The LINC ( Laboratory INstrument Computer ) is a 12-bit , 2048-word transistorized computer . The LINC is considered by some to be the first minicomputer and a forerunner to the personal computer . Originally named the Linc, suggesting the project's origins at MIT 's Lincoln Laboratory , it was renamed LINC after the project moved from the Lincoln Laboratory. The LINC was designed by Wesley A. Clark and Charles Molnar .
118-461: The LINC and other "MIT Group" machines were designed at MIT and eventually built by Digital Equipment Corporation (DEC) and Spear Inc. of Waltham, Massachusetts (later a division of Becton, Dickinson and Company ). The LINC sold for more than $ 40,000 at the time. A typical configuration included an enclosed 6'X20" rack ; four boxes holding (1) two tape drives, (2) display scope and input knobs, (3) control console and (4) data terminal interface; and
236-426: A 19-inch rack . The backplanes allowed 25 modules in a single 5-1/4 inch section of rack, and allowed the high densities needed to build a computer. The original laboratory and system module lines were offered in 500 kilocycle, 5 megacycle and 10 megacycle versions. In all cases, the supply voltages were -15 and +10 volts, with logic levels of -3 volts (passive pull-down) and 0 volts (active pull-up). DEC used
354-453: A 12-bit accumulator and a one-bit link register. The first sixteen locations in program memory have special functions. Location 0 supports the single-level of subroutine call, automatically being updated with a return address on every jump instruction. The next fifteen locations can be used as index registers by one of the addressing modes. A programmable, six-bit relay register is intended for use by external instruments. A later modification to
472-541: A 1963 summer workshop at MIT. Digital Equipment Corporation (starting in 1964) and, later, Spear Inc. of Waltham, Massachusetts, manufactured them commercially. DEC's pioneer C. Gordon Bell states that the LINC project began in 1961, with first delivery in March 1962, and the machine was not formally withdrawn until December 1969. A total of 50 were built (all using DEC System Module Blocks and cabinets), most at Lincoln Labs, housing
590-593: A VAX CPU was the VAX-11/780 , announced in October 1977, which DEC referred to as a superminicomputer . Although it was not the first 32-bit minicomputer, the VAX-11/780's combination of features, price, and marketing almost immediately propelled it to a leadership position in the market after it was released in 1978. VAX systems were so successful that in 1983, DEC canceled its Jupiter project , which had been intended to build
708-720: A capacity of about 256 kilobytes. Unlike the original DECtape media, DECtape II cartridges cannot be formatted on the tape drive transports sold to end-users, and have to be purchased in a factory pre-formatted state. The TU58 is also used with other computers, such as the Automatix Autovision machine vision system and AI32 robot controller. TU58 driver software is available for modern PCs running DOS . Early production TU58s suffered from some reliability and data interchangeability problems, which were eventually resolved. However, rapid advances in low-cost floppy disk technology, which had an inherent speed advantage, soon outflanked
826-427: A clock track, a mark track and 3 data tracks. Manchester encoding (PE) was used. The clock and mark tracks are written only once, when the tape was formatted; after that, they are read-only. This meant a "drop-out" on one channel could be tolerated; even a hole punched through the tape with a 0.25 in (6.4 mm) hole punch will not cause the read to fail. Another reason for DECtape's unusually high reliability
944-483: A computer instruction. The dial box was a convenient user input device at a time before general adoption of the mouse . For example, one knob could control the scaling of a displayed graph, and another might be used as a cursor to display the actual data value at a point. The LINC hardware allowed a 12-bit word to be rapidly and automatically displayed on the screen as a 4-wide by 6-high matrix of pixels, making it possible to display full screens of flicker-free text with
1062-606: A faster clock speed. While Bell in his book says designing the LINC provided the ideas for DEC's second and third machines, the PDP-4 and the PDP-5 . Digital Equipment Corporation would launch the extremely successful PDP-8 before it manufactured the first next-generation LINC-compatible computer, the LINC-8 and a combination PDP-8/I and LINC, combined as the PDP-12 , the last machine incorporating
1180-436: A keyboard. The LINC interfaced well with laboratory experiments. Analog inputs and outputs were part of the basic design. It was designed in 1962 by Charles Molnar and Wesley Clark at Lincoln Laboratory , Massachusetts, for NIH researchers. The LINC's design was in the public domain, perhaps making it unique in the history of computers. A dozen LINC computers were assembled by their eventual biomedical researcher owners in
1298-420: A minimum of dedicated hardware. The standard display routines generated 4 by 6 character cells, giving the LINC one of the coarsest character sets ever designed. The display screen was a CRT about 5 inches square which was actually a standard Tektronix oscilloscope with special plug-in amplifiers. The special plug-ins could be replaced with standard oscilloscope plug-ins for use in diagnostic maintenance of
SECTION 10
#17328558078651416-576: A new virtual memory system, and would also improve performance by processing twice as much data at a time. The system would, however, maintain compatibility with the PDP-11, by operating in a second mode that sent its 16-bit words into the 32-bit internals, while mapping the PDP-11's 16-bit memory space into the larger virtual 32-bit space. The result was the VAX architecture, where VAX stands for Virtual Address eXtension (from 16 to 32 bits). The first computer to use
1534-476: A new device to be added easily, generally only requiring plugging a hardware interface board into the backplane and possibly adding a jumper to the wire wrapped backplane, and then installing software that read and wrote to the mapped memory to control it. The relative ease of interfacing spawned a huge market of third party add-ons for the PDP-11, which made the machine even more useful. The combination of architectural innovations proved superior to competitors and
1652-445: A particular address was accessed. The single-step and the resume functions can be automatically repeated. The repetition rate can be varied over four orders of magnitude by means of an analog knob and a four-position decade switch, from about one step per second to about half of the full speed. Running a program at one step per second and gradually accelerating it to full speed provided an extremely dramatic way to experience and appreciate
1770-424: A portable cart, and equipable with Digital-designed laboratory I/O modules supporting capabilities such as analog input and output. A programming language, MINC BASIC , included integrated support for the laboratory I/O modules. MINC stood for "Modular Instrument Computer." The name undoubtedly was intended to evoke memories of the LINC, but the 16-bit machine had no architectural resemblance to, or compatibility with,
1888-462: A profit at the end of its first year. The original Laboratory Modules were soon supplemented with the "Digital System Module " line, which were identical internally but packaged differently. The Systems Modules were designed with all of the connections at the back of the module using 22-pin Amphenol connectors, and were attached to each other by plugging them into a backplane that could be mounted in
2006-561: A programming point of view, because the system is block-oriented and allows random seeking, DECtape behaves like a very slow disk drive. DECtape has its origin in the LINCtape tape system, which was originally designed by Wesley Clark at the MIT Lincoln Laboratory as an integral part of the LINC computer. There are simple LINC instructions for reading and writing tape blocks using
2124-438: A selection of System Building Blocks to implement a small 12-bit machine, and attached it to a variety of analog-to-digital (A to D) input/output (I/O) devices that made it easy to interface with various analog lab equipment. The LINC proved to attract intense interest in the scientific community, and has since been referred to as the first real minicomputer , a machine that was small and inexpensive enough to be dedicated to
2242-480: A self-sustaining business, the company would be free to use them to develop a complete computer in their Phase II. The newly christened "Digital Equipment Corporation" received $ 70,000 from AR&D for a 70% share of the company, and began operations in a Civil War -era textile mill in Maynard, Massachusetts , where plenty of inexpensive manufacturing space was available. In early 1958, DEC shipped its first products,
2360-504: A separate input/output processor for further performance gains. Over 400 PDP-15's were ordered in the first eight months of production, and production eventually amounted to 790 examples in 12 basic models. However, by this time other machines in DEC's lineup could fill the same niche at even lower price points, and the PDP-15 would be the last of the 18-bit series. In 1962, Lincoln Laboratory used
2478-518: A similar block structure, but uses a much smaller 0.150 in (3.8 mm) tape (the same width as an audio compact cassette ). The tape is packaged in a special, pre-formatted DC150 miniature cartridge consisting of a clear plastic cover mounted on a textured aluminum plate. Cartridge dimensions are 2 + 3 ⁄ 8 by 3 + 3 ⁄ 16 by 1 ⁄ 2 inch (60 mm × 81 mm × 13 mm). The TU58 DECtape II drive has an RS-232 serial interface , allowing it to be used with
SECTION 20
#17328558078652596-481: A single large mainframe case, with a hexagonal control panel containing switches and lights mounted to lie at table-top height at one end of the mainframe. Above the control panel was the system's standard input/output solution, a punched tape reader and writer. Most systems were purchased with two peripherals , the Type 30 vector graphics display, and a Soroban Engineering modified IBM Model B Electric typewriter that
2714-436: A single machine instruction. The design of the LINC, including LINCtape, was placed in the public domain because its development had been funded by the government. LINCtape drives were manufactured by several companies, including Digital. In turn, LINCtape's origin can be found in the magnetic tape system for the historic Lincoln Laboratory TX-2 computer, designed by Richard L. Best and T. C. Stockebrand. The TX-2 Tape System
2832-549: A single task even in a small lab. Seeing the success of the LINC, in 1963 DEC took the basic logic design but stripped away the extensive A to D systems to produce the PDP-5 . The new machine, the first outside the PDP-1 mould, was introduced at WESTCON on August 11, 1963. A 1964 ad expressed the main advantage of the PDP-5, "Now you can own the PDP-5 computer for what a core memory alone used to cost: $ 27,000". 116 PDP-5s were produced until
2950-634: A successor to the PDP-10 mainframe, and instead focused on promoting the VAX as the single computer architecture for the company. Supporting the VAX's success was the VT52 , one of the most successful smart terminals . Building on earlier less successful models, the VT05 and VT50 , the VT52 was the first terminal that did everything one might want in a single inexpensive chassis. The VT52
3068-440: A turn to use the stripped-down TX-0, while largely ignoring a faster IBM machine that was also available. The two decided that the draw of interactive computing was so strong that they felt there was a market for a small machine dedicated to this role, essentially a commercialized TX-0. They could sell this to users where the graphical output or real-time operation would be more important than outright performance. Additionally, as
3186-414: A unique locking solenoid. The internal mechanism of each key had a slot that worked with a set of bars to encode the character and another slot that caught a locking bar, which locked all the keys in one mechanical movement of the locking solenoid. When the user pressed a key, the pressed key was locked in its down position, and all the other keys were locked in the up position. When the running program read
3304-472: Is also remembered for its reliability, which was higher than that of the diskettes which supplanted it. LINCtape incorporated a very simple form of redundancy—all data was duplicated in two locations across the tape. LINC users demonstrated this by punching holes in a tape with an ordinary office paper punch. Tape damaged in this way was perfectly readable. The formatting track made operation almost independent of tape speed, which was, in fact, quite variable. There
3422-543: Is best known for the work in the minicomputer market starting in the early 1960s. The company produced a series of machines known as the PDP line, with the PDP-8 and PDP-11 being among the most successful minis in history. Their success was only surpassed by another DEC product, the late-1970s VAX "supermini" systems that were designed to replace the PDP-11. Although a number of competitors had successfully competed with Digital through
3540-656: Is most famous as the machine for which the Unix operating system was originally written. Unix ran only on DEC systems until the Interdata 8/32 . A more dramatic upgrade to the PDP-1 series was introduced in August 1966, the PDP-9 . The PDP-9 was instruction-compatible with the PDP-4 and −7, but ran about twice as fast as the −7 and was intended to be used in larger deployments. At only $ 19,900 in 1968,
3658-512: Is no reason for any individual to have a computer in his home." Unsurprisingly, DEC did not put much effort into the microcomputer area in the early days of the market. In 1977, the Heathkit H11 was announced; a PDP-11 in kit form. At the beginning of the 1980s, DEC built the VT180 (codenamed "Robin"), which was a VT100 terminal with an added Z80 -based microcomputer running CP/M , but this product
LINC - Misplaced Pages Continue
3776-407: Is quite different from any other type of tape drive or controller at the time. The tape is 0.75 in (19 mm) wide, accommodating 6 data tracks, 2 mark tracks, and 2 clock tracks, with data recorded at roughly 350 bits per inch (138 bits per cm). Each track is paired with a non-adjacent track for redundancy by wiring the tape heads in parallel; as a result the electronics only deal with 5 tracks:
3894-509: Is the direct ancestor of LINCtape, including the use of two redundant sets of five tracks and a direct drive tape transport, but it uses a physically incompatible tape format (½-inch tape on 10-inch reels, where LINC tape and DECtape used ¾-inch tape on 4-inch reels). Digital initially introduced the Type 550 Microtape Control and Type 555 Dual Microtape Transport as peripherals for the PDP-1 and PDP-4 computers, both 18-bit machines. DEC advertised
4012-424: Is the use of laminated tape: the magnetic oxide is sandwiched between two layers of mylar , rather than being on the surface as was common in other magnetic tape types. This allows the tape to survive many thousands of passes over the tape heads without wearing away the oxide layer, which would otherwise have occurred in heavy swap file use on timesharing systems. The fundamental durability and reliability of DECtape
4130-409: Is usually programmed to keep retrying a failed read operation, which often succeeds after multiple attempts. Experienced DECtape users learned to notice the characteristic "shoe-shining" motion of a failing DECtape as it is passed repeatedly back and forth over the tape heads, and would retire the tape from further use. Computer Operations Inc (COI) of Beltsville, Maryland offered a DECtape clone in
4248-512: The LINC Tape II with support for the DEC PDP-8 , PDP-11 , Data General Nova , Interdata 7/32 , HP 2100 , Honeywell 316 and several other computers in 1974, the drive was priced at $ 1,995 and was explicitly advertised as being DECtape compatible. In 1974, DEC charged COI with patent infringement. COI, in turn, filed a suit claiming that DEC's patent was invalid on several grounds, including
4366-704: The SAGE system for the US Air Force , which used large screens and light guns to allow operators to interact with radar data stored in the computer. When the Air Force project wound down, the Lab turned their attention to an effort to build a version of the Whirlwind using transistors in place of vacuum tubes . In order to test their new circuitry, they first built a small 18-bit machine known as TX-0 , which first ran in 1956. When
4484-802: The "11" architecture was soon the industry leader, propelling DEC back to a strong market position. The design was later expanded to allow paged physical memory and memory protection features, useful for multitasking and time-sharing . Some models supported separate instruction and data spaces for an effective virtual address size of 128 KB within a physical address size of up to 4 MB. Smaller PDP-11s, implemented as single-chip CPUs, continued to be produced until 1996, by which time over 600,000 had been sold. The PDP-11 supported several operating systems, including Bell Labs ' new Unix operating system as well as DEC's DOS-11 , RSX-11 , IAS, RT-11 , DSM-11, and RSTS/E . Many early PDP-11 applications were developed using standalone paper-tape utilities. DOS-11
4602-539: The "Digital Laboratory Module" line. The Modules consisted of a number of individual electronic components and germanium transistors mounted to a circuit board , the actual circuits being based on those from the TX-2. The Laboratory Modules were packaged in an extruded aluminum housing, intended to sit on an engineer's workbench, although a rack-mount bay was sold that held nine laboratory modules. They were then connected together using banana plug patch cords inserted at
4720-499: The "front panel" on the user's left, a bay for interfaces over two LINC-Tape drives on the user's right, and a chunky keyboard between them. The standard program development software (an assembler/editor) was designed by Mary Allen Wilkes ; the last version was named LAP6 (LINC Assembly Program 6). The LINC has 2048 12-bit words of memory in two sections. Only the first 1024 words were usable for program execution. The second section of memory could only be used for data. Programs can use
4838-439: The "sandbox" for a rising generation of engineers and computer scientists. Large numbers of PDP-11/70s were deployed in telecommunications and industrial control applications. AT&T Corporation became DEC's largest customer. RT-11 provided a practical real-time operating system in minimal memory, allowing the PDP-11 to continue DEC's critical role as a computer supplier for embedded systems . Historically, RT-11 also served as
LINC - Misplaced Pages Continue
4956-433: The 1950s, wiped out when new technical developments rendered their platforms obsolete, and even large companies like RCA and General Electric were failing to make a profit in the market. The only serious expression of interest came from Georges Doriot and his American Research and Development Corporation (AR&D). Worried that a new computer company would find it difficult to arrange further financing, Doriot suggested
5074-399: The 1970s, the VAX cemented the company's place as a leading vendor in the computer space. As microcomputers improved in the late 1980s, especially with the introduction of RISC -based workstation machines, the performance niche of the minicomputer was rapidly eroded. By the early 1990s, the company was in turmoil as their mini sales collapsed and their attempts to address this by entering
5192-405: The 1970s. Initially, COI offered LINC-tape drives for computers made by Data General , Hewlett-Packard and Varian , with only passing reference to its similarity to DECtape. While DECtape and LINC tape are physically interchangeable, the data format COI initially used for 16-bit minicomputers was distinct from both the format used by the LINC and the format used on DECtape. When COI offered
5310-562: The 1980s, culminating in the NVAX microprocessor implementation and VAX 7000/10000 series in the early 1990s. When a DEC research group demonstrated two prototype microcomputers in 1974—before the debut of the MITS Altair —Olsen chose to not proceed with the project. The company similarly rejected another personal computer proposal in 1977. At the time these systems were of limited utility, and Olsen famously derided them in 1977, stating "There
5428-447: The CPU which allowed one to easily see the logic modules plugged into the wire-wrapped backplane of the CPU. Sold standard with 4 kWords of 12-bit core memory and a Teletype Model 33 ASR for basic input/output, the machine listed for only $ 18,000. The PDP-8 is referred to as the first real minicomputer because of its sub-$ 25,000 price. Sales were, unsurprisingly, very strong, and helped by
5546-626: The DECtape was a breakthrough in supporting the first timesharing systems on DEC computers. The legendary PDP-1 at MIT , where early computer hacker culture developed, adopted multiple DECtape drives to support a primitive software sharing community. The hard disk system (when it was working) was considered a "temporary" file storage device used for speed, not to be trusted to hold files for long-term storage. Computer users would keep their own personal work files on DECtapes, as well as software to be shared with others. The design of DECtape and its controllers
5664-553: The LINC added a 12-bit Z register to facilitate extended precision arithmetic, and an interrupt was provided forcing execution to location 21 (octal). Alphanumeric input/output devices included a dedicated keyboard, and the ability to display text on the attached point-addressed CRT. A teleprinter could be connected for printed output. Arithmetic was ones' complement , which meant that there were representations for "plus zero" and "minus zero". The original LINC required 8 microseconds for each instruction. The natural notation used for
5782-498: The LINC instruction set. DEC's final 12-bit lab machine, the LAB-8/E, did not incorporate the LINC instruction set. The first follow-on, the LINC-8, booted (slowly) to a PDP-8 program called PROGOFOP (PROGram OF OPeration) which interfaced to the separate LINC hardware. The PDP-12 was the last and most popular follow-on to the LINC. It was a capable and improved machine, and was more stable than
5900-449: The LINC was octal . In this section, all numbers are given as base ten unless identified as octal. The LINC instruction set was designed for ease of use with scientific instruments or custom experimental apparatus. The LINC control panel is used for single-stepping through programs and for program debugging . Execution can be stopped when the program counter matched a set of switches. Another function allows execution to be stopped when
6018-561: The LINC-8, but architecturally was still an imperfect hybrid of a LINC and a PDP-8, full of many small technical glitches. (For example, the LINC had an overflow bit which was a small but important part of the LINC's machine state; the PDP-12 had no provision for saving and restoring the state of this bit across PDP-8 interrupts.) Digital produced a version of the PDP-11/03 called the MINC-11 , housed in
SECTION 50
#17328558078656136-502: The LINC. Digital Equipment Corporation Digital Equipment Corporation ( DEC / d ɛ k / ), using the trademark Digital , was a major American company in the computer industry from the 1960s to the 1990s. The company was co-founded by Ken Olsen and Harlan Anderson in 1957. Olsen was president until he was forced to resign in 1992, after the company had gone into precipitous decline. The company produced many different product lines over its history. It
6254-624: The LINCtape was a small, nimble device which stored about 400K, had a fixed formatting track allowing data to be repeatedly read and re-written to the same locations, and took less than a minute to spool from one end to the other. The tape was formatted in fixed-sized blocks, and was used to hold a directory and file system. A single hardware instruction could seek and then read or write multiple tape blocks all in one operation. Filenames were six characters long. The file system allowed for two files—a source file and an executable binary file to be stored under
6372-508: The PC, but was more expensive than, and completely incompatible with IBM PC hardware and software, offering far fewer options for customizing a system. Unlike CP/M and DOS microcomputers, every copy of every program for the Professional had to be provided with a unique key for the particular machine and CPU for which it was bought. At that time this was mainstream policy, because most computer software
6490-563: The PDP-8, all in software. Although not a huge seller, 142 LINC-8s were sold starting at $ 38,500. Like the original LINC to PDP-5 evolution, the LINC-8 was then modified into the single-processor PDP-12 , adding another 1000 machines to the 12-bit family. Newer circuitry designs led to the PDP-8/I and PDP-8/L in 1968. In 1975, one year after an agreement between DEC and Intersil , the Intersil 6100 chip
6608-455: The PDP-9 was a big seller, eventually selling 445 machines, more than all of the earlier models combined. Even while the PDP-9 was being introduced, its replacement was being designed, and was introduced as 1969's PDP-15 , which re-implemented the PDP-9 using integrated circuits in place of modules. Much faster than the PDP-9 even in basic form, the PDP-15 also included a floating point unit and
6726-688: The Professional was a superior machine, running inferior software. In addition, a new user would have to learn an awkward, slow, and inflexible menu-based user interface which appeared to be radically different from PC DOS or CP/M , which were more commonly used on the 8080- and 8088-based microcomputers of the time. A second offering, the DECmate II was the latest version of the PDP-8-based word processors, but not really suited to general computing, nor competitive with Wang Laboratories ' popular word processing equipment. The most popular early DEC microcomputer
6844-506: The Rainbow, and in its standard form was the first widely marketed diskless workstation . In 1984, DEC launched its first 10 Mbit/s Ethernet . Ethernet allowed scalable networking, and VAXcluster allowed scalable computing. Combined with DECnet and Ethernet-based terminal servers ( LAT ), DEC had produced a networked storage architecture which allowed them to compete directly with IBM. Ethernet replaced Token Ring , and went on to become
6962-650: The Stop lever fast if a very bright spot suddenly appeared because of a programming mistake. Printed output on a Teletype Model 33 ASR was controlled by a single pole relay. A subroutine would convert the LINC character codes into ASCII and use timing loops to toggle the relay on and off, generating the correct 8-bit output to control the Teletype printer. The LINC connector module included bays for two plug-in chassis allowing custom interfacing to experimental setups. Analog-to-digital and digital-to-analog converters were built into
7080-485: The System Modules to build their "Memory Test" machine for testing core memory systems, selling about 50 of these pre-packaged units over the next eight years. The PDP-1 and LINC computers were also built using System Modules (see below). Modules were part of DEC's product line into the 1970s, although they went through several evolutions during this time as technology changed. The same circuits were then packaged as
7198-465: The TX-0 successfully proved the basic concepts, attention turned to a much larger system, the 36-bit TX-2 with a then-enormous 64 kWords of core memory . Core was so expensive that parts of TX-0's memory were stripped for the TX-2, and what remained of the TX-0 was then given to MIT on permanent loan. At MIT, Ken Olsen and Harlan Anderson noticed something odd: students would line up for hours to get
SECTION 60
#17328558078657316-449: The TX-2 tape system from which the LINC tape was derived. Eventually, the TC12-F tape controller on the PDP-12 supported both LINCtape and DECtape on the same transport. As with the earlier LINC-8 , the PDP-12 is a PDP-8 augmented with hardware support for the LINC instruction set and associated laboratory peripherals. DECtape was designed to be reliable and durable enough to be used as
7434-503: The Type 555 transport was being marketed as a DECtape transport. The tape transport used on the LINC is essentially the same as the Type 555 transport, with the same interface signals and the same physical tape medium. The LINC and DEC controllers, however, are incompatible, and the positions of the supply and take-up reels were reversed between the LINC and DEC tape formats. While LINCtape supports high-speed bidirectional block search, it only supports actual data read and write operations in
7552-436: The ability to address more memory, often by extending the address format to 18 or 24-bits in machines were otherwise similar to their earlier 16-bit designs. In contrast, DEC decided to make a more radical departure. In 1976, they began the design of a machine whose entire architecture was expanded from the 16-bit PDP-11 to a new 32-bit basis. This would allow the addressing of very large memories, which were to be controlled by
7670-505: The adoption of "\" for pathnames in MS-DOS and Microsoft Windows as opposed to "/" in Unix . The evolution of the PDP-11 followed earlier systems, eventually including a single-user deskside personal computer form, the MicroPDP-11. In total, around 600,000 PDP-11s of all models were sold, and a wide variety of third-party peripheral vendors had also entered the computer product ecosystem. It
7788-401: The assertions that DEC had marketed DECtape-based equipment for over a year before filing for the patent, that they had failed to properly disclose the prior art, and that the key claims in the DEC patent were in the public domain. The US Patent and Trademark Office ruled DEC's patent invalid in 1978. The court case continued into the 1980s. DECtape II was introduced around 1978 and has
7906-404: The availability of these peripherals in March and May, 1963, and by November, planning was already underway to offer the product for the 12-bit PDP-5 and 36-bit PDP-6 , even though this involved a change in recording format. The initial specifications for the Type 550 controller discuss a significant advance beyond the LINCtape, the ability to read and write in either direction. By late 1964,
8024-508: The basis for the new design, although when they first viewed the proposal, management was not impressed and almost cancelled it. The result was the PDP-11 , released in 1970. It differed from earlier designs considerably. In particular, the new design did not include many of the addressing modes that were intended to make programs smaller in memory, a technique that was widely used on other DEC machines and CISC designs in general. This would mean
8142-447: The better-established vendors like IBM or Honeywell , in spite of its low cost around $ 300,000. Only 23 were sold, or 26 depending on the source, and unlike other models the low sales meant the PDP-6 was not improved with successor versions. However, the PDP-6 is historically important as the platform that introduced "Monitor", an early time-sharing operating system that would evolve into
8260-698: The company's first computer, the PDP-1 . In keeping with Doriot's instructions, the name was an initialism for " Programmable Data Processor ", leaving off the term "computer". As Gurley put it, "We aren't building computers, we're building 'Programmable Data Processors'." The prototype was first shown publicly at the Joint Computer Conference in Boston in December 1959. The first PDP-1 was delivered to Bolt, Beranek and Newman in November 1960, and formally accepted
8378-411: The compatible DECSYSTEM-20 , along with a TOPS-20 operating system that included virtual memory support. The Jupiter Project was supposed to continue the mainframe product line into the future by using gate arrays with an innovative Air Mover Cooling System, coupled with a built-in floating point processing engine called "FBOX". The design was intended for a top tier scientific computing niche, yet
8496-411: The computer and each could be accessed by a single machine instruction. Six relays were also available. In addition to the original "classic" LINC, slight programming variations occurred when using the micro-LINC (μ-LINC) (1965), micro-LINC 300 (μ-LINC 300) (1968) ( integrated circuit [ MECL ] versions), and LINC-8 . There were variations in the input/output equipment, access to memory. Later models had
8614-447: The computer. Many LINCs were supplied as kits to be assembled by the end user, so the oscilloscope came in handy. The CRT used a very-long-persistence white or yellow phosphor, so that lines and curves drawn point-by-point at a relatively slow speed would remain visible throughout programmed drawing loops that frequently lasted half a second or more. The y-axis displayed both plus and minus zero as different values, unnecessarily reflecting
8732-479: The critical performance measurement was based upon COBOL compilation which did not fully utilize the primary design features of Jupiter technology. When the Jupiter Project was cancelled in 1983, some of the engineers adapted aspects of the 36-bit design into a forthcoming 32-bit design, releasing the high-end VAX8600 in 1985. DEC's successful entry into the computer market took place during a fundamental shift in
8850-462: The desktop instruments in four wooden racks. The first LINC included two oscilloscope displays. Twenty-one were sold by DEC at $ 43,600 (equivalent to $ 439,000 in 2023), delivered in the Production Model design. In these, the tall cabinet sitting behind a white Formica -covered table held two somewhat smaller metal boxes holding the same instrumentation, a Tektronix display oscilloscope over
8968-547: The dominant networking model in use today. In September 1985, DEC became the fifth company to register a .com domain name (dec.com). DECtape DECtape , originally called Microtape , is a magnetic tape data storage medium used with many Digital Equipment Corporation computers , including the PDP-6 , PDP-8 , LINC-8 , PDP-9 , PDP-10 , PDP-11 , PDP-12 , and the PDP-15 . On DEC's 32-bit systems, VAX/VMS support for it
9086-407: The drives, usually when being spun at full speed, as in an end-to-end seek. The reel of tape would fall onto the floor and roll in a straight line or circle, often unspooling and tangling the tape as it went. In spite of this horrifying spectacle, desperate users would carefully untangle that tape and wind it laboriously back onto the tape reel, then re-install it onto the hub, with a paper shim to hold
9204-468: The fact that several competitors had just entered the market with machines aimed directly at the PDP-5's market space, which the PDP-8 trounced. This gave the company two years of unrestricted leadership, and eventually 1450 "straight eight" machines were produced before it was replaced by newer implementations of the same basic design. DEC hit an even lower price-point with the PDP-8/S, the S for "serial". As
9322-405: The fact that the LINC used ones' complement arithmetic. Programmers quickly learned to move any negative displayed data up one point to hide the artifact that otherwise tended to appear at y=0. Notoriously, a tight loop that displayed points repetitively in one place on the screen would burn a permanent dark hole in the delicate phosphor in well under a minute; programmers had to be ready to hit
9440-475: The first "R" (red) series " Flip-Chip " modules. Later, other Flip-Chip module series provided additional speed, much higher logic density, and industrial I/O capabilities. DEC published extensive data about the modules in free catalogs that became very popular. With the company established and a successful product on the market, DEC turned its attention to the computer market once again as part of its planned "Phase II". In August 1959, Ben Gurley started design of
9558-487: The fledgling company change its business plan to focus less on computers, and even change their name from "Digital Computer Corporation". The pair returned with an updated business plan that outlined two phases for the company's development. They would start by selling computer modules as stand-alone devices that could be purchased separately and wired together to produce a number of different digital systems for lab use. Then, if these "digital modules" were able to build
9676-401: The forward direction. DECtape uses a significantly different mark track format to provide for the possibility of read and write operations in either direction, although not all DECtape controllers support reverse read. DEC applied for a patent on the enhanced features incorporated into DECtape in late 1964. The inventor listed on this patent, Thomas Stockebrand, is also an author of the paper on
9794-411: The front of the modules. Three versions were offered, running at 5 MHz (1957), 500 kHz (1959), or 10 MHz (1960). The Modules proved to be in high demand by other computer companies, who used them to build equipment to test their own systems. Despite the recession of the late 1950s, the company sold $ 94,000 worth of these modules during 1958 alone (equivalent to $ 992,700 in 2023), turning
9912-503: The high-end market with machines like the VAX 9000 were market failures. After several attempts to enter the workstation and file server market, the DEC Alpha product line began to make successful inroads in the mid-1990s, but was too late to save the company. DEC was acquired in June 1998 by Compaq in what was at that time the largest merger in the history of the computer industry. During
10030-413: The inspiration for many microcomputer OS's, as these were generally being written by programmers who cut their teeth on one of the many PDP-11 models. For example, CP/M used a command syntax similar to RT-11's, and even retained the awkward PIP program used to copy data from one computer device to another. As another historical footnote, DEC's use of "/" for "switches" (command-line options) would lead to
10148-470: The keyboard, the lock was released, and the pressed key would pop back up. This could have the effect of slowing down typing and preventing even 2-key rollover . This exotic keyboard was abandoned in favor of Teletype keyboards, such as the Model 35 KSR and Model 37 KSR, in the LINC-8 and PDP-12 follow-on computers. The LINC included a set of eight three-turn potentiometers (numbered 0-7) that could each be read by
10266-485: The lab's various computer projects. The Lab is best known for their work on what would today be known as "interactivity", and their machines were among the first where operators had direct control over programs running in real-time. These had started in 1944 with the famed Whirlwind , which was originally developed to make a flight simulator for the US Navy , although this was never completed. Instead, this effort evolved into
10384-537: The limited information available, they used it to process radar cross section data for the Lockheed A-12 reconnaissance aircraft . Gordon Bell remembered that it was being used in Oregon some time later, but could not recall who was using it. In November 1962, DEC introduced the $ 65,000 PDP-4 . The PDP-4 was similar to the PDP-1 and used a similar instruction set, but used slower memory and different packaging to lower
10502-441: The lines were shut down in early 1967. Like the PDP-1 before it, the PDP-5 inspired a series of newer models based on the same basic design that would go on to be more famous than its parent. On March 22, 1965, DEC introduced the PDP-8 , which replaced the PDP-5's modules with the new R-series modules using Flip Chips. The machine was re-packaged into a small tabletop case, which remains distinctive for its use of smoked plastic over
10620-491: The machine would cost much less than the larger systems then available, it would also be able to serve users that needed a lower-cost solution dedicated to a specific task, where a larger 36-bit machine would not be needed. In 1957, when the pair and Ken's brother Stan sought capital, they found that the American business community was hostile to investing in computer companies. Many smaller computer companies had come and gone in
10738-438: The machine would spend more time accessing memory, which would slow it down. However, the machine also extended the idea of multiple "General Purpose Registers" (GPRs), which gave the programmer flexibility to use these high-speed memory caches as they needed, potentially addressing the performance issues. A major advance in the PDP-11 design was DEC's Unibus , which supported all peripherals through memory mapping . This allowed
10856-619: The main storage medium for a computer's operating system (OS). It is possible, although slow, to use a DECtape drive to run a small OS such as OS/8 or OS/12. The system would be configured to put temporary swap files on a second DECtape drive, so as to not slow down access to the main drive holding the system programs. Upon its introduction, DECtape was considered a major improvement over hand-loaded paper tapes, which could not be used to support swap files essential for practical timesharing . Early hard disk and drum drives were very expensive, limited in capacity, and notoriously unreliable, so
10974-425: The name implies the /S used a serial arithmetic unit, which was much slower but reduced costs so much that the system sold for under $ 10,000. DEC then used the new PDP-8 design as the basis for a new LINC, the two-processor LINC-8 . The LINC-8 used one PDP-8 CPU and a separate LINC CPU, and included instructions to switch from one to the other. This allowed customers to run their existing LINC programs, or "upgrade" to
11092-458: The next April. The PDP-1 sold in basic form for $ 120,000 (equivalent to $ 9,269,291 in 2023). By the time production ended in 1969, 53 PDP-1s had been delivered. The PDP-1 was supplied standard with 4096 words of core memory , 18-bits per word, and ran at a basic speed of 100,000 operations per second. It was constructed using many System Building Blocks that were packaged into several 19-inch racks . The racks were themselves packaged into
11210-565: The ordinary serial ports that are very common on Digital's contemporary processors. Because of its low cost, the TU58 was fitted to several different systems (including the VT103 , PDP-11/24 and /44 and the VAX-11/730 and /750) as a DEC-standard device for software product distribution, and for loading diagnostic programs and microcode . The first version of the TU58 imposed very severe timing constraints on
11328-568: The price. Like the PDP-1, about 54 PDP-4s were eventually sold, most to a customer base similar to the original PDP-1. In 1964, DEC introduced its new Flip Chip module design, and used it to re-implement the PDP-4 as the PDP-7 . The PDP-7 was introduced in December 1964, and about 120 were eventually produced. An upgrade to the Flip Chip led to the R series, which in turn led to the PDP-7A in 1965. The PDP-7
11446-705: The purchase, some parts of DEC were sold to other companies; the compiler business and the Hudson Fab were sold to Intel . At the time, Compaq was focused on the enterprise market and had recently purchased several other large vendors. DEC was a major player overseas where Compaq had less presence. However, Compaq had little idea what to do with its acquisitions, and soon found itself in financial difficulty of its own. Compaq subsequently merged with Hewlett-Packard (HP) in May 2002. Ken Olsen and Harlan Anderson were two engineers who had been working at MIT Lincoln Laboratory on
11564-423: The reel more tightly. The data on the mangled DECtape could often be recovered completely and copied to another tape, provided that the original tape had only been creased multiple times, and not stretched or broken. DEC quickly issued an Engineering Change Order (ECO) to replace the defective hubs, to resolve the problem. Eventually, a heavily used or abused DECtape begins to become unreliable. The operating system
11682-591: The same design. During construction of the prototype PDP-1, some design work was carried out on a 24-bit PDP-2, and the 36-bit PDP-3. Although the PDP-2 never proceeded beyond the initial design, the PDP-3 found some interest and was designed in full. Only one PDP-3 appears to have been built, in 1960, by the CIA's Scientific Engineering Institute (SEI) in Waltham, Massachusetts . According to
11800-448: The same name. In effect it was a 6.1 filename in which the extension was restricted to "S" or "B". Since the basic LINC had only 1024 12-bit words of core memory (RAM)—and the big, expanded LINC had only 2048—normal operations depended heavily on swapping to and from LINCtape. Digital later patented and marketed a similar design under the name DECtape ; Digital's patents on DECtape were eventually tested in court and found invalid. LINCtape
11918-458: The speed of the computer. A noteworthy feature of the LINC was the LINCtape. It was a fundamental part of the machine design, not an optional peripheral, and the machine's OS relied on it. The LINCtape can be compared to a linear diskette with a slow seek time. The magnetic tape drives on large machines of the day stored large quantities of data, took minutes to spool from end to end, but could not reliably update blocks of data in place. In contrast,
12036-419: The unbuffered UARTs then being used by Digital, but a later firmware revision eased the flow-control problems. The RT11 single-user operating system can be bootstrapped from a TU58, but the relatively slow access time of the tape drive makes use of the system challenging to an impatient user. Like its predecessor DECtape, and like the faster RX01 floppies used on the VAX-11/780 , a DECtape II cartridge has
12154-485: The underlying organization of the machines from word lengths based on 6-bit characters to those based on 8-bit words needed to support ASCII . DEC began studies of such a machine, the PDP-X, but Ken Olsen did not support it as he could not see how it offered anything their existing 12-bit or 18-bit machines didn't. This led the leaders of the PDP-X project to leave DEC and start Data General , whose 16-bit Data General Nova
12272-463: The widely used TOPS-10 . When newer Flip Chip packaging allowed the PDP-6 to be re-implemented at a much lower cost, DEC took the opportunity to refine their 36-bit design, introducing the PDP-10 in 1968. The PDP-10 was as much a success as the PDP-6 was a commercial failure; about 700 mainframe PDP-10s were sold before production ended in 1984. The PDP-10 was widely used in university settings, and thus
12390-469: Was either bought from the company that built the computer or custom-constructed for one client. However, the emerging third-party software industry disregarded the PDP-11/Professional line and concentrated on other microcomputers where distribution was easier. At DEC itself, creating better programs for the Professional was not a priority, perhaps from fear of cannibalizing the PDP-11 line. As a result,
12508-507: Was even sold in kit form as the Heathkit H11 , although it proved too expensive for Heathkit 's traditional hobbyist market. The introduction of semiconductor memory in the early 1970s, and especially dynamic RAM shortly thereafter, led to dramatic reductions in the price of memory as the effects of Moore's Law were felt. Within years, it was common to equip a machine with all the memory it could address, typically 64 KB on 16-bit machines. This led vendors to introduce new designs with
12626-618: Was eventually ported along with MS-DOS 2.0 and introduced in late 1983. Although the Rainbow generated some press, it was unsuccessful due to its high price and lack of marketing and sales support. By late 1983 IBM was outselling DEC's personal computers by more than ten to one. A further system was introduced in 1986 as the VAXmate , which included Microsoft Windows 1.0 and used VAX/VMS-based file and print servers along with integration into DEC's own DECnet -family, providing LAN/WAN connection from PC to mainframe or supermini. The VAXmate replaced
12744-628: Was followed by the even more successful VT100 and its follow-ons, making DEC one of the largest terminal vendors in the industry. This was supported by a line of inexpensive computer printers , the DECwriter line. With the VT and DECwriter series, DEC could now offer a complete top-to-bottom system from computer to all peripherals, which formerly required collecting the required devices from different suppliers. The VAX processor architecture and family of systems evolved and expanded through several generations during
12862-422: Was implemented but did not become an official part of the product lineup. DECtapes are 3 ⁄ 4 inch (19 mm) wide, and formatted into blocks of data that can each be read or written individually. Each tape stores 184K 12-bit PDP-8 words or 144K 18-bit words. Block size is 128 12-bit words (for the 12-bit machines), or 256 18-bit words for the other machines (16, 18, 32, or 36-bit systems). From
12980-709: Was initially available only to DEC employees. It was only after IBM had successfully launched the IBM PC in 1981 that DEC responded with their own systems. In 1982, DEC introduced not one, but three incompatible machines which were each tied to different proprietary architectures. The first, the DEC Professional , was based on the PDP-11/23 (and later, the 11/73) running the RSX-11M+ derived, but menu-driven, P/OS ("Professional Operating System"). This DEC machine easily outperformed
13098-493: Was launched, effectively a PDP-8 on a chip. This was a way to allow PDP-8 software to be run even after the official end-of-life announcement for the DEC PDP-8 product line. While the PDP-5 introduced a lower-cost line, 1963's PDP-6 was intended to take DEC into the mainframe market with a 36-bit machine. However, the PDP-6 proved to be a "hard sell" with customers, as it offered few obvious advantages over similar machines from
13216-477: Was no capstan ; the motion of the tape during reading and writing was directly controlled by the reel motors. There was no fast forward or rewind—reading and writing was performed at fast forward and rewind speeds. In some modes of operation, the data transfers were audible over the built-in loudspeaker and produced a very characteristic series of harsh bird-like squawks with varying pitch. The LINC keyboard, manufactured by company named Soroban Engineering, had
13334-535: Was released in 1969 and was a huge success. The success of the Nova finally prompted DEC to take the switch seriously, and they began a crash program to introduce a 16-bit machine of their own. The new system was designed primarily by Harold McFarland, Gordon Bell , Roger Cady, and others. The project was able to leap forward in design with the arrival of Harold McFarland, who had been researching 16-bit designs at Carnegie Mellon University . One of his simpler designs became
13452-404: Was the PDP-11's first disk operating system, but was soon supplanted by more capable systems. RSX provided a general-purpose multitasking environment and supported a wide variety of programming languages . IAS was a time-sharing version of RSX-11D. Both RSTS and Unix were time-sharing systems available to educational institutions at little or no cost, and these PDP-11 systems were destined to be
13570-454: Was the basis of many advances in computing and operating system design during the 1970s. DEC later re-branded all of the models in the 36-bit series as the "DECsystem-10", and PDP-10s are generally referred to by the model of their CPU, starting with the "KA10", soon upgraded to the "KI10" (I:Integrated circuit); then to "KL10" (L:Large-scale integration ECL logic ); also the "KS10" (S: Small form factor ). Unified product line upgrades produced
13688-528: Was the dual-processor (Z80 and 8088) Rainbow 100 , which ran the 8-bit CP/M operating system on the Z80 and the 16-bit CP/M-86 operating system on the Intel 8088 processor. It could also run a UNIX System III implementation called VENIX . Applications from standard CP/M could be re-compiled for the Rainbow, but by this time users were expecting custom-built (pre-compiled binary) applications such as Lotus 1-2-3 , which
13806-420: Was underscored when the design of the tape reel mounting hubs was changed in the early 1970s. The original machined metal hub with a retaining spring was replaced by a lower cost single-piece plastic hub with 6 flexible arms in a "starfish" or "flower" shape. When a defective batch of these new design hubs was shipped on new DECtape drives, these hubs would loosen over time. As a result, DECtape reels would fall off
13924-441: Was used as a printer . The Soroban system was notoriously unreliable, and often replaced with a modified Friden Flexowriter , which also contained its own punched tape system. A variety of more-expensive add-ons followed, including magnetic tape systems, punched card readers and punches, and faster punched tape and printer systems. When DEC introduced the PDP-1, they also mentioned larger machines at 24, 30 and 36 bits, based on
#864135