Misplaced Pages

Kirkuk Field

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Kirkuk Field is an oilfield in Kirkuk , Iraq. It was discovered by the Turkish Petroleum Company at Baba Gurgur in 1927. The oilfield was brought into production by the Iraq Petroleum Company (IPC) in 1934 when the 12-inch pipelines from Kirkuk (British-ruled Mandatory Iraq ) to Haifa ( Mandatory Palestine ) and Tripoli (French-ruled Greater Lebanon ) were completed. It has ever since remained the most important part of northern Iraqi oil production with over 10 billion barrels (1.6 billion cubic metres) of proven remaining oil reserves in 1998. After about seven decades of operation, Kirkuk still produces up to 1 million barrels per day (160,000 cubic metres per day), almost half of all Iraqi oil exports. Oil from the Kirkuk oilfield is now exported through the Kirkuk–Ceyhan Oil Pipeline , which runs to the Turkish port of Ceyhan on the Mediterranean Sea .

#322677

65-515: Some analysts believe that poor reservoir -management practices during the Saddam Hussein years may have seriously, and even permanently, damaged Kirkuk's oilfield. One example showed an estimated 1.5 billion barrels (240 million cubic metres) of excess fuel oil being reinjected. Other problems include refinery residue and gas-stripped oil . Fuel oil reinjection has increased oil viscosity at Kirkuk making it more difficult and expensive to get

130-445: A cap rock) is a fundamental part of the trap that prevents hydrocarbons from further upward migration. A capillary seal is formed when the capillary pressure across the pore throats is greater than or equal to the buoyancy pressure of the migrating hydrocarbons. They do not allow fluids to migrate across them until their integrity is disrupted, causing them to leak. There are two types of capillary seal whose classifications are based on

195-406: A consequence, oil and natural gas are often found together. In common usage, deposits rich in oil are known as oil fields, and deposits rich in natural gas are called natural gas fields. In general, organic sediments buried in depths of 1,000 m to 6,000 m (at temperatures of 60 ° C to 150 °C) generate oil, while sediments buried deeper and at higher temperatures generate natural gas. The deeper

260-407: A few, very large offshore drilling rigs, due to the cost and logistical difficulties in working over water. Rising gas prices in the early 21st century encouraged drillers to revisit fields that previously were not considered economically viable. For example, in 2008 McMoran Exploration passed a drilling depth of over 32,000 feet (9754 m) (the deepest test well in the history of gas production) at

325-532: A geologist (known on the rig as the "mudlogger") will note its presence. Historically in the United States, in some oil fields the oil rose naturally to the surface, but most of these fields have long since been used up, except in parts of Alaska . Often many wells (called multilateral wells ) are drilled into the same reservoir, to an economically viable extraction rate. Some wells ( secondary wells ) may pump water , steam , acids or various gas mixtures into

390-605: A gravity higher than 45 API. Gas cycling is the process where dry gas is injected and produced along with condensed liquid. Extraction of petroleum Petroleum is a fossil fuel that can be drawn from beneath the Earth's surface. Reservoirs of petroleum are formed through the mixture of plants, algae, and sediments in shallow seas under high pressure. Petroleum is mostly recovered from oil drilling . Seismic surveys and other methods are used to locate oil reservoirs. Oil rigs and oil platforms are used to drill long holes into

455-471: A result of changes in the structure of the subsurface from processes such as folding and faulting , leading to the formation of domes , anticlines , and folds. Examples of this kind of trap are an anticline trap, a fault trap, and a salt dome trap. They are more easily delineated and more prospective than their stratigraphic counterparts, with the majority of the world's petroleum reserves being found in structural traps. Stratigraphic traps are formed as

520-435: A result of lateral and vertical variations in the thickness, texture, porosity, or lithology of the reservoir rock. Examples of this type of trap are an unconformity trap, a lens trap and a reef trap. Hydrodynamic traps are a far less common type of trap. They are caused by the differences in water pressure, that are associated with water flow, creating a tilt of the hydrocarbon-water contact. The seal (also referred to as

585-502: A significantly higher displacement pressure such that the pressure required for tension fracturing is actually lower than the pressure required for fluid displacement—for example, in evaporites or very tight shales. The rock will fracture when the pore pressure is greater than both its minimum stress and its tensile strength then reseal when the pressure reduces and the fractures close. Unconventional (oil & gas) reservoirs are accumulations where oil and gas phases are tightly bound to

650-400: A well cannot be known with certainty until the well ceases production, petroleum engineers often determine an estimated ultimate recovery (EUR) based on decline rate projections years into the future. Various models, mathematical techniques, and approximations are used. Shale gas EUR is difficult to predict, and it is possible to choose recovery methods that tend to underestimate decline of

715-434: Is carbon dioxide flooding . Tertiary recovery allows another 5% to 15% of the reservoir's oil to be recovered. In some California heavy oil fields, steam injection has doubled or even tripled the oil reserves and ultimate oil recovery. For example, see Midway-Sunset Oil Field , California's largest oilfield. Tertiary recovery begins when secondary oil recovery is not enough to continue adequate extraction, but only when

SECTION 10

#1732848570323

780-428: Is an economic benefit worthy of commercial attention. Oil fields may extend up to several hundred kilometers across the surface, meaning that extraction efforts can be large and spread out across the area. In addition to extraction equipment, there may be exploratory wells probing the edges to find more reservoir area, pipelines to transport the oil elsewhere, and support facilities. Oil fields can occur anywhere that

845-402: Is analogous to saying that the oil which can be extracted forms within the source rock itself, as opposed to accumulating under a cap rock. Oil sands are an example of an unconventional oil reservoir. Unconventional reservoirs and their associated unconventional oil encompass a broad spectrum of petroleum extraction and refinement techniques, as well as many different sources. Since the oil

910-403: Is being pursued at a higher rate because of the scarcity of conventional reservoirs around the world. After the discovery of a reservoir, a petroleum engineer will seek to build a better picture of the accumulation. In a simple textbook example of a uniform reservoir, the first stage is to conduct a seismic survey to determine the possible size of the trap. Appraisal wells can be used to determine

975-452: Is best to manage the gas cap effectively, that is, placing the oil wells such that the gas cap will not reach them until the maximum amount of oil is produced. Also a high production rate may cause the gas to migrate downward into the production interval. In this case, over time the reservoir pressure depletion is not as steep as in the case of solution-based gas drive. In this case, the oil rate will not decline as steeply but will depend also on

1040-426: Is called the stock tank oil initially in place . As a result of studying factors such as the permeability of the rock (how easily fluids can flow through the rock) and possible drive mechanisms, it is possible to estimate the recovery factor, or what proportion of oil in place can be reasonably expected to be produced. The recovery factor is commonly 30–35%, giving a value for the recoverable resources. The difficulty

1105-490: Is contained within the source rock, unconventional reservoirs require that the extracting entity function as a mining operation rather than drilling and pumping like a conventional reservoir. This has tradeoffs, with higher post-production costs associated with complete and clean extraction of oil being a factor of consideration for a company interested in pursuing a reservoir. Tailings are also left behind, increasing cleanup costs. Despite these tradeoffs, unconventional oil

1170-452: Is created in surrounding rock by the presence of high heat and pressure in the Earth's crust . Reservoirs are broadly classified as conventional and unconventional reservoirs. In conventional reservoirs, the naturally occurring hydrocarbons, such as crude oil ( petroleum ) or natural gas , are trapped by overlying rock formations with lower permeability , while in unconventional reservoirs

1235-412: Is fitted to the top; the valves regulate pressures and control flow. The drilling process comes under "upstream", one of the three main services in the oil industry, along with mid-stream and downstream. During the primary recovery stage , reservoir drive comes from a number of natural mechanisms: Recovery factor during the primary recovery stage is typically 5-15%. When the underground pressure in

1300-431: Is more accurate to divide the oil industry into three sectors: upstream ( crude oil production from wells and separation of water from oil ), midstream (pipeline and tanker transport of crude oil) and downstream ( refining of crude oil to products, marketing of refined products, and transportation to oil stations). More than 65,000 oil fields are scattered around the globe, on land and offshore. The largest are

1365-630: Is shared between Iran and Qatar . The second largest natural gas field is the Urengoy gas field , and the third largest is the Yamburg gas field , both in Russia . Like oil, natural gas is often found underwater in offshore gas fields such as the North Sea , Corrib Gas Field off Ireland , and near Sable Island . The technology to extract and transport offshore natural gas is different from land-based fields. It uses

SECTION 20

#1732848570323

1430-413: Is that reservoirs are not uniform. They have variable porosities and permeabilities and may be compartmentalized, with fractures and faults breaking them up and complicating fluid flow. For this reason, computer modeling of economically viable reservoirs is often carried out. Geologists, geophysicists, and reservoir engineers work together to build a model that allows simulation of the flow of fluids in

1495-473: Is the most common form of TEOR, and it is often done with a cogeneration plant. This type of cogeneration plant uses a gas turbine to generate electricity , and the waste heat is used to produce steam, which is then injected into the reservoir. This form of recovery is used extensively to increase oil extraction in the San Joaquin Valley , which yields a very heavy oil, yet accounts for ten percent of

1560-869: Is usually necessary to drill into the Earth's crust, although surface oil seeps exist in some parts of the world, such as the La Brea Tar Pits in California and numerous seeps in Trinidad . Factors that affect the quantity of recoverable hydrocarbons in a reservoir include the fluid distribution in the reservoir, initial volumes of fluids in place, reservoir pressure, fluid and rock properties, reservoir geometry, well type, well count, well placement, development concept, and operating philosophy. Modern production includes thermal , gas injection , and chemical methods of extraction to enhance oil recovery. A virgin reservoir may be under sufficient pressure to push hydrocarbons to

1625-612: The Ghawar Field in Saudi Arabia and the Burgan Field in Kuwait , with more than 66 to 104 billion barrels (9.5×10 m ) estimated in each. In the modern age, the location of oil fields with proven oil reserves is a key underlying factor in many geopolitical conflicts. Natural gas originates by the same geological thermal cracking process that converts kerogen to petroleum. As

1690-546: The aquatic ecosystem , which is usually a sea but might also be a river, lake, coral reef, or algal mat , the formation of an oil or gas reservoir also requires a sedimentary basin that passes through four steps: Timing is also an important consideration; it is suggested that the Ohio River Valley could have had as much oil as the Middle East at one time, but that it escaped due to a lack of traps. The North Sea , on

1755-407: The buoyancy forces driving the upward migration of hydrocarbons through a permeable rock cannot overcome the capillary forces of a sealing medium. The timing of trap formation relative to that of petroleum generation and migration is crucial to ensuring a reservoir can form. Petroleum geologists broadly classify traps into three categories that are based on their geological characteristics:

1820-610: The Blackbeard site in the Gulf of Mexico. ExxonMobil 's drill rig there had reached 30,000 feet by 2006, without finding gas, before it abandoned the site. Crude oil is found in all oil reservoirs formed in the Earth's crust from the remains of once-living things. Evidence indicates that millions of years of heat and pressure changed the remains of microscopic plants and animals into oil and natural gas. Roy Nurmi, an interpretation adviser for Schlumberger oil field services company, described

1885-420: The United States' oil extraction. Fire flooding (In-situ burning) is another form of TEOR, but instead of steam, some of the oil is burned to heat the surrounding oil. Occasionally, surfactants ( detergents ) are injected to alter the surface tension between the water and the oil in the reservoir, mobilizing oil which would otherwise remain in the reservoir as residual oil. Another method to reduce viscosity

1950-410: The actual capacity. Laboratory testing can determine the characteristics of the reservoir fluids, particularly the expansion factor of the oil, or how much the oil expands when brought from the high pressure and high temperature of the reservoir to a "stock tank" at the surface. With such information, it is possible to estimate how many "stock tank" barrels of oil are located in the reservoir. Such oil

2015-611: The annual rate of occupational fatalities significantly decreased 36.3%; however, the number of work-related fatalities in the U.S. oil and gas extraction industry increased 27.6%, with a total of 1,189 deaths because the size of the workforce grew during this period. Two-thirds of all worker fatalities were attributed to transportation incidents and contact with objects or equipment. More than 50% of persons fatally injured were employed by companies that service wells. Hazard controls include land transportation safety policies and engineering controls such as automated technologies. In 2023,

Kirkuk Field - Misplaced Pages Continue

2080-434: The earth to create an oil well and extract petroleum. After extraction, oil is refined to make gasoline and other products such as tires and refrigerators. Extraction of petroleum can be dangerous and have led to oil spills . Geologists and geophysicists use seismic surveys to search for geological structures that may form oil reservoirs. The "classic" method includes making an underground explosion nearby and observing

2145-402: The gas bubbles drive the oil to the surface. The bubbles then reach critical saturation and flow together as a single gas phase. Beyond this point and below this pressure, the gas phase flows out more rapidly than the oil because of its lowered viscosity. More free gas is produced, and eventually the energy source is depleted. In some cases depending on the geology the gas may migrate to the top of

2210-407: The geology of the underlying rock allows, meaning that certain fields can be far away from civilization, including at sea. Creating an operation at an oil field can be a logistically complex undertaking, as it involves the equipment associated with extraction and transportation, as well as infrastructure such as roads and housing for workers. This infrastructure has to be designed with the lifespan of

2275-439: The government of Iraq. This article about an oil field is a stub . You can help Misplaced Pages by expanding it . This Iraq -related article is a stub . You can help Misplaced Pages by expanding it . Oil reservoir A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter)

2340-434: The liquid sections applying extra pressure. This is present in the reservoir if there is more gas than can be dissolved in the reservoir. The gas will often migrate to the crest of the structure. It is compressed on top of the oil reserve, as the oil is produced the cap helps to push the oil out. Over time the gas cap moves down and infiltrates the oil, and the well will produce more and more gas until it produces only gas. It

2405-438: The location of oil-water contact and with it the height of the oil bearing sands. Often coupled with seismic data, it is possible to estimate the volume of an oil-bearing reservoir. The next step is to use information from appraisal wells to estimate the porosity of the rock. The porosity of an oil field, or the percentage of the total volume that contains fluids rather than solid rock, is 20–35% or less. It can give information on

2470-423: The natural reservoir drive with an artificial drive. Secondary recovery techniques increase the reservoir's pressure by water injection , gas reinjection and gas lift . Gas reinjection and lift each use associated gas, carbon dioxide or some other inert gas to reduce the density of the oil-gas mixture; improving its mobility. The typical recovery factor from water injection operations is about 30%, depending on

2535-438: The oil and form a secondary gas cap. Some energy may be supplied by water, gas in water, or compressed rock. These are usually minor contributions with respect to hydrocarbon expansion. By properly managing the production rates, greater benefits can be had from solution-gas drives. Secondary recovery involves the injection of gas or water to maintain reservoir pressure. The gas/oil ratio and the oil production rate are stable until

2600-433: The oil can still be extracted profitably . This depends on the cost of the extraction method and the current price of crude oil . When prices are high, previously unprofitable wells are brought back into use, and when they are low, extraction is curtailed. The use of microbial treatments is another tertiary recovery method. Special blends of the microbes are used to treat and break down the hydrocarbon chain in oil, making

2665-507: The oil easy to recover. It is also more economical versus other conventional methods. In some states such as Texas, there are tax incentives for using these microbes in what is called a secondary tertiary recovery. Very few companies supply these microbes. The amount of recoverable oil is determined by a number of factors: When the reservoir rocks are "tight", as in shale , oil generally cannot flow through, but when they are permeable, as in sandstone , oil flows freely. Although recovery of

Kirkuk Field - Misplaced Pages Continue

2730-436: The oil field in mind, as production can last many years. Several companies, such as Hill International , Bechtel , Esso , Weatherford International , Schlumberger , Baker Hughes and Halliburton , have organizations that specialize in the large-scale construction of the infrastructure to support oil field exploitation. The term "oilfield" can be used as a shorthand to refer to the entire petroleum industry . However, it

2795-629: The oil out of the ground. On 11 July 2014 Kurdistan Regional Government forces seized control of the Kirkuk oilfield, together with the Bai Hassan field, prompting a condemnation from Baghdad and a threat of "dire consequences," if the oilfields were not returned to Iraq's control. In the aftermath of the Kurdish Referendum, as part of 2017 Iraqi–Kurdish conflict , the control of the oil fields, along with almost all of Kirkuk Governorate , returned to

2860-512: The oil reservoir is sufficient to force the oil (along with some associated gas) to the surface, all that is necessary to capture oil is to place a complex arrangement of valves (the Christmas tree ) on the well head and further to connect the well to a pipeline network for storage and processing. Sometimes, during primary recovery, to increase extraction rates, pumps, such as beam pumps and electrical submersible pumps (ESPs), are used to bring

2925-426: The oil to the surface; these are known as artificial lifting mechanisms. Over the lifetime of a well, the pressure falls. After natural reservoir drive diminishes and there is insufficient underground pressure to force the oil to the surface, secondary recovery methods are applied. These rely on supplying external energy to the reservoir by injecting fluids to increase reservoir pressure, hence increasing or replacing

2990-724: The other hand, endured millions of years of sea level changes that successfully resulted in the formation of more than 150 oil fields. Although the process is generally the same, various environmental factors lead to the creation of a wide variety of reservoirs. Reservoirs exist anywhere from the land surface to 30,000 ft (9,000 m) below the surface and are a variety of shapes, sizes, and ages. In recent years, igneous reservoirs have become an important new field of oil exploration, especially in trachyte and basalt formations. These two types of reservoirs differ in oil content and physical properties like fracture connectivity, pore connectivity, and rock porosity . A trap forms when

3055-406: The placement of the well with respect to the gas cap. As with other drive mechanisms, water or gas injection can be used to maintain reservoir pressure. When a gas cap is coupled with water influx, the recovery mechanism can be highly efficient. Water (usually salty) may be present below the hydrocarbons. Water, as with all liquids, is compressible to a small degree. As the hydrocarbons are depleted,

3120-431: The preferential mechanism of leaking: the hydraulic seal and the membrane seal. A membrane seal will leak whenever the pressure differential across the seal exceeds the threshold displacement pressure, allowing fluids to migrate through the pore spaces in the seal. It will leak just enough to bring the pressure differential below that of the displacement pressure and will reseal. A hydraulic seal occurs in rocks that have

3185-429: The pressure. As the reservoir depletes, the pressure falls below the bubble point , and the gas comes out of solution to form a gas cap at the top. This gas cap pushes down on the liquid helping to maintain pressure. This occurs when the natural gas is in a cap below the oil. When the well is drilled the lowered pressure above means that the oil expands. As the pressure is reduced it reaches bubble point, and subsequently

3250-485: The process as follows: Plankton and algae, proteins and the life that's floating in the sea, as it dies, falls to the bottom, and these organisms are going to be the source of our oil and gas. When they're buried with the accumulating sediment and reach an adequate temperature, something above 50 to 70 °C they start to cook. This transformation, this change, changes them into the liquid hydrocarbons that move and migrate, will become our oil and gas reservoir. In addition to

3315-472: The properties of the oil and the characteristics of the reservoir rock. On average, the recovery factor after primary and secondary oil recovery operations is between 35 and 45%. Enhanced, or tertiary oil recovery methods, further increase mobility of the oil in order to increase extraction. Thermally enhanced oil recovery methods (TEOR) are tertiary recovery techniques that heat the oil, reducing its viscosity and making it easier to extract. Steam injection

SECTION 50

#1732848570323

3380-491: The reduction in pressure in the reservoir allows the water to expand slightly. Although this unit expansion is minute, if the aquifer is large enough this will translate into a large increase in volume, which will push up on the hydrocarbons, maintaining pressure. With a water-drive reservoir, the decline in reservoir pressure is very slight; in some cases, the reservoir pressure may remain unchanged. The gas/oil ratio also remains stable. The oil rate will remain fairly stable until

3445-408: The reservoir pressure drops below the bubble point when critical gas saturation is reached. When the gas is exhausted, the gas/oil ratio and the oil rate drops, the reservoir pressure has been reduced, and the reservoir energy is exhausted. In reservoirs already having a gas cap (the virgin pressure is already below bubble point), the gas cap expands with the depletion of the reservoir, pushing down on

3510-419: The reservoir to raise or maintain the reservoir pressure and economical extraction The oil well is created by drilling a long hole into the earth with an oil rig . A steel pipe (casing) is placed in the hole, to provide structural integrity to the newly drilled well bore. Holes are then made in the base of the well to enable oil to pass into the bore. Finally, a collection of valves called a " Christmas tree "

3575-409: The reservoir, leading to an improved estimate of the recoverable resources. Reserves are only the part of those recoverable resources that will be developed through identified and approved development projects. Because the evaluation of reserves has a direct impact on the company or the asset value, it usually follows a strict set of rules or guidelines. To obtain the contents of the oil reservoir, it

3640-410: The rock fabric by strong capillary forces, requiring specialised measures for evaluation and extraction. Unconventional reservoirs form in completely different ways to conventional reservoirs, the main difference being that they do not have "traps". This type of reservoir can be driven in a unique way as well, as buoyancy might not be the driving force for oil and gas accumulation in such reservoirs. This

3705-419: The rocks have high porosity and low permeability, which keeps the hydrocarbons trapped in place, therefore not requiring a cap rock . Reservoirs are found using hydrocarbon exploration methods. An oil field is an area of accumulated liquid petroleum underground in multiple (potentially linked) reservoirs, trapped as it rises to impermeable rock formations. In industrial terms, an oil field implies that there

3770-429: The seismic response, which provides information about the geological structures underground. However, "passive" methods that extract information from naturally occurring seismic waves are also used. Other instruments such as gravimeters and magnetometers are also used in the search for petroleum. Extracting crude oil normally starts with drilling wells into an underground reservoir. When an oil well has been tapped,

3835-410: The source, the "drier" the gas (that is, the smaller the proportion of condensates in the gas). Because both oil and natural gas are lighter than water, they tend to rise from their sources until they either seep to the surface or are trapped by a non-permeable stratigraphic trap. They can be extracted from the trap by drilling. The largest natural gas field is South Pars/Asalouyeh gas field, which

3900-454: The structural trap, the stratigraphic trap, and the far less common hydrodynamic trap . The trapping mechanisms for many petroleum reservoirs have characteristics from several categories and can be known as a combination trap. Traps are described as structural traps (in deformed strata such as folds and faults) or stratigraphic traps (in areas where rock types change, such as unconformities, pinch-outs and reefs). Structural traps are formed as

3965-452: The surface. As the fluids are produced, the pressure will often decline, and production will falter. The reservoir may respond to the withdrawal of fluid in a way that tends to maintain the pressure. Artificial drive methods may be necessary. This mechanism (also known as depletion drive) depends on the associated gas of the oil. The virgin reservoir may be entirely semi-liquid but will be expected to have gaseous hydrocarbons in solution due to

SECTION 60

#1732848570323

4030-407: The water begins to be produced along with the oil, the recovery rate may become uneconomical owing to the higher lifting and water disposal costs. If the natural drives are insufficient, as they very often are, then the pressure can be artificially maintained by injecting water into the aquifer or gas into the gas cap. The force of gravity will cause the oil to move downward of the gas and upward of

4095-431: The water reaches the well. In time, the water cut will increase, and the well will be watered out. The water may be present in an aquifer (but rarely one replenished with surface water ). This water gradually replaces the volume of oil and gas that is produced out of the well, given that the production rate is equivalent to the aquifer activity. That is, the aquifer is being replenished from some natural water influx. If

4160-442: The water. If vertical permeability exists then recovery rates may be even better. These occur if the reservoir conditions allow the hydrocarbons to exist as a gas. Retrieval is a matter of gas expansion. Recovery from a closed reservoir (i.e., no water drive) is very good, especially if bottom hole pressure is reduced to a minimum (usually done with compressors at the wellhead). Any produced liquids are light-colored to colorless, with

4225-551: The well beyond that which is reasonable. The oil and gas extraction workforce faces unique health and safety challenges and is recognized by the National Institute for Occupational Safety and Health (NIOSH) as a priority industry sector in the National Occupational Research Agenda (NORA) to identify and provide intervention strategies regarding occupational health and safety issues. During 2003–2013,

#322677