Misplaced Pages

Kristall

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Kristall ( Russian : Кристалл , lit.   'Crystal') (77KST, TsM-T, 11F77T) module was the fourth module and the third major addition to Mir . As with previous modules, its configuration was based on the 77K (TKS) module, and was originally named "Kvant 3". It was launched on May 31, 1990 on Proton-K . It docked to Mir autonomously on June 10, 1990.

#911088

72-877: Kristall had several materials processing furnaces. They were called Krater 5, Optizon 1, Zona 2, and Zona 3. It also had a biotechnology experiment called the Aniur electrophoresis unit. These experiments were capable of generating 100 kg of raw materials for use on Earth. Located in the docking node was the Priroda 5 camera which was used for Earth resources experiments. Kristall also had several astronomy and astrophysics experiments which were designed to augment experiments that were already located in Kvant-1. Kristall's solar panels were also different from others on Mir. They were designed to be "collapsible" which means that they could be deployed and retracted several times. One of Kristall's solar panels

144-917: A balanced movement for camera and lenses. This proves useful in wildlife photography as well as in any other case where very long and heavy telephoto lenses are adopted: a gimbal head rotates a lens around its center of gravity , thus allowing for easy and smooth manipulation while tracking moving subjects. Very large gimbal mounts in the form 2 or 3 axis altitude-altitude mounts are used in satellite photography for tracking purposes. Gyrostabilized gimbals which house multiple sensors are also used for airborne surveillance applications including airborne law enforcement, pipe and power line inspection, mapping , and ISR ( intelligence, surveillance, and reconnaissance ). Sensors include thermal imaging , daylight, low light cameras as well as laser range finder , and illuminators . Gimbal systems are also used in scientific optics equipment. For example, they are used to rotate

216-467: A cardan suspension has been doubted by some authors on the ground that the part of Philo's Pneumatica which describes the use of the gimbal survived only in an Arabic translation of the early 9th century. Thus, as late as 1965, the sinologist Joseph Needham suspected Arab interpolation . However, Carra de Vaux, author of the French translation which still provides the basis for modern scholars, regards

288-454: A coil of fiber optic cable as long as 5 km. Like the ring laser gyroscope , it makes use of the Sagnac effect . A London moment gyroscope relies on the quantum-mechanical phenomenon, whereby a spinning superconductor generates a magnetic field whose axis lines up exactly with the spin axis of the gyroscopic rotor. A magnetometer determines the orientation of the generated field, which

360-403: A fluid, instead of being mounted in gimbals. A control moment gyroscope (CMG) is an example of a fixed-output-gimbal device that is used on spacecraft to hold or maintain a desired attitude angle or pointing direction using the gyroscopic resistance force. In some special cases, the outer gimbal (or its equivalent) may be omitted so that the rotor has only two degrees of freedom. In other cases,

432-422: A force applied to the input axis by a reaction force to the output axis. A gyroscope flywheel will roll or resist about the output axis depending upon whether the output gimbals are of a free or fixed configuration. An example of some free-output-gimbal devices is the attitude control gyroscopes used to sense or measure the pitch, roll and yaw attitude angles in a spacecraft or aircraft. The centre of gravity of

504-463: A gyroscope (the "Whirling Speculum" or "Serson's Speculum") was invented by John Serson in 1743. It was used as a level, to locate the horizon in foggy or misty conditions. The first instrument used more like an actual gyroscope was made by Johann Bohnenberger of Germany, who first wrote about it in 1817. At first he called it the "Machine". Bohnenberger's machine was based on a rotating massive sphere. In 1832, American Walter R. Johnson developed

576-421: A gyroscope with a weight on one of the axes. The device will react to the force generated by the weight when it is accelerated, by integrating that force to produce a velocity. A gyrostat consists of a massive flywheel concealed in a solid casing. Its behaviour on a table, or with various modes of suspension or support, serves to illustrate the curious reversal of the ordinary laws of static equilibrium due to

648-411: A gyroscope with two gimbals, the outer gimbal, which is the gyroscope frame, is mounted so as to pivot about an axis in its own plane determined by the support. This outer gimbal possesses one degree of rotational freedom and its axis possesses none. The second gimbal, inner gimbal, is mounted in the gyroscope frame (outer gimbal) so as to pivot about an axis in its own plane that is always perpendicular to

720-404: A human hair viewed from 32 kilometers (20 mi) away. The GP-B gyro consists of a nearly-perfect spherical rotating mass made of fused quartz , which provides a dielectric support for a thin layer of niobium superconducting material. To eliminate friction found in conventional bearings, the rotor assembly is centered by the electric field from six electrodes. After the initial spin-up by

792-471: A jet of helium which brings the rotor to 4,000 RPM , the polished gyroscope housing is evacuated to an ultra-high vacuum to further reduce drag on the rotor. Provided the suspension electronics remain powered, the extreme rotational symmetry , lack of friction, and low drag will allow the angular momentum of the rotor to keep it spinning for about 15,000 years. A sensitive DC SQUID that can discriminate changes as small as one quantum, or about 2 × 10 Wb ,

SECTION 10

#1732848466912

864-627: A magnetic compass, it does not seek north. When being used in an airplane, for example, it will slowly drift away from north and will need to be reoriented periodically, using a magnetic compass as a reference. Unlike a directional gyro or heading indicator, a gyrocompass seeks north. It detects the rotation of the Earth about its axis and seeks the true north, rather than the magnetic north. Gyrocompasses usually have built-in damping to prevent overshoot when re-calibrating from sudden movement. By determining an object's acceleration and integrating over time,

936-414: A material sample along an axis to study their angular dependence of optical properties. Handheld 3-axis gimbals are used in stabilization systems designed to give the camera operator the independence of handheld shooting without camera vibration or shake. There are two versions of such stabilization systems: mechanical and motorized. Mechanical gimbals have the sled, which includes the top stage where

1008-451: A minimum of three gimbals are needed to allow an inertial navigation system (stable table) to remain fixed in inertial space, compensating for changes in the ship's yaw, pitch, and roll. In this application, the inertial measurement unit (IMU) is equipped with three orthogonally mounted gyros to sense rotation about all axes in three-dimensional space. The gyro outputs are kept to a null through drive motors on each gimbal axis, to maintain

1080-440: A position between the low-accuracy, low-cost MEMS gyroscope and the higher-accuracy and higher-cost fiber optic gyroscope. Accuracy parameters are increased by using low-intrinsic damping materials, resonator vacuumization, and digital electronics to reduce temperature dependent drift and instability of control signals. High quality wine-glass resonators are used for precise sensors like HRG. A dynamically tuned gyroscope (DTG)

1152-497: A similar device that was based on a rotating disc. The French mathematician Pierre-Simon Laplace , working at the École Polytechnique in Paris, recommended the machine for use as a teaching aid, and thus it came to the attention of Léon Foucault . In 1852, Foucault used it in an experiment demonstrating the rotation of the Earth. It was Foucault who gave the device its modern name, in an experiment to see (Greek skopeein , to see)

1224-455: A single engine to vector thrust about both the pitch and yaw axes; or sometimes just one axis is provided per engine. To control roll, twin engines with differential pitch or yaw control signals are used to provide torque about the vehicle's roll axis. Gimbals are also used to mount everything from small camera lenses to large photographic telescopes. In portable photography equipment, single-axis gimbal heads are used in order to allow

1296-407: A single integrated circuit package, providing inexpensive and widely available motion sensing. All spinning objects have gyroscopic properties. The main properties that an object can experience in any gyroscopic motion are rigidity in space and precession . Rigidity in space describes the principle that a gyroscope remains in the fixed position on the plane in which it is spinning, unaffected by

1368-570: A speed of 24,000 revolutions per minute in less than 10 seconds. Gyroscopes continue to be an engineering challenge. For example, the axle bearings have to be extremely accurate. A small amount of friction is deliberately introduced to the bearings, since otherwise an accuracy of better than 10 − 7 {\displaystyle 10^{-7}} of an inch (2.5 nm) would be required. Three-axis MEMS-based gyroscopes are also used in portable electronic devices such as tablets , smartphones , and smartwatches . This adds to

1440-443: A thick stem. This shell is driven to a flexural resonance by electrostatic forces generated by electrodes which are deposited directly onto separate fused-quartz structures that surround the shell. Gyroscopic effect is obtained from the inertial property of the flexural standing waves. A vibrating structure gyroscope (VSG), also called a Coriolis vibratory gyroscope (CVG), uses a resonator made of different metallic alloys. It takes

1512-405: A toy gyroscope with a pull string and pedestal. Manufacture was at some point switched to Chandler Mfg Co (still branded Hurst). The product was later renamed to a “Chandler gyroscope”, presumably because Chandler Mfg Co. took over rights to the gyroscope. Chandler continued to produce the toy until the company was purchased by TEDCO Inc. in 1982. The gyroscope is still produced by TEDCO today. In

SECTION 20

#1732848466912

1584-457: Is interpolated to determine the axis of rotation. Gyroscopes of this type can be extremely accurate and stable. For example, those used in the Gravity Probe B experiment measured changes in gyroscope spin axis orientation to better than 0.5 milliarcseconds (1.4 × 10 degrees, or about 2.4 × 10  radians ) over a one-year period. This is equivalent to an angular separation the width of

1656-423: Is a device used for measuring or maintaining orientation and angular velocity . It is a spinning wheel or disc in which the axis of rotation (spin axis) is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum . Gyroscopes based on other operating principles also exist, such as

1728-471: Is a miniaturized gyroscope found in electronic devices. It takes the idea of the Foucault pendulum and uses a vibrating element. This kind of gyroscope was first used in military applications but has since been adopted for increasing commercial use. The hemispherical resonator gyroscope (HRG), also called a wine-glass gyroscope or mushroom gyro, makes use of a thin solid-state hemispherical shell, anchored by

1800-462: Is a pivoted support that permits rotation of an object about an axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow an object mounted on the innermost gimbal to remain independent of the rotation of its support (e.g. vertical in the first animation). For example, on a ship, the gyroscopes , shipboard compasses , stoves , and even drink holders typically use gimbals to keep them upright with respect to

1872-426: Is a rotor suspended by a universal joint with flexure pivots. The flexure spring stiffness is independent of spin rate. However, the dynamic inertia (from the gyroscopic reaction effect) from the gimbal provides negative spring stiffness proportional to the square of the spin speed (Howe and Savet, 1964; Lawrence, 1998). Therefore, at a particular speed, called the tuning speed, the two moments cancel each other, freeing

1944-403: Is an instrument, consisting of a wheel mounted into two or three gimbals providing pivoted supports, for allowing the wheel to rotate about a single axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow a wheel mounted on the innermost gimbal to have an orientation remaining independent of the orientation, in space, of its support. In the case of

2016-427: Is designed to minimize Lorentz torque on the rotor. The main rotor of a helicopter acts like a gyroscope. Its motion is influenced by the principle of gyroscopic precession which is the concept that a force applied to a spinning object will have a maximum reaction approximately 90 degrees later. The reaction may differ from 90 degrees when other stronger forces are in play. To change direction, helicopters must adjust

2088-424: Is never measured. Similar sensing platforms are used on aircraft. In inertial navigation systems, gimbal lock may occur when vehicle rotation causes two of the three gimbal rings to align with their pivot axes in a single plane. When this occurs, it is no longer possible to maintain the sensing platform's orientation. In spacecraft propulsion , rocket engines are generally mounted on a pair of gimbals to allow

2160-517: Is represented by spin, θ {\displaystyle \theta } is the nutation angle, and I {\displaystyle I} represents inertia along its respective axis. This relation is only valid with the Moment along the Y and Z axes are equal to 0. The equation can be further reduced noting that the angular velocity along the z-axis is equal to the sum of the Precession and

2232-449: Is sensitive to its orientation. Because of this, chronometers were normally mounted on gimbals, in order to isolate them from the rocking motions of a ship at sea. Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space. The word lock

Kristall - Misplaced Pages Continue

2304-481: Is the rate of change of the angular momentum that is produced by the applied torque. Precession produces counterintuitive dynamic results such as a spinning top not falling over. Precession is used in aerospace applications for sensing changes of attitude and direction. A Steadicam rig was employed during the filming of the 1983 film Return of the Jedi , in conjunction with two gyroscopes for extra stabilization, to film

2376-465: Is used to monitor the gyroscope. A precession , or tilt, in the orientation of the rotor causes the London moment magnetic field to shift relative to the housing. The moving field passes through a superconducting pickup loop fixed to the housing, inducing a small electric current. The current produces a voltage across a shunt resistance, which is resolved to spherical coordinates by a microprocessor. The system

2448-556: The Near East . In the Latin West, reference to the device appeared again in the 9th century recipe book called the Little Key of Painting' ( mappae clavicula ). The French inventor Villard de Honnecourt depicts a set of gimbals in his sketchbook (see right). In the early modern period, dry compasses were suspended in gimbals. In inertial navigation, as applied to ships and submarines,

2520-578: The Pneumatics as essentially genuine. The historian of technology George Sarton (1959) also asserts that it is safe to assume the Arabic version is a faithful copying of Philo's original, and credits Philon explicitly with the invention. So does his colleague Michael Lewis (2001). In fact, research by the latter scholar (1997) demonstrates that the Arab copy contains sequences of Greek letters which fell out of use after

2592-471: The horizon despite the ship's pitching and rolling . The gimbal suspension used for mounting compasses and the like is sometimes called a Cardan suspension after Italian mathematician and physicist Gerolamo Cardano (1501–1576) who described it in detail. However, Cardano did not invent the gimbal, nor did he claim to. The device has been known since antiquity, first described in the 3rd c. BC by Philo of Byzantium , although some modern authors support

2664-435: The -Z port. For Buran dockings, the entire procedure of moving Kristall would have to be used. On STS-74 , the next Shuttle docking, Atlantis carried a docking module that was attached to Kristall. This allowed future Shuttle dockings to be carried out without the module rearrangement that had needed previously. Gyroscope A gyroscope (from Ancient Greek γῦρος gŷros , "round" and σκοπέω skopéō , "to look")

2736-475: The 1st century, thereby strengthening the case that it is a faithful copy of the Hellenistic original, a view recently also shared by the classicist Andrew Wilson (2002). The ancient Roman author Athenaeus Mechanicus , writing during the reign of Augustus (30 BC–14 AD), described the military use of a gimbal-like mechanism, calling it "little ape" ( pithêkion ). When preparing to attack coastal towns from

2808-555: The 2nd century BC. There is mention during the Liang dynasty (502–557) that gimbals were used for hinges of doors and windows, while an artisan once presented a portable warming stove to Empress Wu Zetian (r. 690–705) which employed gimbals. Extant specimens of Chinese gimbals used for incense burners date to the early Tang dynasty (618–907), and were part of the silver -smithing tradition in China. The authenticity of Philo's description of

2880-508: The 3-axis acceleration sensing ability available on previous generations of devices. Together these sensors provide 6 component motion sensing; accelerometers for X, Y, and Z movement, and gyroscopes for measuring the extent and rate of rotation in space (roll, pitch and yaw). Some devices additionally incorporate a magnetometer to provide absolute angular measurements relative to the Earth's magnetic field. Newer MEMS-based inertial measurement units incorporate up to all nine axes of sensing in

2952-511: The Buran shuttle. One unit was located axially and the other was located radially. After the cancellation of the Buran program in 1993, the lateral docking port found use for the Shuttle-Mir Program . The radial port was never used. The axial port was tested by the modified Soyuz TM-16 spacecraft in 1993 in preparation for Shuttle dockings. On May 26, 1995, Kristall was moved from the -Y port on

Kristall - Misplaced Pages Continue

3024-559: The Earth's rotation (Greek gyros , circle or rotation), which was visible in the 8 to 10 minutes before friction slowed the spinning rotor. In the 1860s, the advent of electric motors made it possible for a gyroscope to spin indefinitely; this led to the first prototype heading indicators , and a rather more complicated device, the gyrocompass . The first functional gyrocompass was patented in 1904 by German inventor Hermann Anschütz-Kaempfe . American Elmer Sperry followed with his own design later that year, and other nations soon realized

3096-436: The Earth's rotation. For example, a bike wheel. Early forms of gyroscope (not then known by the name) were used to demonstrate the principle. A simple case of precession, also known as steady precession, can be described by the following relation to Moment: where ϕ ′ {\displaystyle \phi '} represents precession, ψ ′ {\displaystyle \psi '}

3168-556: The Mir base block to the -X port. It was then moved on May 30 to -Z port in preparation for the arrival of the Spektr module. On June 10, Kristall was moved back to -X port to prepare for the upcoming Shuttle docking. The first Space Shuttle docking occurred in 1995 during STS-71 by the Space Shuttle Atlantis . On July 17, 1995, Kristall was moved one last time to its permanent position at

3240-447: The Spin: ω z = ϕ ′ cos ⁡ θ + ψ ′ {\displaystyle \omega _{z}=\phi '\cos \theta +\psi '} , Where ω z {\displaystyle \omega _{z}} represents the angular velocity along the z axis. or Gyroscopic precession is torque induced. It

3312-411: The background plates for the speeder bike chase. Steadicam inventor Garrett Brown operated the shot, walking through a redwood forest, running the camera at one frame per second. When projected at 24 frames per second, it gave the impression of flying through the air at perilous speeds. The heading indicator or directional gyro has an axis of rotation that is set horizontally, pointing north. Unlike

3384-482: The camera is attached, the post which in most models can be extended, with the monitor and batteries at the bottom to counterbalance the camera weight. This is how the Steadicam stays upright, by simply making the bottom slightly heavier than the top, pivoting at the gimbal. This leaves the center of gravity of the whole rig, however heavy it may be, exactly at the operator's fingertip, allowing deft and finite control of

3456-472: The camera to seem as if it is floating through the air, an effect achieved by a Steadicam in the past. Gimbals can be mounted to cars and other vehicles such as drones , where vibrations or other unexpected movements would make tripods or other camera mounts unacceptable. An example which is popular in the live TV broadcast industry, is the Newton 3-axis camera gimbal . The rate of a mechanical marine chronometer

3528-440: The centre of gravity of the rotor may be offset from the axis of oscillation, and thus the centre of gravity of the rotor and the centre of suspension of the rotor may not coincide. Essentially, a gyroscope is a top combined with a pair of gimbals . Tops were invented in many different civilizations, including classical Greece, Rome, and China. Most of these were not utilized as instruments. The first known apparatus similar to

3600-434: The device was at rest at the extremities of its shaking motion. This was cured by applying a random white noise to the vibration. The material of the block was also changed from quartz to a new glass ceramic Cer-Vit , made by Owens Corning , because of helium leaks. A fiber optic gyroscope also uses the interference of light to detect mechanical rotation. The two-halves of the split beam travel in opposite directions in

3672-520: The equations of motion of a gyrostat. Examples include a solid body with a cavity filled with an inviscid, incompressible, homogeneous liquid, the static equilibrium configuration of a stressed elastic rod in elastica theory , the polarization dynamics of a light pulse propagating through a nonlinear medium, the Lorenz system in chaos theory, and the motion of an ion in a Penning trap mass spectrometer. A microelectromechanical systems (MEMS) gyroscope

SECTION 50

#1732848466912

3744-436: The ether. In modern continuum mechanics there is a variety of these models, based on ideas of Lord Kelvin. They represent a specific type of Cosserat theories (suggested for the first time by Eugène Cosserat and François Cosserat ), which can be used for description of artificially made smart materials as well as of other complex media. One of them, so-called Kelvin's medium, has the same equations as magnetic insulators near

3816-488: The experimental models went through many changes before it was deemed ready for production by the engineers and managers of Honeywell and Boeing . It was an outcome of the competition with mechanical gyroscopes, which kept improving. The reason Honeywell, of all companies, chose to develop the laser gyro was that they were the only one that didn't have a successful line of mechanical gyroscopes, so they wouldn't be competing against themselves. The first problem they had to solve

3888-472: The first several decades of the 20th century, other inventors attempted (unsuccessfully) to use gyroscopes as the basis for early black box navigational systems by creating a stable platform from which accurate acceleration measurements could be performed (in order to bypass the need for star sightings to calculate position). Similar principles were later employed in the development of inertial navigation systems for ballistic missiles . During World War II,

3960-416: The gyroscope became the prime component for aircraft and anti-aircraft gun sights. After the war, the race to miniaturize gyroscopes for guided missiles and weapons navigation systems resulted in the development and manufacturing of so-called midget gyroscopes that weighed less than 3 ounces (85 g) and had a diameter of approximately 1 inch (2.5 cm). Some of these miniaturized gyroscopes could reach

4032-410: The gyrostatic behaviour of the interior invisible flywheel when rotated rapidly. The first gyrostat was designed by Lord Kelvin to illustrate the more complicated state of motion of a spinning body when free to wander about on a horizontal plane, like a top spun on the pavement, or a bicycle on the road. Kelvin also made use of gyrostats to develop mechanical theories of the elasticity of matter and of

4104-467: The inkwell at the center, which was mounted on a series of concentric metal rings so that it remained stationary no matter which way the pot is turned. In Ancient China , the Han dynasty (202 BC – 220 AD) inventor and mechanical engineer Ding Huan created a gimbal incense burner around 180 AD. There is a hint in the writing of the earlier Sima Xiangru (179–117 BC) that the gimbal existed in China since

4176-905: The microchip-packaged MEMS gyroscopes found in electronic devices (sometimes called gyrometers ), solid-state ring lasers , fibre optic gyroscopes , and the extremely sensitive quantum gyroscope . Applications of gyroscopes include inertial navigation systems , such as in the Hubble Space Telescope , or inside the steel hull of a submerged submarine. Due to their precision, gyroscopes are also used in gyrotheodolites to maintain direction in tunnel mining. Gyroscopes can be used to construct gyrocompasses , which complement or replace magnetic compasses (in ships, aircraft and spacecraft, vehicles in general), to assist in stability (bicycles, motorcycles, and ships) or be used as part of an inertial guidance system . MEMS gyroscopes are popular in some consumer electronics, such as smartphones. A gyroscope

4248-407: The military importance of the invention—in an age in which naval prowess was the most significant measure of military power—and created their own gyroscope industries. The Sperry Gyroscope Company quickly expanded to provide aircraft and naval stabilizers as well, and other gyroscope developers followed suit. Circa 1911 the L. T. Hurst Mfg Co of Indianapolis started producing the "Hurst gyroscope"

4320-451: The orientation of the IMU. To accomplish this, the gyro error signals are passed through " resolvers " mounted on the three gimbals, roll, pitch and yaw. These resolvers perform an automatic matrix transformation according to each gimbal angle, so that the required torques are delivered to the appropriate gimbal axis. The yaw torques must be resolved by roll and pitch transformations. The gimbal angle

4392-415: The pitch angle and the angle of attack. Gyro X prototype vehicle created by Alex Tremulis and Thomas Summers in 1967. The car utilized gyroscopic precession to drive on two wheels. An assembly consisting of a flywheel mounted in a gimbal housing under the hood of the vehicle acted as a large gyroscope. The flywheel was rotated by hydraulic pumps creating a gyroscopic effect on the vehicle. A precessional ram

SECTION 60

#1732848466912

4464-400: The pivotal axis of the gyroscope frame (outer gimbal). This inner gimbal has two degrees of rotational freedom. The axle of the spinning wheel (the rotor) defines the spin axis. The rotor is constrained to spin about an axis, which is always perpendicular to the axis of the inner gimbal. So the rotor possesses three degrees of rotational freedom and its axis possesses two. The rotor responds to

4536-401: The rotor can be in a fixed position. The rotor simultaneously spins about one axis and is capable of oscillating about the two other axes, and it is free to turn in any direction about the fixed point (except for its inherent resistance caused by rotor spin). Some gyroscopes have mechanical equivalents substituted for one or more of the elements. For example, the spinning rotor may be suspended in

4608-495: The rotor from torque, a necessary condition for an ideal gyroscope. A ring laser gyroscope relies on the Sagnac effect to measure rotation by measuring the shifting interference pattern of a beam split into two separate beams which travel around the ring in opposite directions. When the Boeing 757 -200 entered service in 1983, it was equipped with the first suitable ring laser gyroscope. This gyroscope took many years to develop, and

4680-415: The sea-side, military engineers used to yoke merchant-ships together to take the siege machines up to the walls. But to prevent the shipborne machinery from rolling around the deck in heavy seas, Athenaeus advises that "you must fix the pithêkion on the platform attached to the merchant-ships in the middle, so that the machine stays upright in any angle". After antiquity , gimbals remained widely known in

4752-422: The state of magnetic saturation in the approximation of quasimagnetostatics. In modern times, the gyrostat concept is used in the design of attitude control systems for orbiting spacecraft and satellites. For instance, the Mir space station had three pairs of internally mounted flywheels known as gyrodynes or control moment gyroscopes . In physics, there are several systems whose dynamical equations resemble

4824-434: The velocity of the object can be calculated. Integrating again, position can be determined. The simplest accelerometer is a weight that is free to move horizontally, which is attached to a spring and a device to measure the tension in the spring. This can be improved by introducing a counteracting force to push the weight back and to measure the force needed to prevent the weight from moving. A more complicated design consists of

4896-461: The view that it may not have a single identifiable inventor. The gimbal was first described by the Greek inventor Philo of Byzantium (280–220 BC). Philo described an eight-sided ink pot with an opening on each side, which can be turned so that while any face is on top, a pen can be dipped and inked — yet the ink never runs out through the holes of the other sides. This was done by the suspension of

4968-506: The whole system with the lightest of touches on the gimbal. Powered by three brushless motors , motorized gimbals have the ability to keep the camera level on all axes as the camera operator moves the camera. An inertial measurement unit (IMU) responds to movement and utilizes its three separate motors to stabilize the camera. With the guidance of algorithms, the stabilizer is able to notice the difference between deliberate movement such as pans and tracking shots from unwanted shake. This allows

5040-625: Was removed and re-deployed on Kvant-1 in 1995. That solar panel was later disposed of in November, 1997. Kristall also carried six gyrodines for attitude control and to augment those already on the station. The control system of Kristall was developed by the JSC "Khartron" ( Kharkiv , Ukraine ). List of experiments: The most notable feature of Kristall was its relation to the Soviet Buran program . Kristall carried two APAS-89 designed to be compatible with

5112-518: Was responsible for rotating the gyroscope to change the direction of the precessional force to counteract any forces causing the vehicle imbalance. The one-of-a-kind prototype is now at the Lane Motor Museum in Nashville, Tennessee. In addition to being used in compasses, aircraft, computer pointing devices, etc., gyroscopes have been introduced into consumer electronics. Gimbal A gimbal

5184-444: Was that with laser gyros rotations below a certain minimum could not be detected at all, due to a problem called "lock-in", whereby the two beams act like coupled oscillators and pull each other's frequencies toward convergence and therefore zero output. The solution was to shake the gyro rapidly so that it never settled into lock-in. Paradoxically, too regular of a dithering motion produced an accumulation of short periods of lock-in when

#911088