapons shift trajectory to evade current missile-defense systems. Glide Phase Interceptor (GPI) will provide defense against maneuvering hypersonic weapons . Another way to counter an ABM system is to attach multiple warheads that break apart upon reentry. If

306-600: A 75 mm 12-pounder, and even a 105 mm gun. Erhardt also had a 12-pounder, while Vickers Maxim offered a 3-pounder and Schneider a 47 mm. The French balloon gun appeared in 1910, it was an 11-pounder but mounted on a vehicle, with a total uncrewed weight of two tons. However, since balloons were slow moving, sights were simple. But the challenges of faster moving aeroplanes were recognised. By 1913 only France and Germany had developed field guns suitable for engaging balloons and aircraft and addressed issues of military organisation. Britain's Royal Navy would soon introduce

408-534: A C-RAM system that has a lower impact on the ground, as they create little debris. The laser system is also being proposed to reduce the cost of interception. Initially, the C-RAM systems were distributed to United States allies for use against insurgent mortar attacks in the Iraq War , this being a common type of attack. The system was operated by several countries in the Green Zone to defend against attacks on embassies in

510-546: A defensive system capable of intercepting one missile type frequently cannot intercept others. However, there is sometimes overlap in capability. Targets long-range ICBMs , which travel at about 7 km/s (15,700 mph). Examples of currently active systems: Russian A-135 , which defends Moscow, the US Ground-Based Midcourse Defense that defends the United States from missiles launched from Asia and

612-628: A full military structure. For example, the UK's Anti-Aircraft Command, commanded by a full British Army general was part of ADGB. At its peak in 1941–42 it comprised three AA corps with 12 AA divisions between them. The use of balloons by the U.S. Army during the American Civil War compelled the Confederates to develop methods of combating them. These included the use of artillery, small arms, and saboteurs. They were unsuccessful, and internal politics led

714-451: A large traverse that could be easily transported on a wagon. Krupp 75 mm guns were supplied with an optical sighting system that improved their capabilities. The German Army also adapted a revolving cannon that came to be known to Allied fliers as the " flaming onion " from the shells in flight. This gun had five barrels that quickly launched a series of 37 mm artillery shells. As aircraft started to be used against ground targets on

816-543: A maritime force against attacks by airborne weapons launched from aircraft, ships, submarines and land-based sites". In some armies the term all-arms air defence (AAAD) is used for air defence by nonspecialist troops. Other terms from the late 20th century include "ground based air defence" (GBAD) with related terms " short range air defense " (SHORAD) and man-portable air-defense system (MANPADS). Anti-aircraft missiles are variously called surface-to-air missiles , ("SAMs") and surface-to-air guided weapons (SAGWs). Examples are

918-439: A missile decoy is. These types of decoys attempt to mask the attacking ICBM via the release of many similar missiles. This type of decoy confuses the missile defense system by the sudden replication and the sheer amount that the defense has to deal with. Knowing that no defense system is 100% reliable, this confusion within the targeting of the defense system would cause the system to target each decoy with equal priority and as if it

1020-519: A multitude of sensory information at a centralized center for the ballistic missile defense system (BMDS). The command center allows for human management in accordance to the incorporated sensory information- BMDS status, system coverage, and ballistic missile attacks. The interface system helps build an image of the battle scenario or situation which enables the user to select the optimal firing solutions. The first C2BMC system became operational in 2004. Since then, many elements have been added to update

1122-504: A new 3.6-inch gun, in 1918. In 1928 a 3.7-inch (94 mm) gun became the preferred solution, but it took six years to gain funding. Production of the QF 3.7-inch gun began in 1937; this gun was used on mobile carriages with the field army and transportable guns on fixed mountings for static positions. At the same time the Royal Navy adopted a new 4.5-inch (113 mm) gun in a twin turret, which

SECTION 10

#1732859426662

1224-624: A new field mounting was introduced in 1916. Since most attacks were at night, searchlights were soon used, and acoustic methods of detection and locating were developed. By December 1916 there were 183 AA sections defending Britain (most with the 3-inch), 74 with the BEF in France and 10 in the Middle East. AA gunnery was a difficult business. The problem was of successfully aiming a shell to burst close to its target's future position, with various factors affecting

1326-666: A par with the army, navy, or air force. In the Soviet Union, this was called Voyska PVO , and had both fighter aircraft, separate from the air force, and ground-based systems. This was divided into two arms, PVO Strany, the Strategic Air defence Service responsible for Air Defence of the Homeland, created in 1941 and becoming an independent service in 1954, and PVO SV, Air Defence of the Ground Forces. Subsequently, these became part of

1428-409: Is a system, weapon, or technology involved in the detection, tracking, interception, and also the destruction of attacking missiles . Conceived as a defense against nuclear-armed intercontinental ballistic missiles (ICBMs), its application has broadened to include shorter-ranged non-nuclear tactical and theater missiles. China , France , India , Iran , Israel , Italy , Russia , Taiwan ,

1530-411: Is accomplished via the releasing of decoys in certain phases of flight. Because objects of differing weights follow the same trajectory when in space, decoys released during the midcourse phase can prevent interceptor missiles from accurately identifying the warhead. This could force the defense system to attempt to destroy all incoming projectiles, which masks the true attacking missile and lets it slip by

1632-530: Is an extension of air defence, as are initiatives to adapt air defence to the task of intercepting any projectile in flight. Most modern anti-aircraft (AA) weapons systems are optimized for short-, medium-, or long-range air defence, although some systems may incorporate multiple weapons (such as both autocannons and surface-to-air missiles ). ‘Layered air defence’ usually refers to multiple ‘tiers’ of air defence systems which, when combined, an airborne threat must penetrate in order to reach its target; This defence

1734-478: Is an unified command and control network developed by the US Army. It is designed to integrate data relay between weapon launchers, radars , and the operators, which allows air-defense units to fire interceptors with information being relayed among radars. The advantage of such a system is it can increase the area an air unit can defend and reduce interceptor spending by ensuring than no other air defense unit would engage

1836-475: Is assisted but not governed by identification friend or foe (IFF) electronic devices originally introduced during the Second World War . While these rules originate at the highest authority, different rules can apply to different types of air defence covering the same area at the same time. AAAD usually operates under the tightest rules. NATO calls these rules "weapon control orders" (WCO), they are: Until

1938-631: Is deployed in several ways: Air defence has included other elements, although after the Second World War most fell into disuse: Passive air defence is defined by NATO as "Passive measures taken for the physical defence and protection of personnel, essential installations and equipment in order to minimise the effectiveness of air and/or missile attack". It remains a vital activity by ground forces and includes camouflage and concealment to avoid detection by reconnaissance and attacking aircraft. Measures such as camouflaging important buildings were common in

2040-434: Is engineered to self-destruct 2300 meters from launch, to prevent casualties on the ground. It also contains a tracer. The Centurion has a K u -band (AN/TPQ-36) active electronically scanned array radar produced by Raytheon for tracking smaller targets in the air. The Phalanx can be mounted on an Oshkosh-built HEMTT with an integrated generator and cooling system. The system was designed to be fully mobile and to increase

2142-523: Is fully self-contained. The Centurion shot down 70% of indirect fire in Afghanistan, defending an area roughly 1.2 kilometres (0.75 mi) around the bases as well. The concept of a laser-based Centurion system has been suggested by companies such as Raytheon, for the ability to cover a larger area. Although projects have been abandoned in the past, and electricity consumption has consistently been too high for combat environments. Lasers have been proposed as

SECTION 20

#1732859426662

2244-508: Is intended to improve the interoperability for joint operations of NATO and coalition forces. Link-16 is also used by the US Army and Navy for air and sea operations. An important feature of Link-16 is its ability to broadcast information simultaneously to as many users as needed. Another feature of Link-16 is its ability to act as nodes, which allows for a multitude of distributed forces to operate cohesively. The newest generation of Link-16

2346-454: Is operated by specialists, batteries may have several dozen teams deploying separately in small sections; self-propelled air defence guns may deploy in pairs. Batteries are usually grouped into battalions or equivalent. In the field army, a light gun or SHORAD battalion is often assigned to a manoeuvre division. Heavier guns and long-range missiles may be in air-defence brigades and come under corps or higher command. Homeland air defence may have

2448-407: Is the multifunctional information distribution system low-volume terminal (MIDS LVT). It is a much smaller unit that can be fitted on air, ground, and sea units to incorporate data. The MIDS LVT terminals are installed on most bombers , aircraft , UAVs , and tankers , allowing for the incorporation of most air defense systems. The Integrated Air and Missile Defense Battle Command System (IBCS)

2550-414: Is to detect hostile aircraft and destroy them. The critical issue is to hit a target moving in three-dimensional space; an attack must not only match these three coordinates, but must do so at the time the target is at that position. This means that projectiles either have to be guided to hit the target, or aimed at the predicted position of the target at the time the projectile reaches it, taking into account

2652-517: Is usually accomplished via the combined use of systems optimized for either short-, medium-, or long-range air defence. In some countries, such as Britain and Germany during the Second World War , the Soviet Union , and modern NATO and the United States, ground-based air defence and air defence aircraft have been under integrated command and control. However, while overall air defence may be for homeland defence (including military facilities), forces in

2754-426: Is usually on this order. Examples of deployed theater missile defenses: Israeli Arrow 2 missile and David's Sling , American THAAD , and Russian S-400 . Targets short-range tactical ballistic missiles , which usually travel at less than 1.5 km/s (3,400 mph). Tactical anti-ballistic missiles (ABMs) have short ranges, typically 20–80 km (12–50 miles). Examples of currently-deployed tactical ABMs are

2856-425: The 13-pr QF 9 cwt and these proved much more satisfactory. However, in general, these ad hoc solutions proved largely useless. With little experience in the role, no means of measuring target, range, height or speed the difficulty of observing their shell bursts relative to the target gunners proved unable to get their fuse setting correct and most rounds burst well below their targets. The exception to this rule

2958-458: The QF 3-inch and QF 4-inch AA guns and also had Vickers 1-pounder quick firing "pom-poms" that could be used in various mountings. The first US anti-aircraft cannon was a 1-pounder concept design by Admiral Twining in 1911 to meet the perceived threat of airships, that eventually was used as the basis for the US Navy's first operational anti-aircraft cannon: the 3-inch/23 caliber gun . On

3060-647: The RIM-66 Standard , Raytheon Standard Missile 6 , or the MBDA Aster missile. Non-English terms for air defence include the German Flak or FlaK ( Fliegerabwehrkanone , 'aircraft defence cannon', also cited as Flugabwehrkanone ), whence English flak , and the Russian term Protivovozdushnaya oborona ( Cyrillic : Противовозду́шная оборо́на), a literal translation of 'anti-air defence', abbreviated as PVO. In Russian,

3162-653: The Royal Naval Volunteer Reserve (RNVR) was manning AA guns and searchlights assembled from various sources at some nine ports. The Royal Garrison Artillery (RGA) was given responsibility for AA defence in the field, using motorised two-gun sections. The first were formally formed in November 1914. Initially they used QF 1-pounder "pom-pom"s (37 mm versions of the Maxim Gun ). All armies soon deployed AA guns often based on their smaller field pieces, notably

Centurion C-RAM - Misplaced Pages Continue

3264-592: The United Kingdom and the United States have all developed such air defense systems. Missile defense can be divided into categories based on various characteristics: type/range of missile intercepted, the trajectory phase where the intercept occurs, and whether intercepted inside or outside the Earth's atmosphere: These types/ranges include strategic, theater and tactical. Each entails unique requirements for intercept;

3366-658: The United States Air Force 's operating bases in the UK. All ground-based air defence was removed from Royal Air Force (RAF) jurisdiction in 2004 . The British Army's Anti-Aircraft Command was disbanded in March 1955, but during the 1960s and 1970s the RAF's Fighter Command operated long-range air-defence missiles to protect key areas in the UK. During World War II, the Royal Marines also provided air defence units; formally part of

3468-649: The 1950s, guns firing ballistic munitions were the standard weapon; guided missiles then became dominant, except at the very shortest ranges. However, the type of shell or warhead and its fuzing and, with missiles, the guidance arrangement were and are varied. Targets are not always easy to destroy; nonetheless, damaged aircraft may be forced to abort their mission and, even if they manage to return and land in friendly territory, may be out of action for days or permanently. Ignoring small arms and smaller machine-guns, ground-based air defence guns have varied in calibre from 20 mm to at least 152 mm. Ground-based air defence

3570-465: The 30th of September, 1915, troops of the Serbian Army observed three enemy aircraft approaching Kragujevac . Soldiers fired at them with shotguns and machine-guns but failed to prevent them from dropping 45 bombs over the city, hitting military installations, the railway station and many other, mostly civilian, targets in the city. During the bombing raid, private Radoje Ljutovac fired his cannon at

3672-420: The 8.8 cm FlaK 18 in 1933, the 36 and 37 models followed with various improvements, but ballistic performance was unchanged. In the late 1930s the 10.5 cm FlaK 38 appeared, soon followed by the 39; this was designed primarily for static sites but had a mobile mounting, and the unit had 220 V 24 kW generators. In 1938 design started on the 12.8 cm FlaK . Britain had successfully tested

3774-484: The AA systems are called zenitnye (i.e., 'pointing to zenith ') systems. In French, air defence is called Défense contre les aéronefs (DCA) , aéronef meaning 'aircraft'. The maximum distance at which a gun or missile can engage an aircraft is an important figure. However, many different definitions are used and unless the same definition is used, performance of different guns or missiles cannot be compared. For AA guns only

3876-638: The ABM is able to counter one or two of the warheads via detonation or collision the others would slip through radar either because of limitations on ABM firing speeds or because of radar blackout caused by plasma interference. The first MRV was the Polaris A-3 which had three warheads and was launched from a submarine. Before regulations on how many warheads could be stored in a MIRV, the Soviets had up to twenty to thirty attached to ICBMs. Jammers use radar noise to saturate

3978-485: The British Isles increased in 1915 and the AA efforts were deemed somewhat ineffective, so a Royal Navy gunnery expert, Admiral Sir Percy Scott , was appointed to make improvements, particularly an integrated AA defence for London. The air defences were expanded with more RNVR AA guns, 75 mm and 3-inch, the pom-poms being ineffective. The naval 3-inch was also adopted by the army, the QF 3-inch 20 cwt (76 mm),

4080-534: The British adopted a new instrument developed by Vickers. It was a mechanical analogue computer - the Predictor AA No 1. Given the target height, its operators tracked the target and the predictor produced bearing, quadrant elevation and fuse setting. These were passed electrically to the guns, where they were displayed on repeater dials to the layers who "matched pointers" (target data and the gun's actual data) to lay

4182-456: The C2BMC, which act to provide further sensory information and allow for enhanced communications between combatant commanders. A C2BMC is even capable of initiating live planning system before any engagement has even started. The function of ground-based midcourse defense (GMD) systems is to provide combatants the ability to seek and destroy intermediate- and long-range ballistic missiles en route to

Centurion C-RAM - Misplaced Pages Continue

4284-595: The Earth's atmosphere, and they can be intercepted in either place. There are advantages and disadvantages to either intercept technique. Some missiles such as THAAD can intercept both inside and outside the Earth's atmosphere, giving two intercept opportunities. Endoatmospheric anti-ballistic missiles are usually shorter ranged (e.g., American MIM-104 Patriot , Indian Advanced Air Defence ). Advantages: Disadvantages: Exoatmospheric anti-ballistic missiles are usually longer-ranged (e.g., American GMD, Ground-Based Midcourse Defense ). Advantages: Disadvantages: Given

4386-468: The French 75 mm and Russian 76.2 mm, typically simply propped up on some sort of embankment to get the muzzle pointed skyward. The British Army adopted the 13-pounder quickly producing new mountings suitable for AA use, the 13-pdr QF 6 cwt Mk III was issued in 1915. It remained in service throughout the war but 18-pdr guns were lined down to take the 13-pdr shell with a larger cartridge producing

4488-544: The German Flugzeugabwehrkanone ), "ack-ack" (from the spelling alphabet used by the British for voice transmission of "AA"); and "archie" (a World War I British term probably coined by Amyas Borton , and believed to derive via the Royal Flying Corps , from the music-hall comedian George Robey 's line "Archibald, certainly not!" ). NATO defines anti-aircraft warfare (AAW) as "measures taken to defend

4590-491: The Israeli Arrow 3 which defends Israel from ICBMs . Geographic range of strategic defense can be regional (Russian system) or national (US and Israeli system's). Targets medium-range missiles, which travel at about 3 km/s (6,700 mph) or less. In this context, the term "theater" means the entire localized region for military operations, typically a radius of several hundred kilometers; defense range of these systems

4692-627: The Israeli Iron Dome , American MIM-104 Patriot and Russian S-300V . Ballistic missiles can be intercepted in three regions of their trajectory : boost phase , midcourse phase, or terminal phase. Intercepting the missile while its rocket motors are firing, usually over the launch territory. Advantages: Disadvantages: Intercepting the missile in space after the rocket burns out (example: American Ground-Based Midcourse Defense (GMD), Chinese SC-19 & DN-series missiles, Israeli Arrow 3 missile). Advantages: Disadvantages: Intercepting

4794-468: The Second World War. During the Cold War the runways and taxiways of some airfields were painted green. While navies are usually responsible for their own air defence—at least for ships at sea—organisational arrangements for land-based air defence vary between nations and over time. The most extreme case was the Soviet Union and this model may still be followed in some countries: it was a separate service, on

4896-492: The US homeland. Data are transmitted from the defense satellite communication system, and compiles an image using the coordinated information. The system is able to relay real-time data once missiles have been launched. The GMD can also work to receive information from the C2BMC, which allows Aegis SPY-1 , and TPY-2 to contribute to the defense system. A problem with GMD is that the ground systems have increasingly becoming obsolete as

4998-606: The United States Army's Balloon Corps to be disbanded mid-war. The Confederates experimented with balloons as well. Turks carried out the first ever anti-airplane operation in history during the Italo-Turkish war . Although lacking anti-aircraft weapons, they were the first to shoot down an airplane by rifle fire. The first aircraft to crash in a war was the one of Lieutenant Piero Manzini, shot down on August 25, 1912. The earliest known use of weapons specifically made for

5100-647: The air force and ground forces respectively. At the other extreme, the United States Army has an Air Defense Artillery Branch that provides ground-based air defence for both homeland and the army in the field; however, it is operationally under the Joint Force Air Component Commander . Many other nations also deploy an air-defence branch in the army. Some, such as Japan or Israel, choose to integrate their ground based air defence systems into their air force. In Britain and some other armies,

5202-413: The altitude at which a gun could deliver a series of shells against a moving target; this could be constrained by maximum fuse running time as well as the gun's capability. By the late 1930s the British definition was "that height at which a directly approaching target at 400 mph [640 km/h] can be engaged for 20 seconds before the gun reaches 70 degrees elevation". The essence of air defence

SECTION 50

#1732859426662

5304-545: The anti-aircraft role occurred during the Franco-Prussian War of 1870. After the disaster at Sedan , Paris was besieged and French troops outside the city started an attempt at communication via balloon . Gustav Krupp mounted a modified 1-pounder (37 mm) gun – the Ballonabwehrkanone (Balloon defence cannon) or BaK — on top of a horse-drawn carriage for the purpose of shooting down these balloons. By

5406-610: The area. The system has been pushed as an idea to counter Iranian missiles and drones, especially in the Gulf states and in Ukraine since the Russian invasion in 2022. As of 2008, the US Army had received 22 systems, leading to the Navy experiencing some delays. Air defense artillery Anti-aircraft warfare is the counter to aerial warfare and includes "all measures designed to nullify or reduce

5508-438: The army adopted in simplified single-gun mountings for static positions, mostly around ports where naval ammunition was available. The performance of the new guns was limited by their standard fuse No 199, with a 30-second running time, although a new mechanical time fuse giving 43 seconds was nearing readiness. In 1939 a machine fuse setter was introduced to eliminate manual fuse setting. Missile defense Missile defense

5610-407: The ascending part of the trajectory can be usefully used. One term is "ceiling", the maximum ceiling being the height a projectile would reach if fired vertically, not practically useful in itself as few AA guns are able to fire vertically, and the maximum fuse duration may be too short, but potentially useful as a standard to compare different weapons. The British adopted "effective ceiling", meaning

5712-457: The battlefield, the AA guns could not be traversed quickly enough at close targets and, being relatively few, were not always in the right place (and were often unpopular with other troops), so changed positions frequently. Soon the forces were adding various machine-gun based weapons mounted on poles. These short-range weapons proved more deadly, and the " Red Baron " is believed to have been shot down by an anti-aircraft Vickers machine gun . When

5814-408: The competition for a share of limited defence budgets. Demobilisation meant that most AA guns were taken out of service, leaving only the most modern. However, there were lessons to be learned. In particular the British, who had had AA guns in most theatres in action in daylight and used them against night attacks at home. Furthermore, they had also formed an Anti-Aircraft Experimental Section during

5916-428: The defense system. Since there can be many forms of this type of deception of a missile system, different categorizations of decoys have developed, all of which operate and are designed slightly different. Details of these types of decoys and their effectiveness were provided in a report by a variety of prominent scientists in 2000. This categorization of decoy is the most similar to the standard understanding of what

6018-674: The early 20th century balloon, or airship, guns, for land and naval use were attracting attention. Various types of ammunition were proposed, high explosive, incendiary, bullet-chains, rod bullets and shrapnel. The need for some form of tracer or smoke trail was articulated. Fuzing options were also examined, both impact and time types. Mountings were generally pedestal type but could be on field platforms. Trials were underway in most countries in Europe but only Krupp, Erhardt, Vickers Maxim, and Schneider had published any information by 1910. Krupp's designs included adaptations of their 65 mm 9-pounder,

6120-570: The effective banning of biological weaponry and chemical agents within war. However, this does not guarantee that this countermeasure to missile defense system will not be abused via extremists or terrorists. An example of this severe threat can be further seen in North Korea's testing of anthrax tipped ICBMs in 2017. Countries including Iran and North Korea may have sought missiles that can maneuver and vary their trajectories in order to evade missile defense systems. In March 2022, when Russia used

6222-439: The effectiveness of hostile air action". It encompasses surface-based, subsurface ( submarine-launched ), and air-based weapon systems, in addition to associated sensor systems, command and control arrangements, and passive measures (e.g. barrage balloons ). It may be used to protect naval , ground , and air forces in any location. However, for most countries, the main effort has tended to be homeland defence . Missile defence

SECTION 60

#1732859426662

6324-482: The enemy aircraft and successfully shot one down. It crashed in the city and both pilots died from their injuries. The cannon Ljutovac used was not designed as an anti-aircraft gun; it was a slightly modified Turkish cannon captured during the First Balkan War in 1912. This was the first occasion in military history that a military aircraft was shot down with ground-to-air artillery fire. The British recognised

6426-654: The field, wherever they are, provide their own defences against airborne threats. Until the 1950s, guns firing ballistic munitions ranging from 7.62 mm (.30 in) to 152.4 mm (6 in) were the standard weapons; guided missiles then became dominant, except at the very shortest ranges (as with close-in weapon systems , which typically use rotary autocannons or, in very modern systems, surface-to-air adaptations of short-range air-to-air missiles , often combined in one system with rotary cannons). It may also be called counter-air , anti-air , AA , flak , layered air defence or air defence forces . The term air defence

6528-438: The flexibility of the inherently stationary system. The vehicle's high power availability was needed to support the vehicle. The mobile variant is functionally the same as the stationary variant. The mobile variant is self-contained for easy deployment and movement. The system was fielded in Afghanistan at US and allied bases that were too small to cost-effectively deploy other systems. The system has sensors and imaging so that it

6630-578: The ground-based air defence of the British Army's Anti-Aircraft Command , although field-deployed air defence relied on less sophisticated arrangements. NATO later called these arrangements an "air defence ground environment", defined as "the network of ground radar sites and command and control centres within a specific theatre of operations which are used for the tactical control of air defence operations". Rules of engagement are critical to prevent air defences engaging friendly or neutral aircraft. Their use

6732-534: The guns. This system of repeater electrical dials built on the arrangements introduced by British coast artillery in the 1880s, and coast artillery was the background of many AA officers. Similar systems were adopted in other countries and for example the later Sperry M3A3 in the US, was also used by Britain as the Predictor AA No 2. Height finders were also increasing in size; in Britain, the seven-foot optical base World War I Barr & Stroud UB 2 stereoscopic rangefinder

6834-526: The heat traces of incoming missiles, this capsule of extremely cold liquid either renders the incoming missile entirely invisible to detection or reduces the system's ability to detect the incoming missile fast enough. Another commonly applied countermeasure to missile defense is the application of various low-emissivity coatings. Similar to cooled shrouds, these warheads are fully coated with infrared reflective or resistant coatings that allow similar resistance to infrared detection that cooled shrouds do. Because

6936-848: The immense variety by which a defense system can operate (targeting nuclear-armed intercontinental ballistic missiles (ICBMs), tactical , and theater missiles), there are some unarguably effective exoatmospheric (outside the Earth's atmosphere ) countermeasures an attacking party can use to deter or completely defend against certain types of defense systems, ranges of ACBM's , and intercept locations. Many of defenses to these countermeasures have been implemented and taken into account when constructing missile defense systems, however, it does not guarantee their effectiveness or success. The US Missile Defense Agency has received scrutiny in regards to their lack of foresight of these countermeasures, causing many scientists to perform various studies and data analysis as to

7038-608: The incoming signals to the point where the radar cannot discern meaningful data about a target's location with meaningless noise. They can also imitate the signal of a missile to create a fake target.  They are usually spread over planned missile paths to enemy territory to give the missile a clear path to their target. Because these jammers take relatively little electricity and hardware to operate, they are usually small, self-contained, and easily dispersible. Command and control, battle management, and communications (C2BMC) systems are hardware and software interfaces that integrate

7140-494: The late 1930s for development work on sound-locating acoustic devices to be generally halted, although equipment was retained. Furthermore, in Britain the volunteer Observer Corps formed in 1925 provided a network of observation posts to report hostile aircraft flying over Britain. Initially radar was used for airspace surveillance to detect approaching hostile aircraft. However, the German Würzburg radar put into use in 1940

7242-405: The missile after it reenters the atmosphere (examples: American Aegis Ballistic Missile Defense System , Chinese HQ-29 , American THAAD, American Sprint , Russian ABM-3 Gazelle ) Advantages: Disadvantages: Missile defense can take place either inside (endoatmospheric) or outside (exoatmospheric) the Earth's atmosphere . The trajectory of most ballistic missiles takes them inside and outside

7344-438: The missile shortly after the boost phase of the attacking ICBM. Because missile defense systems are designed with intent to destroy main attacking missiles or ICBMs, this system of sub-munition attack is too numerous for the system to defend against while also distributing the chemical or biological agent across a large area of attack. There is currently no proposed countermeasure to this type of attack except through diplomacy and

7446-513: The mobile naval base defence organisation, they were handled as an integral part of the army-commanded ground based air defences. The basic air defence unit is typically a battery with 2 to 12 guns or missile launchers and fire control elements. These batteries, particularly with guns, usually deploy in a small area, although batteries may be split; this is usual for some missile systems. SHORAD missile batteries often deploy across an area with individual launchers several kilometres apart. When MANPADS

7548-456: The most effective coating discovered so far is gold, though, this method is often overstepped by cooled shrouds. This is perhaps the most extreme approach to countering missile defense systems that are designed to destroy ICBMs and other forms of nuclear weaponry. Rather than using many missiles equipped with nuclear warheads as their main weapon of attack, this idea involves the release of biological or chemical sub-munition weapons or agents from

7650-491: The need for a detailed examination. The actual warhead may simply pass by undetected, or rejected as a threat. Another common countermeasure used to fool missile defense systems are the implementation of cooled shrouds surrounding attacking missiles. This method covers the entire missile in a steel containment filled with liquid oxygen, nitrogen, or other coolants that prevent the missile from being easily detected. Because many missile defense systems use infrared sensors to detect

7752-487: The need for anti-aircraft capability a few weeks before World War I broke out; on 8 July 1914, the New York Times reported that the British government had decided to "dot the coasts of the British Isles with a series of towers, each armed with two quick-firing guns of special design," while "a complete circle of towers" was to be built around "naval installations" and "at other especially vulnerable points". By December 1914

7854-422: The result of the replica decoy, increasing the chance that the real warhead passes through the system and strikes the target. This type of decoy is perhaps the most difficult and subversive for a missile defense system to determine. Instead of taking advantage of the missile defense system's targeting, this type of decoy intends to fool the operation of the system itself. Rather than using sheer quantity to overrun

7956-410: The same target. The IBCS will be able to integrate with air defense networks of foreign military as the global C2BMC system. IBCS engagement stations will integrate raw data from multiple sensors and process it into a single air picture, and choose elect different weapons and launcher locations depending on the detected threat instead of being limited to particular unit capabilities. The IBCS system

8058-461: The shells' predicted trajectory. This was called deflection gun-laying, where "off-set" angles for range and elevation were set on the gunsight and updated as their target moved. In this method, when the sights were on the target, the barrel was pointed at the target's future position. Range and height of the target determined fuse length. The difficulties increased as aircraft performance improved. The British dealt with range measurement first, when it

8160-621: The single artillery branch has been responsible for both home and overseas ground-based air defence, although there was divided responsibility with the Royal Navy for air defence of the British Isles in World War I . However, during the Second World War , the RAF Regiment was formed to protect airfields everywhere, and this included light air defences. In the later decades of the Cold War this included

8262-477: The speed and direction of both the target and the projectile. Throughout the 20th century, air defence was one of the fastest-evolving areas of military technology, responding to the evolution of aircraft and exploiting technology such as radar, guided missiles and computing (initially electromechanical analogue computing from the 1930s on, as with equipment described below). Improvements were made to sensors, technical fire control, weapons, and command and control. At

8364-422: The start of the 20th century these were either very primitive or non-existent. Initially sensors were optical and acoustic devices developed during World War I and continued into the 1930s, but were quickly superseded by radar, which in turn was supplemented by optoelectronics in the 1980s. Command and control remained primitive until the late 1930s, when Britain created an integrated system for ADGB that linked

8466-463: The target and having its height. Second, that the target would maintain a steady course, speed and height. This HAA was to engage targets up to 24,000 ft (7.3 km). Mechanical time fuses were required because the speed of powder burning varied with height, so fuse length was not a simple function of time of flight. Automated fire ensured a constant rate of fire that made it easier to predict where each shell should be individually aimed. In 1925

8568-486: The targeting system, an anti-simulation decoy disguises the actual warhead as a decoy, and a decoy as the actual warhead. This system of "anti-simulation" allows the attacking warhead to, in some cases, take advantage of the "bulk-filtering" of certain missile defense systems, in which objects with characteristics of the warhead poorly matching those expected by the defense are either not observed because of sensor filters, or observed very briefly and immediately rejected without

8670-402: The technology was initially installed as early as the 1990s. So, the ground sensors had been replaced sometime in 2018. The update was to add the capability of handling up to 44 systems; it would also reduce overlapping redundancies and inefficiencies. Missiles are a link that connects communication between land, air, and sea forces to support joint operations and improve operability. The system

8772-470: The true effectiveness of these countermeasures. A common countermeasure that attacking parties use to disrupt the efficacy of Missile Defense Systems are the simultaneous launching of decoys from the primary launch site or from the exterior of the main attacking missile itself. These decoys are usually small, lightweight dud rockets that take advantage of the interceptor sensors tracking and fool it by making many different targets available in an instant. This

8874-409: The war and accumulated large amounts of data that was subjected to extensive analysis. As a result, they published the two-volume Textbook of Anti-Aircraft Gunnery in 1924–1925. It included five key recommendations for HAA equipment: Two assumptions underpinned the British approach to HAA fire; first, aimed fire was the primary method and this was enabled by predicting gun data from visually tracking

8976-437: The war ended, it was clear that the increasing capabilities of aircraft would require better means of acquiring targets and aiming at them. Nevertheless, a pattern had been set: anti-aircraft warfare would employ heavy weapons to attack high-altitude targets and lighter weapons for use when aircraft came to lower altitudes. World War I demonstrated that aircraft could be an important part of the battlefield, but in some nations it

9078-415: The warhead itself. This creates a different kind of confusion within the system; rather than creating a situation where each decoy (and the warhead itself) appears the same and is therefore targeted and treated exactly like the "real" warhead, the targeting system simply does not know what is the real threat and what is a decoy due to the mass amount of differing information. This creates a similar situation as

9180-440: The years immediately after World War I, the prospect of another major war seemed remote, particularly in Europe, where the most militarily capable nations were, and little financing was available. Four years of war had seen the creation of a new and technically demanding branch of military activity. Air defence had made huge advances, albeit from a very low starting point. However, it was new and often lacked influential 'friends' in

9282-571: Was capable of providing data suitable for controlling AA guns, and the British Radar, Gun Laying, Mark I , was designed to be used on AA gun positions and was in use by 1939. The Treaty of Versailles prevented Germany having AA weapons, and for example, the Krupps designers joined Bofors in Sweden. Some World War I guns were retained and some covert AA training started in the late 1920s. Germany introduced

9384-581: Was determined by time of flight, but the burning rate of the gunpowder was affected by altitude. The British pom-poms had only contact-fused ammunition. Zeppelins , being hydrogen-filled balloons, were targets for incendiary shells and the British introduced these with airburst fuses, both shrapnel type-forward projection of incendiary "pot" and base ejection of an incendiary stream. The British also fitted tracers to their shells for use at night. Smoke shells were also available for some AA guns, these bursts were used as targets during training. German air attacks on

9486-683: Was developed and produced by Northrop Grumman, Raytheon, and Oshkosh Corporation during Operation Enduring Freedom to provide defense from rockets and artillery/ mortar shells, fulfilling the Counter Rocket, Artillery, and Mortar role. The system was developed from the Navy's ship-based Phalanx Close-in Weapons System (CIWS) when the Army requested to use the already-produced system to defend against indirect fire after an increase in mortar attacks. The system

9588-404: Was electrical; the operator entered the target range and had displays at guns; it was used with their 75 mm. The British Wilson-Dalby gun director used a pair of trackers and mechanical tachymetry; the operator entered the fuse length, and deflection angles were read from the instruments. By the start of World War I , the 77 mm had become the standard German weapon, and came mounted on

9690-410: Was first tested by Raytheon in November 2004, entering full service with the Army in 2005 as part of the forward area air defense system. The Army’s strategy was to stop indirect fire from impacting friendly forces or assets, by tracking and warning friendly units, or destroying the munition. The Phalanx uses the 20-millimeter M-940 MPT-SD round designed by General Dynamics for air defense. The round

9792-575: Was probably first used by the UK when Air Defence of Great Britain (ADGB) was created as a Royal Air Force command in 1925. However, arrangements in the UK were also called "anti-aircraft", abbreviated as AA , a term that remained in general use into the 1950s. After the First World War it was sometimes prefixed by "light" or "heavy" (LAA or HAA) to classify a type of gun or unit. Nicknames for anti-aircraft guns include "AA", "AAA" or "triple-A" (abbreviations of "anti-aircraft artillery"), "flak" (from

9894-472: Was realised that range was the key to producing a better fuse setting. This led to the height/range finder (HRF), the first model being the Barr & Stroud UB2, a two-metre optical coincident rangefinder mounted on a tripod. It measured the distance to the target and the elevation angle, which together gave the height of the aircraft. These were complex instruments and various other methods were also used. The HRF

9996-572: Was replaced by the nine-foot optical base UB 7 and the eighteen-foot optical base UB 10 (only used on static AA sites). Goertz in Germany and Levallois in France produced five m (16 ft) instruments. However, in most countries the main effort in HAA guns until the mid-1930s was improving existing ones, although various new designs were on drawing boards. From the early 1930s eight countries developed radar ; these developments were sufficiently advanced by

10098-551: Was soon joined by the height/fuse indicator (HFI), this was marked with elevation angles and height lines overlaid with fuse length curves, using the height reported by the HRF operator, the necessary fuse length could be read off. However, the problem of deflection settings — "aim-off" — required knowing the rate of change in the target's position. Both France and the UK introduced tachymetric devices to track targets and produce vertical and horizontal deflection angles. The French Brocq system

10200-459: Was the actual warhead, allowing the real warheads chance of passing through the system and striking the target to increase drastically. Similar to replica decoys, these types of decoys also take advantage of the limitations in number within the missile defense systems targeting. However, rather than using missiles of similar build and trace to the attacking warhead, these types of decoys all have slightly different appearances from both each other and

10302-501: Was the guns protecting spotting balloons, in which case the altitude could be accurately measured from the length of the cable holding the balloon. The first issue was ammunition. Before the war it was recognised that ammunition needed to explode in the air. Both high explosive (HE) and shrapnel were used, mostly the former. Airburst fuses were either igniferious (based on a burning fuse) or mechanical (clockwork). Igniferious fuses were not well suited for anti-aircraft use. The fuse length

10404-496: Was the prospect of strategic air attack that was the main issue, presenting both a threat and an opportunity. The experience of four years of air attacks on London by Zeppelins and Gotha G.V bombers had particularly influenced the British and was one of if not the main driver for forming an independent air force. As the capabilities of aircraft and their engines improved it was clear that their role in future war would be even more critical as their range and weapon load grew. However, in

#661338