The Kanichee Mine , also less commonly known as the Ajax Mine , is an abandoned base metal and precious metal mine , located in the Temagami region of northeastern Ontario , Canada. It is near the small unincorporated community of Temagami North , accessed by the Kanichee Mine Road from Highway 11 . The Kanichee Mine zone has been explored and mined discontinuously from as early as 1910. During the 20th century, it operated and closed down at least three times, with the most recent being from 1973 to 1976. To date, the discontinuous operation of Kanichee Mine has produced 4.2 million pounds of metal.
58-659: The Kanichee area is associated with an igneous intrusion that has been termed the Kanichee layered intrusive complex . This roughly oval-shaped intrusive complex is part of a volcanic belt characterized by felsic and mafic metavolcanic rocks called the Temagami Greenstone Belt . Kanichee is one of the three most notable mines in the volcanic belt, others include the Sherman Mine in Chambers and Strathy townships and
116-486: A change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses . Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust. Igneous and metamorphic rocks make up 90–95% of
174-455: A combination of these processes. Other mechanisms, such as melting from a meteorite impact , are less important today, but impacts during the accretion of the Earth led to extensive melting, and the outer several hundred kilometres of our early Earth was probably an ocean of magma. Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for
232-405: A crystalline basement formed of a great variety of metamorphic and igneous rocks, including granulite and granite. Oceanic crust is composed primarily of basalt and gabbro . Both continental and oceanic crust rest on peridotite of the mantle. Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to
290-520: A huge mass of analytical data—over 230,000 rock analyses can be accessed on the web through a site sponsored by the U. S. National Science Foundation (see the External Link to EarthChem). The single most important component is silica, SiO 2 , whether occurring as quartz or combined with other oxides as feldspars or other minerals. Both intrusive and volcanic rocks are grouped chemically by total silica content into broad categories. This classification
348-653: A microscope for fine-grained volcanic rock, and may be impossible for glassy volcanic rock. The rock must then be classified chemically. Mineralogical classification of an intrusive rock begins by determining if the rock is ultramafic, a carbonatite, or a lamprophyre . An ultramafic rock contains more than 90% of iron- and magnesium-rich minerals such as hornblende, pyroxene, or olivine, and such rocks have their own classification scheme. Likewise, rocks containing more than 50% carbonate minerals are classified as carbonatites, while lamprophyres are rare ultrapotassic rocks. Both are further classified based on detailed mineralogy. In
406-474: A similar suite of ultramafic rocks overlapped by olivine and quartz gabbros in which plagioclase , clinopyroxene and an iron – titanium oxide phase are the dominant minerals. The first magmatic series comprised the nickel-copper-PGE ore in which the Kanichee Mine extracted. The comparison in mineralogy and chemistry of the ultramafic rocks of the five magmatic series indicates that every magmatic series
464-549: A simplified compositional classification, igneous rock types are categorized into felsic or mafic based on the abundance of silicate minerals in the Bowen's Series. Rocks dominated by quartz, plagioclase, alkali feldspar and muscovite are felsic. Mafic rocks are primarily composed of biotite, hornblende, pyroxene and olivine. Generally, felsic rocks are light colored and mafic rocks are darker colored. For textural classification, igneous rocks that have crystals large enough to be seen by
522-462: A viscosity similar to thick, cold molasses or even rubber when erupted. Felsic magma, such as rhyolite , is usually erupted at low temperature and is up to 10,000 times as viscous as basalt. Volcanoes with rhyolitic magma commonly erupt explosively, and rhyolitic lava flows are typically of limited extent and have steep margins because the magma is so viscous. Felsic and intermediate magmas that erupt often do so violently, with explosions driven by
580-584: Is an example. The molten rock, which typically contains suspended crystals and dissolved gases, is called magma . It rises because it is less dense than the rock from which it was extracted. When magma reaches the surface, it is called lava . Eruptions of volcanoes into air are termed subaerial , whereas those occurring underneath the ocean are termed submarine . Black smokers and mid-ocean ridge basalt are examples of submarine volcanic activity. The volume of extrusive rock erupted annually by volcanoes varies with plate tectonic setting. Extrusive rock
638-725: Is distinguishable from the other two on the TAS diagram, being higher in total alkali oxides for a given silica content, but the tholeiitic and calc-alkaline series occupy approximately the same part of the TAS diagram. They are distinguished by comparing total alkali with iron and magnesium content. These three magma series occur in a range of plate tectonic settings. Tholeiitic magma series rocks are found, for example, at mid-ocean ridges, back-arc basins , oceanic islands formed by hotspots, island arcs and continental large igneous provinces . All three series are found in relatively close proximity to each other at subduction zones where their distribution
SECTION 10
#1732856171420696-459: Is expected to be evaluated for potential sampling at new Kanichee deposits in 2009, sparking a possibility for renewed mining operations. Other samplings associated with this project include new deposits or occurrences in the Golden Chalice, McWatters and Langmuir areas. Igneous rock Igneous rock ( igneous from Latin igneus 'fiery'), or magmatic rock ,
754-595: Is expressed differently for major and minor elements and for trace elements. Contents of major and minor elements are conventionally expressed as weight percent oxides (e.g., 51% SiO 2 , and 1.50% TiO 2 ). Abundances of trace elements are conventionally expressed as parts per million by weight (e.g., 420 ppm Ni, and 5.1 ppm Sm). The term "trace element" is typically used for elements present in most rocks at abundances less than 100 ppm or so, but some trace elements may be present in some rocks at abundances exceeding 1,000 ppm. The diversity of rock compositions has been defined by
812-502: Is formed by the cooling of molten magma on the earth's surface. The magma, which is brought to the surface through fissures or volcanic eruptions , rapidly solidifies. Hence such rocks are fine-grained ( aphanitic ) or even glassy. Basalt is the most common extrusive igneous rock and forms lava flows, lava sheets and lava plateaus. Some kinds of basalt solidify to form long polygonal columns . The Giant's Causeway in Antrim, Northern Ireland
870-436: Is most often used to classify plutonic rocks. Chemical classifications are preferred to classify volcanic rocks, with phenocryst species used as a prefix, e.g. "olivine-bearing picrite" or "orthoclase-phyric rhyolite". The IUGS recommends classifying igneous rocks by their mineral composition whenever possible. This is straightforward for coarse-grained intrusive igneous rock, but may require examination of thin sections under
928-409: Is one of the three main rock types , the others being sedimentary and metamorphic . Igneous rocks are formed through the cooling and solidification of magma or lava . The magma can be derived from partial melts of existing rocks in either a planet 's mantle or crust . Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure , or
986-496: Is produced in the following proportions: The behaviour of lava depends upon its viscosity , which is determined by temperature, composition, and crystal content. High-temperature magma, most of which is basaltic in composition, behaves in a manner similar to thick oil and, as it cools, treacle . Long, thin basalt flows with pahoehoe surfaces are common. Intermediate composition magma, such as andesite , tends to form cinder cones of intermingled ash , tuff and lava, and may have
1044-402: Is related to depth and the age of the subduction zone. The tholeiitic magma series is well represented above young subduction zones formed by magma from relatively shallow depth. The calc-alkaline and alkaline series are seen in mature subduction zones, and are related to magma of greater depths. Andesite and basaltic andesite are the most abundant volcanic rock in island arc which is indicative of
1102-484: Is summarized in the following table: The percentage of alkali metal oxides ( Na 2 O plus K 2 O ) is second only to silica in its importance for chemically classifying volcanic rock. The silica and alkali metal oxide percentages are used to place volcanic rock on the TAS diagram , which is sufficient to immediately classify most volcanic rocks. Rocks in some fields, such as the trachyandesite field, are further classified by
1160-581: The Copperfields Mine on Temagami Island in Lake Temagami . Exploration work was done in the area prior to 1920 with the construction of trenches and two shafts . Between 1933 and 1936, Cuniptau Mines Limited sank a 75 m (246 ft) shaft and installed a pilot smelter . Production amounted to 44,975.6 kilograms of copper , 29,641.6 kilograms of nickel , and relatively small amounts of gold , silver , platinum and palladium . The deposit
1218-475: The IUGS , this is often impractical, and chemical classification is done instead using the TAS classification . Igneous rocks are classified according to mode of occurrence, texture, mineralogy, chemical composition, and the geometry of the igneous body. The classification of the many types of igneous rocks can provide important information about the conditions under which they formed. Two important variables used for
SECTION 20
#17328561714201276-453: The convection of solid mantle, it will cool slightly as it expands in an adiabatic process , but the cooling is only about 0.3 °C per kilometre. Experimental studies of appropriate peridotite samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometre. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from
1334-469: The 1640s and is derived either from French granit or Italian granito , meaning simply "granulate rock". The term rhyolite was introduced in 1860 by the German traveler and geologist Ferdinand von Richthofen The naming of new rock types accelerated in the 19th century and peaked in the early 20th century. Much of the early classification of igneous rocks was based on the geological age and occurrence of
1392-434: The 1960s. However, the concept of normative mineralogy has endured, and the work of Cross and his coinvestigators inspired a flurry of new classification schemes. Among these was the classification scheme of M.A. Peacock, which divided igneous rocks into four series: the alkalic, the alkali-calcic, the calc-alkali, and the calcic series. His definition of the alkali series, and the term calc-alkali, continue in use as part of
1450-520: The Earth's surface. Intrusive igneous rocks that form at depth within the crust are termed plutonic (or abyssal ) rocks and are usually coarse-grained. Intrusive igneous rocks that form near the surface are termed subvolcanic or hypabyssal rocks and they are usually much finer-grained, often resembling volcanic rock. Hypabyssal rocks are less common than plutonic or volcanic rocks and often form dikes, sills, laccoliths, lopoliths , or phacoliths . Extrusive igneous rock, also known as volcanic rock,
1508-487: The Kanichee layered intrusive complex is south-facing, including the surrounding metavolcanic lava flows. This record indicates that magmatic rocks of the Kanichee layered intrusive complex originally formed in a level position and most likely very shallow beneath the Earth's crust . All five magmatic series comprising the Kanichee layered intrusive complex were formed by individual pulses of molten rock. An accurate estimate of
1566-459: The Temagami greenstone belt. The future of the Kanichee Mine remains uncertain, as all mines in the Temagami area continue to be abandoned. The last mine to operate in the Temagami area was the iron bearing Sherman Mine until its closing in 1990 and Kanichee's discontinuous history of mining and exploring throughout the 20th century has left the area abandoned for decades. However, a geologic project
1624-613: The Turtle Pits. The mine was discovered in the early part of the twentieth century, however interest was limited as a result of silver and gold discoveries in northeastern Ontario. While the Ontario government offered bounties to producers of iron ore, there was little interest in putting any iron mine into production as a result of cheaper Mesabi Range ores from the US and the Great Depression . It
1682-447: The basic TAS classification include: In older terminology, silica oversaturated rocks were called silicic or acidic where the SiO 2 was greater than 66% and the family term quartzolite was applied to the most silicic. A normative feldspathoid classifies a rock as silica-undersaturated; an example is nephelinite . Magmas are further divided into three series: The alkaline series
1740-563: The calc-alkaline magmas. Some island arcs have distributed volcanic series as can be seen in the Japanese island arc system where the volcanic rocks change from tholeiite—calc-alkaline—alkaline with increasing distance from the trench. Some igneous rock names date to before the modern era of geology. For example, basalt as a description of a particular composition of lava-derived rock dates to Georgius Agricola in 1546 in his work De Natura Fossilium . The word granite goes back at least to
1798-429: The chemical composition of an igneous rock was its most fundamental characteristic, it should be elevated to prime position. Geological occurrence, structure, mineralogical constitution—the hitherto accepted criteria for the discrimination of rock species—were relegated to the background. The completed rock analysis is first to be interpreted in terms of the rock-forming minerals which might be expected to be formed when
Kanichee Mine - Misplaced Pages Continue
1856-625: The classification of igneous rocks are particle size, which largely depends on the cooling history, and the mineral composition of the rock. Feldspars , quartz or feldspathoids , olivines , pyroxenes , amphiboles , and micas are all important minerals in the formation of almost all igneous rocks, and they are basic to the classification of these rocks. All other minerals present are regarded as nonessential in almost all igneous rocks and are called accessory minerals . Types of igneous rocks with other essential minerals are very rare, but include carbonatites , which contain essential carbonates . In
1914-405: The crust of a planet. Bodies of intrusive rock are known as intrusions and are surrounded by pre-existing rock (called country rock ). The country rock is an excellent thermal insulator , so the magma cools slowly, and intrusive rocks are coarse-grained ( phaneritic ). The mineral grains in such rocks can generally be identified with the naked eye. Intrusions can be classified according to
1972-665: The decision was made to also close the Sherman Mine. The surface infrastructure was removed and the site was abandoned. The waste piles are currently used by the municipality as a source of crushed stone for road works. The mine was established in two northeasterly trends of banded iron formation : the Northeast Arm Iron Range to the south and the Vermilion Range to the north. These 2.7 billion year old formations consist of thin layers of sediment that were deposited in
2030-402: The different types of extrusive igneous rocks than between different types of intrusive igneous rocks. Generally, the mineral constituents of fine-grained extrusive igneous rocks can only be determined by examination of thin sections of the rock under a microscope , so only an approximate classification can usually be made in the field . Although classification by mineral makeup is preferred by
2088-480: The extensive basalt magmatism of several large igneous provinces. Decompression melting occurs because of a decrease in pressure. The solidus temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water. Peridotite at depth in the Earth's mantle may be hotter than its solidus temperature at some shallower level. If such rock rises during
2146-482: The great majority of cases, the rock has a more typical mineral composition, with significant quartz, feldspars, or feldspathoids. Classification is based on the percentages of quartz, alkali feldspar, plagioclase, and feldspathoid out of the total fraction of the rock composed of these minerals, ignoring all other minerals present. These percentages place the rock somewhere on the QAPF diagram , which often immediately determines
2204-416: The lake and steep cliffs surrounding the lake from rock blasting . The total production at Kanichee Mine is 3 million pounds of copper and 1.2 million pounds of nickel with gold, silver and platinum group credits. The main minerals found at Kanichee Mine include pyrite , pyrrhotite and chalcopyrite , occurring as semi-massive to massive veins. Considerable gold, silver, platinum and palladium occur with
2262-433: The larger crystals, called phenocrysts, grow to considerable size before the main mass of the magma crystallizes as finer-grained, uniform material called groundmass. Grain size in igneous rocks results from cooling time so porphyritic rocks are created when the magma has two distinct phases of cooling. Igneous rocks are classified on the basis of texture and composition. Texture refers to the size, shape, and arrangement of
2320-399: The magma crystallizes, e.g., quartz feldspars, olivine , akermannite, Feldspathoids , magnetite , corundum , and so on, and the rocks are divided into groups strictly according to the relative proportion of these minerals to one another. This new classification scheme created a sensation, but was criticized for its lack of utility in fieldwork, and the classification scheme was abandoned by
2378-457: The majority of minerals will be visible to the naked eye or at least using a hand lens, magnifying glass or microscope. Plutonic rocks also tend to be less texturally varied and less prone to showing distinctive structural fabrics. Textural terms can be used to differentiate different intrusive phases of large plutons, for instance porphyritic margins to large intrusive bodies, porphyry stocks and subvolcanic dikes . Mineralogical classification
Kanichee Mine - Misplaced Pages Continue
2436-468: The makeup of each pulse is not known because well-defined examples of chilled margins have not been detected. Numerous pulses of magmatic intrusions, each of which might have led to a volcanic eruption, are required to explain the cyclic nature of the Kanichee layered intrusive complex. In the lower four magmatic series, masses of chromite , olivine and clinopyroxene develop rocks varying from dunite to clinopyroxenite . The fifth magmatic series comprise
2494-697: The mineral grains or crystals of which the rock is composed. Texture is an important criterion for the naming of volcanic rocks. The texture of volcanic rocks, including the size, shape, orientation, and distribution of mineral grains and the intergrain relationships, will determine whether the rock is termed a tuff , a pyroclastic lava or a simple lava . However, the texture is only a subordinate part of classifying volcanic rocks, as most often there needs to be chemical information gleaned from rocks with extremely fine-grained groundmass or from airfall tuffs, which may be formed from volcanic ash. Textural criteria are less critical in classifying intrusive rocks where
2552-415: The naked eye are called phaneritic ; those with crystals too small to be seen are called aphanitic . Generally speaking, phaneritic implies an intrusive origin or plutonic, indicating slow cooling; aphanitic are extrusive or volcanic, indicating rapid cooling. An igneous rock with larger, clearly discernible crystals embedded in a finer-grained matrix is termed porphyry . Porphyritic texture develops when
2610-441: The ratio of potassium to sodium (so that potassic trachyandesites are latites and sodic trachyandesites are benmoreites). Some of the more mafic fields are further subdivided or defined by normative mineralogy , in which an idealized mineral composition is calculated for the rock based on its chemical composition. For example, basanite is distinguished from tephrite by having a high normative olivine content. Other refinements to
2668-403: The release of dissolved gases—typically water vapour, but also carbon dioxide . Explosively erupted pyroclastic material is called tephra and includes tuff , agglomerate and ignimbrite . Fine volcanic ash is also erupted and forms ash tuff deposits, which can often cover vast areas. Because volcanic rocks are mostly fine-grained or glassy, it is much more difficult to distinguish between
2726-473: The rock must be classified chemically. There are relatively few minerals that are important in the formation of common igneous rocks, because the magma from which the minerals crystallize is rich in only certain elements: silicon , oxygen , aluminium, sodium , potassium , calcium , iron, and magnesium . These are the elements that combine to form the silicate minerals , which account for over ninety percent of all igneous rocks. The chemistry of igneous rocks
2784-424: The rock type. In a few cases, such as the diorite-gabbro-anorthite field, additional mineralogical criteria must be applied to determine the final classification. Where the mineralogy of an volcanic rock can be determined, it is classified using the same procedure, but with a modified QAPF diagram whose fields correspond to volcanic rock types. When it is impractical to classify a volcanic rock by mineralogy,
2842-462: The rocks. However, in 1902, the American petrologists Charles Whitman Cross , Joseph P. Iddings , Louis V. Pirsson , and Henry Stephens Washington proposed that all existing classifications of igneous rocks should be discarded and replaced by a "quantitative" classification based on chemical analysis. They showed how vague, and often unscientific, much of the existing terminology was and argued that as
2900-435: The shape and size of the intrusive body and its relation to the bedding of the country rock into which it intrudes. Typical intrusive bodies are batholiths , stocks , laccoliths , sills and dikes . Common intrusive rocks are granite , gabbro , or diorite . The central cores of major mountain ranges consist of intrusive igneous rocks. When exposed by erosion, these cores (called batholiths ) may occupy huge areas of
2958-408: The sulfides. The Precambrian oval-shaped Kanichee layered intrusive complex is the largest of many sill -like mafic- ultramafic bodies in felsic and mafic metavolcanic rocks in the northern portion of the Temagami greenstone belt. It comprises five magmatic series, each of which contains one or more types of igneous rock. A succession of cumulus phases comprising every magmatic series suggests that
SECTION 50
#17328561714203016-475: The top 16 kilometres (9.9 mi) of the Earth's crust by volume. Igneous rocks form about 15% of the Earth's current land surface. Most of the Earth's oceanic crust is made of igneous rock. Igneous rocks are also geologically important because: Igneous rocks can be either intrusive ( plutonic and hypabyssal) or extrusive ( volcanic ). Intrusive igneous rocks make up the majority of igneous rocks and are formed from magma that cools and solidifies within
3074-508: The upward movement of solid mantle is critical in the evolution of the Earth. Sherman Mine Sherman Mine is a closed open pit mine in Temagami, Ontario , Canada . It was a major producer of iron ore , starting production in 1968 and closing in 1990. Sherman was the largest open pit mine in Temagami, consisting of seven open pits known as the East Pit, South Pit, North Pit, West Pit and
3132-572: The widely used Irvine-Barager classification, along with W.Q. Kennedy's tholeiitic series. By 1958, there were some 12 separate classification schemes and at least 1637 rock type names in use. In that year, Albert Streckeisen wrote a review article on igneous rock classification that ultimately led to the formation of the IUGG Subcommission of the Systematics of Igneous Rocks. By 1989 a single system of classification had been agreed upon, which
3190-403: Was developed by magma of similar composition. A lens-shaped area of quartz gabbro remains directly south of the main portion of the intrusive complex. However, it is not clear whether it has a separate magmatic origin from the olivine gabbros found in the Kanichee layered intrusive complex. The ore zone rocks from the first magmatic series clearly have connections with adjacent metavolcanic rocks of
3248-460: Was further revised in 2005. The number of recommended rock names was reduced to 316. These included a number of new names promulgated by the Subcommission. The Earth's crust averages about 35 kilometres (22 mi) thick under the continents , but averages only some 7–10 kilometres (4.3–6.2 mi) beneath the oceans . The continental crust is composed primarily of sedimentary rocks resting on
3306-438: Was later investigated by Ontario Nickel Corporation Limited from 1937 to 1948 then by Trebor Mines Limited from 1948 to 1949. Kanichee Mining Incorporated worked the property from an open pit to excavate both disseminated and vein ore to a depth of nearly 35 m (115 ft) from 1973 to 1976, and no mining operations have begun since then. Remnants of this open pit includes a small lake with gravel roads adjacent to and entering
3364-729: Was only in the 1950s that Canadian steel producers started to investigate domestic supplies of iron ore. This would lead to the re-opening of the Moose Mountain Mine and development of the Adams, Sherman and Bruce Lake mines in Northern Ontario. The Sherman Mine operated in tandem with the Adams Mine in Kirkland Lake , and when the Adams Mine approached exhaustion of its economic ore reserves,
#419580