Misplaced Pages

Kenorland

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Kenorland is a hypothetical Neoarchean supercontinent . If it existed, it would have been one of the earliest known supercontinents on Earth . It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago (2.72 Ga ) by the accretion of Neoarchaean cratons and the formation of new continental crust . It comprised what later became Laurentia (the core of today's North America and Greenland), Baltica (today's Scandinavia and Baltic), Western Australia and Kalaharia .

#601398

83-470: Swarms of volcanic dikes and their paleomagnetic orientation as well as the existence of similar stratigraphic sequences permit this reconstruction . The core of Kenorland, the Baltic/Fennoscandian Shield , traces its origins back to over 3.1 Ga. The Yilgarn Craton (present-day Western Australia ) contains zircon crystals in its crust that date back to 4.4 Ga. Kenorland was named after

166-438: A central volcano or intrusion. Though they appear to originate in the central intrusion, the dikes often have a different age and composition from the intrusion. These radial swarms may have formed over the intrusion and were later cut by the rising body of magma, or the crust was already experiencing regional tension and the intrusion triggered formation of the fissures. In rock of the oceanic crust, pillow lava erupted onto

249-460: A curtain of fire where lava erupts along the entire length of a fissure several kilometers long. However, the length of erupting fissure diminishes over time, becoming focused on a short segment of less than half a kilometer. The minimum possible width of a dike is determined by the balance between magma movement and cooling. There may be more than one injection of magma along a given fissure. When multiple injections are all of similar composition,

332-413: A dike or dyke is a sheet of rock that is formed in a fracture of a pre-existing rock body. Dikes can be either magmatic or sedimentary in origin. Magmatic dikes form when magma flows into a crack then solidifies as a sheet intrusion , either cutting across layers of rock or through a contiguous mass of rock. Clastic dikes are formed when sediment fills a pre-existing crack. A magmatic dike

415-489: A sill is a sheet intrusion that forms within and parallel to the bedding. Mafic magma (fluid magma low in silica) usually reaches the surface through fissures, forming dikes. At the shallowest depths, dikes form when magma rises into an existing fissure. In the young, shallow dikes of the Hawaiian Islands, there is no indication of forceful intrusion of magma. For example, there is little penetration of magma into

498-425: A consequence of the direction of minimum principal stress changing as the magma ascends from deep to shallow levels in the crust. An en echelon dike set may evolve into single dike with bridges connecting the formerly separate segments and horns showing former segment overlaps. In ancient dikes in deformed rock, the bridges and horns are used by geologists to determine the direction of magma flow. Where there

581-581: A dike is much smaller than its other two dimensions, and the opposite walls are roughly parallel, so that a dike is more or less constant in thickness. The thickness of different dikes can range from a few millimeters to hundreds of meters, but is most typically from about a meter to a few tens of meters. The lateral extent can be tens of kilometers, and dikes with a thickness of a few tens of meters or more commonly extend for over 100 km. Most dikes are steeply dipping; in other words, they are oriented nearly vertically. Subsequent tectonic deformation may rotate

664-411: A given year to that year's total emissions. The annual airborne fraction for CO 2 had been stable at 0.45 for the past six decades even as the emissions have been increasing. This means that the other 0.55 of emitted CO 2 is absorbed by the land and atmosphere carbon sinks within the first year of an emission. In the high-emission scenarios, the effectiveness of carbon sinks will be lower, increasing

747-400: A greenhouse gas would absorb over a given time frame after it has been added to the atmosphere (or emitted to the atmosphere). The GWP makes different greenhouse gases comparable with regard to their "effectiveness in causing radiative forcing ". It is expressed as a multiple of the radiation that would be absorbed by the same mass of added carbon dioxide (CO 2 ), which is taken as

830-598: A line extending for 250 km. Individual segments overlap, with the overlapping portions thinner, so that the combined thickness of the two overlapped portions is about the same as the thickness of a single segment. Other examples of en echelon dikes are the Inyo dike of Long Valley, California , US; the Jagged Rocks complex, Arizona , US; and the dikes of oceanic spreading centers . Dikes range in composition from basaltic to rhyolitic , but most are basaltic. The texture

913-539: A molecule of X remains in the box. τ {\displaystyle \tau } can also be defined as the ratio of the mass m {\displaystyle m} (in kg) of X in the box to its removal rate, which is the sum of the flow of X out of the box ( F out {\displaystyle F_{\text{out}}} ), chemical loss of X ( L {\displaystyle L} ), and deposition of X ( D {\displaystyle D} ) (all in kg/s): If input of this gas into

SECTION 10

#1732851145602

996-414: A much shorter atmospheric lifetime than carbon dioxide, its GWP is much less over longer time periods, with a GWP-100 of 27.9 and a GWP-500 of 7.95. The contribution of each gas to the enhanced greenhouse effect is determined by the characteristics of that gas, its abundance, and any indirect effects it may cause. For example, the direct radiative effect of a mass of methane is about 84 times stronger than

1079-445: A process known as water vapor feedback. It occurs because Clausius–Clapeyron relation establishes that more water vapor will be present per unit volume at elevated temperatures. Thus, local atmospheric concentration of water vapor varies from less than 0.01% in extremely cold regions and up to 3% by mass in saturated air at about 32 °C. Global warming potential (GWP) is an index to measure how much infrared thermal radiation

1162-500: A reference gas. Therefore, the GWP has a value of 1 for CO 2 . For other gases it depends on how strongly the gas absorbs infrared thermal radiation, how quickly the gas leaves the atmosphere, and the time frame being considered. For example, methane has a GWP over 20 years (GWP-20) of 81.2 meaning that, for example, a leak of a tonne of methane is equivalent to emitting 81.2 tonnes of carbon dioxide measured over 20 years. As methane has

1245-533: A ring fracture. Magma rising into the ring fracture produces a ring dike. Good examples of ring dikes and cone sheets are found in the Ardnamurchan peninsula of Scotland. A feeder dike is a dike that acted as a conduit for magma moving from a magma chamber to a localized intrusion . For example, the Muskox intrusion in arctic Canada was fed by a large dike, with a thickness of 150 meters. A sole injection

1328-765: A runaway Snowball Earth scenario, where average temperatures planet-wide plummeted to below freezing. Despite the anoxia indicated by the BIF, photosynthesis continued, stabilizing climates at new levels during the second part of the Proterozoic Era . [REDACTED] Africa [REDACTED] Antarctica [REDACTED] Asia [REDACTED] Australia [REDACTED] Europe [REDACTED] North America [REDACTED] South America [REDACTED] Afro-Eurasia [REDACTED] Americas [REDACTED] Eurasia [REDACTED] Oceania Dike (geology) In geology ,

1411-411: A shallow magma chamber. Cone sheets form when magma is injected into a shallow magma chamber, which lifts and fractures the rock beds above it. The fractures take the form of a set of concentric cones dipping at a relatively shallow angle into the magma chamber. When the caldera is subsequently emptied by explosive volcanic activity, the roof of the magma chamber collapses as a plug of rock surrounded by

1494-408: A single number. Scientists instead say that while the first 10% of carbon dioxide's airborne fraction (not counting the ~50% absorbed by land and ocean sinks within the emission's first year) is removed "quickly", the vast majority of the airborne fraction – 80% – lasts for "centuries to millennia". The remaining 10% stays for tens of thousands of years. In some models, this longest-lasting fraction

1577-481: A variety of Atmospheric Chemistry Observational Databases . The table below shows the most influential long-lived, well-mixed greenhouse gases, along with their tropospheric concentrations and direct radiative forcings , as identified by the Intergovernmental Panel on Climate Change (IPCC). Abundances of these trace gases are regularly measured by atmospheric scientists from samples collected throughout

1660-508: Is a CO 2 molecule. The first 30 ppm increase in CO 2 concentrations took place in about 200 years, from the start of the Industrial Revolution to 1958; however the next 90 ppm increase took place within 56 years, from 1958 to 2014. Similarly, the average annual increase in the 1960s was only 37% of what it was in 2000 through 2007. Many observations are available online in

1743-409: Is a dike injected along a thrust fault plane, where rock beds were fractured and thrust up over younger beds. Clastic dikes (also known as sedimentary dikes) are vertical bodies of sedimentary rock that cut off other rock layers. They can form in two ways: Greenhouse gas This is an accepted version of this page Greenhouse gases ( GHGs ) are the gases in the atmosphere that raise

SECTION 20

#1732851145602

1826-531: Is a level which the Intergovernmental Panel on Climate Change (IPCC) says is "dangerous". Greenhouse gases are infrared active, meaning that they absorb and emit infrared radiation in the same long wavelength range as what is emitted by the Earth's surface, clouds and atmosphere. 99% of the Earth's dry atmosphere (excluding water vapor ) is made up of nitrogen ( N 2 ) (78%) and oxygen ( O 2 ) (21%). Because their molecules contain two atoms of

1909-474: Is a sheet of igneous rock that cuts across older rock beds. It is formed when magma fills a fracture in the older beds and then cools and solidifies. The dike rock is usually more resistant to weathering than the surrounding rock, so that erosion exposes the dike as a natural wall or ridge. It is from these natural walls that dikes get their name. Dikes preserve a record of the fissures through which most mafic magma (fluid magma low in silica) reaches

1992-434: Is also cooling the upper atmosphere, as it is much thinner than the lower layers, and any heat re-emitted from greenhouse gases is more likely to travel further to space than to interact with the fewer gas molecules in the upper layers. The upper atmosphere is also shrinking as the result. Anthropogenic changes to the natural greenhouse effect are sometimes referred to as the enhanced greenhouse effect . This table shows

2075-489: Is an asymmetry in electric charge distribution which allows molecular vibrations to interact with electromagnetic radiation. This makes them infrared active, and so their presence causes greenhouse effect . Earth absorbs some of the radiant energy received from the sun, reflects some of it as light and reflects or radiates the rest back to space as heat . A planet's surface temperature depends on this balance between incoming and outgoing energy. When Earth's energy balance

2158-503: Is as large as 30%. Estimates in 2023 found that the current carbon dioxide concentration in the atmosphere may be the highest it has been in the last 14 million years. However the IPCC Sixth Assessment Report estimated similar levels 3 to 3.3 million years ago in the mid-Pliocene warm period . This period can be a proxy for likely climate outcomes with current levels of CO 2 . Greenhouse gas monitoring involves

2241-457: Is concentrated on the tip of the propagating fracture. In effect, the magma wedges apart the brittle rock in a process called hydraulic fracture . At greater depths, where the rock is hotter and less brittle, the magma forces the rock aside along brittle shear planes oriented 35 degrees to the sides of the dock. This bulldozer-like action produces a blunter dike tip. At the greatest depths, the shear planes become ductile faults, angled 45 degree from

2324-403: Is mostly due to the rapid growth and cumulative magnitude of the disturbances to Earth's carbon cycle by the geologic extraction and burning of fossil carbon. As of year 2014, fossil CO 2 emitted as a theoretical 10 to 100 GtC pulse on top of the existing atmospheric concentration was expected to be 50% removed by land vegetation and ocean sinks in less than about a century, as based on

2407-408: Is rapid flow of molten magma through a fissure, the magma tends to erode the walls, either by melting the wall rock or by tearing off fragments of wall rock. This widens the fissure and increases flow. Where flow is less rapid, the magma may solidify next to the wall, narrowing the fissure and decreasing flow. This causes flow to become concentrated at a few points. At Hawaii, eruptions often begin with

2490-507: Is shifted, its surface becomes warmer or cooler, leading to a variety of changes in global climate. Radiative forcing is a metric calculated in watts per square meter, which characterizes the impact of an external change in a factor that influences climate. It is calculated as the difference in top-of-atmosphere (TOA) energy balance immediately caused by such an external change. A positive forcing, such as from increased concentrations of greenhouse gases, means more energy arriving than leaving at

2573-555: Is the Mackenzie dike swarm in the Northwest Territories , Canada. Dike swarms (also called dike complexes ) are exposed in the eroded rift zones of Hawaiian volcanoes. As with most other magmatic dikes, these were fissures through which lava reached the surface. The swarms are typically 2.5 to 5 km in width, with individual dikes about a meter in width. The dike swarms extend radially out from volcano summits and parallel to

Kenorland - Misplaced Pages Continue

2656-691: Is the P-wave velocity of the host rock (essentially, the speed of sound in the rock). This formula predicts that dikes will be longer and narrower at greater depths below the surface. The ratio of thickness to length is around 0.01 to 0.001 near the surface, but at depth it ranges from 0.001 to 0.0001. A surface dike 10 meters in thickness will extend about 3 km, while a dike of similar thickness at depth will extend about 30 km. This tendency of intruding magma to form shorter fissures at shallower depths has been put forward as an explanation of en echelon dikes. However, en echelon dikes have also been explained as

2739-482: Is the level the United Nations' Intergovernmental Panel on Climate Change (IPCC) says is "dangerous". Most greenhouse gases have both natural and human-caused sources. An exception are purely human-produced synthetic halocarbons which have no natural sources. During the pre-industrial Holocene , concentrations of existing gases were roughly constant, because the large natural sources and sinks roughly balanced. In

2822-499: Is the most important greenhouse gas overall, being responsible for 41–67% of the greenhouse effect, but its global concentrations are not directly affected by human activity. While local water vapor concentrations can be affected by developments such as irrigation , it has little impact on the global scale due to its short residence time of about nine days. Indirectly, an increase in global temperatures cause will also increase water vapor concentrations and thus their warming effect, in

2905-415: Is the thickness of the dike; b {\displaystyle b} is its lateral extent; P e x {\displaystyle P_{ex}} is the excess pressure in the magma relative to the host rock; ρ h o s t {\displaystyle \rho _{host}} is the density of the host rock; and V P {\displaystyle V_{P}}

2988-483: Is typically slightly coarser than basalt erupted at the surface, forming a rock type called diabase . The grain size varies systematically across the dike, with the coarsest grains normally at the center of the dike. Dikes formed at shallow depth commonly have a glassy or fine-grained chilled margin 1 to 5 cm thick, formed where the magma was rapidly cooled by contact with the cold surrounding rock. Shallow dikes also typically show columnar jointing perpendicular to

3071-416: Is usually dense, with almost no vesicles (frozen bubbles), but vesicles may be seen in the shallowest part of a dike. When vesicles are present, they tend to form bands parallel to walls and are elongated in direction of flow. Likewise, phenocrysts (larger crystals) on the margins of the dike show an alignment in the direction of flow. In contrast to dikes, which cut across the bedding of layered rock,

3154-576: The Kenoran orogeny (also called the Algoman orogeny), which in turn was named after the town of Kenora , Ontario . Kenorland was formed around 2.72 billion years ago (2.72 Ga) as a result of a series of accretion events and the formation of new continental crust. The accretion events are recorded in the greenstone belts of the Yilgarn Craton as metamorphosed basalt belts and granitic domes accreted around

3237-677: The Kola and Karelia cratons. The protracted breakup of Kenorland during the Late Neoarchaean and early Paleoproterozoic Era 2.48 to 2.10 Gya, during the Siderian and Rhyacian periods, is manifested by mafic dikes and sedimentary rift-basins and rift-margins on many continents. On early Earth, this type of bimodal deep mantle plume rifting was common in Archaean and Neoarchaean crust and continent formation. The geological time period surrounding

3320-526: The greenhouse effect is heavily driven by water vapor , human emissions of water vapor are not a significant contributor to warming. The annual "Emissions Gap Report" by UNEP stated in 2022 that it was necessary to almost halve emissions. "To get on track for limiting global warming to 1.5°C, global annual GHG emissions must be reduced by 45 per cent compared with emissions projections under policies currently in place in just eight years, and they must continue to decline rapidly after 2030, to avoid exhausting

3403-569: The Kola craton was at about 30 degrees south latitude and the Karelia craton was at about 15 degrees south latitude. Paleomagnetic evidence shows that at 2.45 Gya the Yilgarn craton (now the bulk of Western Australia) was not connected to Fennoscandia-Laurentia and was at about ~5 degrees south latitude. This implies that at 2.515 Gya an ocean existed between the Kola and Karelia cratons, and that by 2.45 Gya there

Kenorland - Misplaced Pages Continue

3486-559: The amalgamation of the new subsequent continent. The Slave and Superior cratons now constitute the northwest and southeast portions of the Canadian Shield , respectively. The breakup of Kenorland was contemporary with the Huronian glaciation which persisted for up to 60 million years. The banded iron formations (BIF) show their greatest extent at this period, thus indicating a massive increase in oxygen build-up from an estimated 0.1% of

3569-469: The atmosphere into bodies of water (ocean, lakes, etc.), as well as dissolving in precipitation as raindrops fall through the atmosphere. When dissolved in water, carbon dioxide reacts with water molecules and forms carbonic acid , which contributes to ocean acidity . It can then be absorbed by rocks through weathering . It also can acidify other surfaces it touches or be washed into the ocean. The vast majority of carbon dioxide emissions by humans come from

3652-451: The atmosphere to 1%. The rise in oxygen levels caused the virtual disappearance of the greenhouse gas methane (oxidized into carbon dioxide and water). The simultaneous breakup of Kenorland generally increased continental rainfall everywhere, thus increasing erosion and further reducing the other greenhouse gas, carbon dioxide. With the reduction in greenhouse gases, and with solar output being less than 85% its current power, this led to

3735-427: The atmosphere, terrestrial ecosystems , the ocean, and sediments . These flows have been fairly balanced over the past 1 million years, although greenhouse gas levels have varied widely in the more distant past . Carbon dioxide levels are now higher than they have been for 3 million years. If current emission rates continue then global warming will surpass 2.0 °C (3.6 °F) sometime between 2040 and 2070. This

3818-459: The atmospheric fraction of CO 2 even though the raw amount of emissions absorbed will be higher than in the present. Major greenhouse gases are well mixed and take many years to leave the atmosphere. The atmospheric lifetime of a greenhouse gas refers to the time required to restore equilibrium following a sudden increase or decrease in its concentration in the atmosphere. Individual atoms or molecules may be lost or deposited to sinks such as

3901-423: The balance between sources (emissions of the gas from human activities and natural systems) and sinks (the removal of the gas from the atmosphere by conversion to a different chemical compound or absorption by bodies of water). The proportion of an emission remaining in the atmosphere after a specified time is the " airborne fraction " (AF). The annual airborne fraction is the ratio of the atmospheric increase in

3984-502: The box ceased, then after time τ {\displaystyle \tau } , its concentration would decrease by about 63%. Changes to any of these variables can alter the atmospheric lifetime of a greenhouse gas. For instance, methane's atmospheric lifetime is estimated to have been lower in the 19th century than now, but to have been higher in the second half of the 20th century than after 2000. Carbon dioxide has an even more variable lifetime, which cannot be specified down to

4067-630: The breakup of Kenorland is thought by many geologists to be the beginning of the transition point from the deep-mantle-plume method of continent formation in the Hadean to Early Archean (before the final formation of the Earth's inner core ) to the subsequent two-layer core- mantle plate tectonics convection theory. However, the findings of an earlier continent, Ur , and a supercontinent of around 3.1 Gya, Vaalbara , indicate this transition period may have occurred much earlier. The Kola and Karelia cratons began to drift apart around 2.45 Gya, and by 2.4 Gya

4150-401: The burning of fossil fuels , with remaining contributions from agriculture and industry . Methane emissions originate from agriculture, fossil fuel production, waste, and other sources. The carbon cycle takes thousands of years to fully absorb CO 2 from the atmosphere, while methane lasts in the atmosphere for an average of only 12 years. Natural flows of carbon happen between

4233-405: The burning of fossil fuels . Additional contributions come from cement manufacturing, fertilizer production, and changes in land use like deforestation . Methane emissions originate from agriculture , fossil fuel production, waste, and other sources. If current emission rates continue then temperature rises will surpass 2.0 °C (3.6 °F) sometime between 2040 and 2070, which

SECTION 50

#1732851145602

4316-685: The center of the dike. If the previous dike rock has cooled significantly, the subsequent injection can be characterized by fracturing of the old dike rock and the formation of chilled margins on the new injection. Sometimes dikes appear in swarms, consisting of several to hundreds of dikes emplaced more or less contemporaneously during a single intrusive event. Dike swarms are almost always composed of diabase and most often are associated with flood basalts of large igneous provinces . They are characteristic of divergent plate boundaries . For example, Jurassic dike swarms in New England and Paleogene swarms in

4399-476: The center of the rift zone before abruptly dropping to very few dikes. It is likely that the number of dikes must increase with depth, reaching a typical value of 300 to 350 per kilometer at the level of the ocean floor. In some respects, these dike swarms resemble those of western Scotland associated with the flood eruptions that preceded the opening of the Atlantic Ocean. Dikes often form as radial swarms from

4482-438: The dike is described as a multiple dike . However, subsequent injections are sometimes quite different in composition, and then the dike is described as a composite dike . The range of compositions in a composite dike can go all the way from diabase to granite , as is observed in some dikes of Scotland and northern Ireland. After the initial formation of a dike, subsequent injections of magma are most likely to take place along

4565-454: The direct measurement of atmospheric concentrations and direct and indirect measurement of greenhouse gas emissions . Indirect methods calculate emissions of greenhouse gases based on related metrics such as fossil fuel extraction. There are several different methods of measuring carbon dioxide concentrations in the atmosphere, including infrared analyzing and manometry . Methane and nitrous oxide are measured by other instruments, such as

4648-446: The greenhouse effect, acting in response to other gases as a climate change feedback . Human activities since the beginning of the Industrial Revolution (around 1750) have increased carbon dioxide by over 50% , and methane levels by 150%. Carbon dioxide emissions are causing about three-quarters of global warming , while methane emissions cause most of the rest. The vast majority of carbon dioxide emissions by humans come from

4731-685: The high grade metamorphic core of the Western Gneiss Terrane, which includes elements of up to 3.2 Ga in age and some older portions, for example the Narryer Gneiss Terrane . Paleomagnetic studies show Kenorland was in generally low latitudes until tectonic magma -plume rifting began to occur between 2.48 Ga and 2.45 Ga. At 2.45 Ga the Baltic Shield was over the equator and was joined to Laurentia (the Canadian Shield) and both

4814-506: The industrial era, human activities have added greenhouse gases to the atmosphere, mainly through the burning of fossil fuels and clearing of forests. The major anthropogenic (human origin) sources of greenhouse gases are carbon dioxide (CO 2 ), nitrous oxide ( N 2 O ), methane and three groups of fluorinated gases ( sulfur hexafluoride ( SF 6 ), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs, sulphur hexafluoride (SF 6 ), and nitrogen trifluoride (NF 3 )). Though

4897-455: The limited remaining atmospheric carbon budget ." The report commented that the world should focus on broad-based economy-wide transformations and not incremental change. Several technologies remove greenhouse gas emissions from the atmosphere. Most widely analyzed are those that remove carbon dioxide from the atmosphere, either to geologic formations such as bio-energy with carbon capture and storage and carbon dioxide air capture , or to

4980-415: The long axis of the volcanic shield. Sills and stocks are occasionally present in the complexes. They are abruptly truncated at the margins of summit calderas. Typically, there are about 50 to 100 dikes per kilometer at the center of the rift zone, though the density can be as high as 500 per kilometer and the dikes then make up half the volume of the rock. The density drops to 5 to 50 per kilometer away from

5063-688: The magma fractured and disintegrated the rock at its advancing tip rather than prying the rock apart. Other dikes may have formed by metasomatism , in which fluids moving along a narrow fissure changed the chemical composition of the rock closest to the fissure. There is an approximate relationship between the width of a dike and its maximum extent, expressed by the formula: 2 w 2 b = 2.25 P e x ρ h o s t V P 2 {\displaystyle {\frac {2w}{2b}}={\frac {2.25P_{ex}}{\rho _{host}V_{P}^{2}}}} Here w {\displaystyle w}

SECTION 60

#1732851145602

5146-401: The margins. Here the dike rock fractures into columns as it cools and contracts. These are usually 5- to 6-sided, but 3- to 4-sided columns are also common. These are fairly uniform in size within a single dike, but range from a few centimeters to over 0.3 meters across in different dikes, tending to be thicker in wider dikes. Larger columns are likely a consequence of slower cooling. Dike rock

5229-828: The most important contributions to the overall greenhouse effect, without which the average temperature of Earth's surface would be about −18 °C (0 °F), instead of around 15 °C (59 °F). This table also specifies tropospheric ozone , because this gas has a cooling effect in the stratosphere , but a warming influence comparable to nitrous oxide and CFCs in the troposphere . K&T (1997) used 353 ppm CO 2 and calculated 125 W/m total clear-sky greenhouse effect; relied on single atmospheric profile and cloud model. "With Clouds" percentages are from Schmidt (2010) interpretation of K&T (1997). Schmidt (2010) used 1980 climatology with 339 ppm CO 2 and 155 W/m total greenhouse effect; accounted for temporal and 3-D spatial distribution of absorbers. Water vapor

5312-457: The present average of 15 °C (59 °F). The five most abundant greenhouse gases in Earth's atmosphere, listed in decreasing order of average global mole fraction , are: water vapor , carbon dioxide , methane , nitrous oxide , ozone . Other greenhouse gases of concern include chlorofluorocarbons (CFCs and HCFCs ), hydrofluorocarbons (HFCs), perfluorocarbons , SF 6 , and NF 3 . Water vapor causes about half of

5395-505: The projections of coupled models referenced in the AR5 assessment. A substantial fraction (20–35%) was also projected to remain in the atmosphere for centuries to millennia, where fractional persistence increases with pulse size. Values are relative to year 1750. AR6 reports the effective radiative forcing which includes effects of rapid adjustments in the atmosphere and at the surface. Atmospheric concentrations are determined by

5478-763: The range-resolved infrared differential absorption lidar (DIAL). Greenhouse gases are measured from space such as by the Orbiting Carbon Observatory and through networks of ground stations such as the Integrated Carbon Observation System . The Annual Greenhouse Gas Index (AGGI) is defined by atmospheric scientists at NOAA as the ratio of total direct radiative forcing due to long-lived and well-mixed greenhouse gases for any year for which adequate global measurements exist, to that present in year 1990. These radiative forcing levels are relative to those present in year 1750 (i.e. prior to

5561-431: The rock, always opening a path along a plane normal to the minimum principal stress . This is the direction in which the crust is under the weakest compression and so requires the least work to fracture. At shallow depths, where the rock is brittle, the pressurized magma progressively fractures the rock as it advances upwards. Even if the magma is only slightly pressurized compared with the surrounding rock, tremendous stress

5644-605: The same element , they have no asymmetry in the distribution of their electrical charges , and so are almost totally unaffected by infrared thermal radiation, with only an extremely minor effect from collision-induced absorption . A further 0.9% of the atmosphere is made up by argon (Ar), which is monatomic , and so completely transparent to thermal radiation. On the other hand, carbon dioxide (0.04%), methane , nitrous oxide and even less abundant trace gases account for less than 0.1% of Earth's atmosphere, but because their molecules contain atoms of different elements, there

5727-470: The same mass of carbon dioxide over a 20-year time frame. Since the 1980s, greenhouse gas forcing contributions (relative to year 1750) are also estimated with high accuracy using IPCC-recommended expressions derived from radiative transfer models . The concentration of a greenhouse gas is typically measured in parts per million (ppm) or parts per billion (ppb) by volume. A CO 2 concentration of 420 ppm means that 420 out of every million air molecules

5810-429: The sea floor is underlain by sheeted dike complexes that preserve the conduits through which magma reached the ocean floor at mid-ocean ridges . These sheeted dikes characteristically show a chilled margin on only one side, indicating that each dike was split in half by a subsequent eruption of magma. Ring dikes and cone sheets are special types of dikes associated with caldera volcanism. These are distributed around

5893-527: The sequence of strata through which the dike propagates so that the dike becomes horizontal. It is common for a set of dikes, each a few kilometers long, to form en echelon . This pattern is seen in the Higganum dike set of New England. This dike set consists of individual dikes that are typically four kilometers in length at the surface and up to 60 meters wide. These short segments form longer groups extending for around 10 km. The entire set of dikes forms

5976-560: The sides of the dike. At depths where the rock is completely plastic, a diapir (a rising plug of magma) forms instead of a dike. The walls of dikes often fit closely back together, providing strong evidence that the dike formed by dilatation of a fissure. However, a few large dikes, such as the 120-meter-thick Medford dike in Maine, US, or the 500-meter-thick Gardar dike in Greenland, show no dilatation. These may have formed by stoping , in which

6059-404: The soil, the oceans and other waters, or vegetation and other biological systems, reducing the excess to background concentrations. The average time taken to achieve this is the mean lifetime . This can be represented through the following formula, where the lifetime τ {\displaystyle \tau } of an atmospheric species X in a one- box model is the average time that

6142-510: The start of the industrial era ). 1990 is chosen because it is the baseline year for the Kyoto Protocol , and is the publication year of the first IPCC Scientific Assessment of Climate Change . As such, NOAA states that the AGGI "measures the commitment that (global) society has already made to living in a changing climate. It is based on the highest quality atmospheric observations from sites around

6225-476: The surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits , resulting in the greenhouse effect . The Earth is warmed by sunlight, causing its surface to radiate heat , which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than

6308-417: The surface. They are studied by geologists for the clues they provide on volcanic plumbing systems . They also record ancient episodes of extension of the Earth's crust , since large numbers of dikes ( dike swarms ) are formed when the crust is pulled apart by tectonic forces. The dikes show the direction of extension, since they form at right angles to the direction of maximum extension. The thickness of

6391-418: The table. and Annex III of the 2021 IPCC WG1 Report (years) GWP over time up to year 2022 Year 1750 Year 1998 Year 2005 Year 2011 Year 2019 Mole fractions : μmol/mol = ppm = parts per million (10 ); nmol/mol = ppb = parts per billion (10 ); pmol/mol = ppt = parts per trillion (10 ). The IPCC states that "no single atmospheric lifetime can be given" for CO 2 . This

6474-424: The top-of-atmosphere, which causes additional warming, while negative forcing, like from sulfates forming in the atmosphere from sulfur dioxide , leads to cooling. Within the lower atmosphere, greenhouse gases exchange thermal radiation with the surface and limit radiative heat flow away from it, which reduces the overall rate of upward radiative heat transfer. The increased concentration of greenhouse gases

6557-400: The walls of dikes even when the walls consist of highly porous volcanic clinker, and little wall material breaks off into the molten magma. These fissures likely open as a result of bulging of the rock beds above a magma chamber that is being filled with magma from deeper in the crust. However, open fractures can exist only near the surface. Magma deeper in the crust must force its way through

6640-488: The west of Scotland and running into northern England record the early opening of the Atlantic Ocean. Dike swarms are forming in the present day along the divergent plate boundary running through Iceland. Dike swarms often have a great cumulative thickness: Dikes in Iceland average 3 to 5 meters in width, but one 53-kilometer stretch of coast has about 1000 dikes with total thickness of 3 kilometers. The world's largest dike swarm

6723-602: The world. It excludes water vapor because changes in its concentrations are calculated as a climate change feedback indirectly caused by changes in other greenhouse gases, as well as ozone, whose concentrations are only modified indirectly by various refrigerants that cause ozone depletion . Some short-lived gases (e.g. carbon monoxide , NOx ) and aerosols (e.g. mineral dust or black carbon ) are also excluded because of limited role and strong variation, along with minor refrigerants and other halogenated gases, which have been mass-produced in smaller quantities than those in

6806-408: The world. Its uncertainty is very low." The natural flows of carbon between the atmosphere, ocean, terrestrial ecosystems , and sediments are fairly balanced; so carbon levels would be roughly stable without human influence. Carbon dioxide is removed from the atmosphere primarily through photosynthesis and enters the terrestrial and oceanic biospheres. Carbon dioxide also dissolves directly from

6889-520: Was no longer a supercontinent. Also, there is speculation based on the rift margin spatial arrangements of Laurentia, that at some time during the breakup, the Slave and Superior cratons were not part of the supercontinent Kenorland, but, by then may have been two different Neoarchaean landmasses (supercratons) on opposite ends of a very large Kenorland. This is based on how drifting assemblies of various constituent pieces should flow reasonably together toward

#601398