A kame , or knob , is a glacial landform , an irregularly shaped hill or mound composed of sand , gravel and till that accumulates in a depression on a retreating glacier , and is then deposited on the land surface with further melting of the glacier. Kames are often associated with kettles , and this is referred to as kame and kettle or knob and kettle topography . The word kame is a variant of comb ( kame , or kaim is the Old Scottish word meaning 'comb'), which has the meaning "crest" among others. The geological term was introduced by Thomas Jamieson in 1874.
48-457: According to White, "kames were formed by meltwater which deposited more or less washed material at irregular places in and along melting ice. At places the material is very well washed and stratified; at others it is more poorly washed, with inclusions of till masses that fell from ice but were covered before they were completely washed. Kame gravels thus tend to be variable and range from fine to coarse grained and even to cobbly and boulder." With
96-647: A country have become erodible. For example, on the Madagascar high central plateau , which constitutes approximately ten percent of that country's land area, most of the land area is devegetated, and gullies have eroded into the underlying soil to form distinctive gulleys called lavakas . These are typically 40 meters (130 ft) wide, 80 meters (260 ft) long and 15 meters (49 ft) deep. Some areas have as many as 150 lavakas/square kilometer, and lavakas may account for 84% of all sediments carried off by rivers. This siltation results in discoloration of rivers to
144-515: A cover of till. Interpreting the glacial history of landforms can be difficult due to the tendency of overprinting landforms on top of each other. As a glacier melts, large amounts of till are eroded and become a source of sediments for reworked glacial drift deposits. These include glaciofluvial deposits , such as outwash in sandurs , and as glaciolacustrine and glaciomarine deposits, such as varves (annual layers) in any proglacial lakes which may form. Erosion of till may take place even in
192-465: A dark red brown color and leads to fish kills. In addition, sedimentation of river basins implies sediment management and siltation costs.The cost of removing an estimated 135 million m of accumulated sediments due to water erosion only is likely exceeding 2.3 billion euro (€) annually in the EU and UK, with large regional differences between countries. Erosion is also an issue in areas of modern farming, where
240-432: A grain, such as pits, fractures, ridges, and scratches. These are most commonly evaluated on quartz grains, because these retain their surface markings for long periods of time. Surface texture varies from polished to frosted, and can reveal the history of transport of the grain; for example, frosted grains are particularly characteristic of aeolian sediments, transported by wind. Evaluation of these features often requires
288-458: A higher density and viscosity . In typical rivers the largest carried sediment is of sand and gravel size, but larger floods can carry cobbles and even boulders . Wind results in the transportation of fine sediment and the formation of sand dune fields and soils from airborne dust. Glaciers carry a wide range of sediment sizes, and deposit it in moraines . The overall balance between sediment in transport and sediment being deposited on
336-466: A higher water content behave more fluidly, and thus are more susceptible to flow. There are three main types of flows, which are listed below. In cases where till has been indurated or lithified by subsequent burial into solid rock, it is known as the sedimentary rock tillite . Matching beds of ancient tillites on opposite sides of the south Atlantic Ocean provided early evidence for continental drift . The same tillites also provide some support to
384-426: A hydrodynamic sorting process within the marine environment leading to a seaward fining of sediment grain size. One cause of high sediment loads is slash and burn and shifting cultivation of tropical forests. When the ground surface is stripped of vegetation and then seared of all living organisms, the upper soils are vulnerable to both wind and water erosion. In a number of regions of the earth, entire sectors of
432-470: A result, can cause exposed sediment to become more susceptible to erosion and delivery to the marine environment during rainfall events. Sediment can negatively affect corals in many ways, such as by physically smothering them, abrading their surfaces, causing corals to expend energy during sediment removal, and causing algal blooms that can ultimately lead to less space on the seafloor where juvenile corals (polyps) can settle. When sediments are introduced into
480-400: Is a sedimentary rock formed by lithification of till. Glacial till is mostly derived from subglacial erosion and from the entrainment by the moving ice of previously available unconsolidated sediments. Bedrock can be eroded through the action of glacial plucking and abrasion , and the resulting clasts of various sizes will be incorporated to the glacier's bed. Glacial abrasion is
528-1032: Is a naturally occurring material that is broken down by processes of weathering and erosion , and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation ; if buried, they may eventually become sandstone and siltstone ( sedimentary rocks ) through lithification . Sediments are most often transported by water ( fluvial processes ), but also wind ( aeolian processes ) and glaciers . Beach sands and river channel deposits are examples of fluvial transport and deposition , though sediment also often settles out of slow-moving or standing water in lakes and oceans. Desert sand dunes and loess are examples of aeolian transport and deposition. Glacial moraine deposits and till are ice-transported sediments. Sediment can be classified based on its grain size , grain shape, and composition. Sediment size
SECTION 10
#1732837263910576-441: Is characteristically unsorted and unstratified , and is not usually consolidated . Most till consists predominantly of clay, silt , and sand , but with pebbles, cobbles, and boulders scattered through the till. The abundance of clay demonstrates lack of reworking by turbulent flow, which otherwise would winnow the clay. Typically, the distribution of particle sizes shows two peaks (it is bimodal ) with pebbles predominating in
624-455: Is classified into primary deposits, laid down directly by glaciers, and secondary deposits, reworked by fluvial transport and other processes. Till is a form of glacial drift , which is rock material transported by a glacier and deposited directly from the ice or from running water emerging from the ice. It is distinguished from other forms of drift in that it is deposited directly by glaciers without being reworked by meltwater. Till
672-541: Is expected to be delivered to the outlet of the river. The sediment transfer and deposition can be modelled with sediment distribution models such as WaTEM/SEDEM. In Europe, according to WaTEM/SEDEM model estimates the Sediment Delivery Ratio is about 15%. Watershed development near coral reefs is a primary cause of sediment-related coral stress. The stripping of natural vegetation in the watershed for development exposes soil to increased wind and rainfall and, as
720-581: Is measured on a log base 2 scale, called the "Phi" scale, which classifies particles by size from "colloid" to "boulder". The shape of particles can be defined in terms of three parameters. The form is the overall shape of the particle, with common descriptions being spherical, platy, or rodlike. The roundness is a measure of how sharp grain corners are. This varies from well-rounded grains with smooth corners and edges to poorly rounded grains with sharp corners and edges. Finally, surface texture describes small-scale features such as scratches, pits, or ridges on
768-483: Is not originally shaped by meltwater, but by the ice itself and has a quite regular shape. It occurs in fine-grained material, such as clay or shale , not in sands and gravels. And drumlins usually have concentric layers of material, as the ice successively plasters new layers in its movement. Kames are not normally located in proximity to one another, however in Edmonton , Alberta, numerous kames are found nearby, forming
816-413: Is produced by glacial grinding, and the longer the till remains at the ice-bedrock interface, the more thoroughly it is crushed. However, the crushing process appears to stop with fine silt. Clay in till is likely eroded from bedrock rather than being created by glacial processes. The sediments carried by a glacier will eventually be deposited some distance down-ice from its source. This takes place in
864-460: The ablation zone , which is the part of the glacier where the rate of ablation (removal of ice by evaporation, melting, or other processes) exceeds the rate of accumulation of new ice from snowfall. As ice is removed, debris are left behind as till. The deposition of glacial till is not uniform, and a single till plain can contain a wide variety of different types of tills due to the various erosional mechanisms and location of till with respect to
912-548: The Precambrian Snowball Earth glaciation event hypothesis. Tills sometimes contain placer deposits of valuable minerals such as gold. Diamonds have been found in glacial till in the north-central United States and in Canada. Till prospecting is a method of prospecting in which tills are sampled over a wide area to determine if they contain valuable minerals, such as gold, uranium, silver, nickel, or diamonds, and
960-1092: The Prosser Archaeological Site . The Fonthill Kame in southern Ontario is in a densely populated area. Examples can also be found in Wisconsin and at the Sims Corner Eskers and Kames National Natural Landscape in Washington . They are also located in Mendon Ponds Park , southeast of Rochester, New York. This park is on the National Registry of Natural Landmarks due to geological history and presence of significant kames, eskers and kettles. In Ontario, there are two provincial parks , both designated as IUCN nature reserves , which were created to protect important and undisturbed kame features. They are Minnitaki Kames Provincial Park and Bonheur River Kame Provincial Park . Sediment Sediment
1008-491: The seafloor in the South Pacific Gyre (SPG) ("the deadest spot in the ocean"), and could be the longest-living life forms ever found. Till Till or glacial till is unsorted glacial sediment . Till is derived from the erosion and entrainment of material by the moving ice of a glacier . It is deposited some distance down-ice to form terminal , lateral , medial and ground moraines . Till
SECTION 20
#17328372639101056-596: The bed is given by the Exner equation . This expression states that the rate of increase in bed elevation due to deposition is proportional to the amount of sediment that falls out of the flow. This equation is important in that changes in the power of the flow change the ability of the flow to carry sediment, and this is reflected in the patterns of erosion and deposition observed throughout a stream. This can be localized, and simply due to small obstacles; examples are scour holes behind boulders, where flow accelerates, and deposition on
1104-579: The body of water. Terrigenous material is often supplied by nearby rivers and streams or reworked marine sediment (e.g. sand ). In the mid-ocean, the exoskeletons of dead organisms are primarily responsible for sediment accumulation. Deposited sediments are the source of sedimentary rocks , which can contain fossils of the inhabitants of the body of water that were, upon death, covered by accumulating sediment. Lake bed sediments that have not solidified into rock can be used to determine past climatic conditions. The major areas for deposition of sediments in
1152-582: The careful statistic work by geologist Chauncey D. Holmes in 1941 that elongated clasts in tills tend to align with the direction of ice flow. Clasts in till may also show slight imbrication , with the clasts dipping upstream. Though till is generally unstratified, till high in clay may show lamination due to compaction under the weight of overlying ice. Till may also contain lenses of sand or gravel , indicating minor and local reworking by water transitional to non-till glacial drift. The term till comes from an old Scottish name for coarse, rocky soil. It
1200-467: The coarser peak. The larger clasts (rock fragments) in till typically show a diverse composition, often including rock types from outcrops hundreds of kilometers away. Some clasts may be rounded, and these are thought to be stream pebbles entrained by the glacier. Many of the clasts are faceted, striated, or polished, all signs of glacial abrasion . The sand and silt grains are typically angular to subangular rather than rounded. It has been known since
1248-417: The coastal regions of the ocean, the proportion of land, marine, and organic-derived sediment that characterizes the seafloor near sources of sediment output is altered. In addition, because the source of sediment (i.e., land, ocean, or organically) is often correlated with how coarse or fine sediment grain sizes that characterize an area are on average, grain size distribution of sediment will shift according to
1296-413: The difficulties in accurately classifying different tills, which are often based on inferences of the physical setting of the till rather than detailed analysis of the till fabric or particle size. Subglacial lodgement tills are deposits beneath the glacier that are forced, or "lodged" into the bed below. As glaciers advance or retreat, the clasts that are deposited by the ice may have a lower velocity than
1344-422: The edges and corners of particle are. Complex mathematical formulas have been devised for its precise measurement, but these are difficult to apply, and most geologists estimate roundness from comparison charts. Common descriptive terms range from very angular to angular to subangular to subrounded to rounded to very rounded, with increasing degree of roundness. Surface texture describes the small-scale features of
1392-510: The flow. In geography and geology , fluvial sediment processes or fluvial sediment transport are associated with rivers and streams and the deposits and landforms created by sediments. It can result in the formation of ripples and dunes , in fractal -shaped patterns of erosion, in complex patterns of natural river systems, and in the development of floodplains and the occurrence of flash floods . Sediment moved by water can be larger than sediment moved by air because water has both
1440-411: The glacier. Since the rate of deposition is controlled by the rate of basal melting, it is worth considering the factors that contribute to melting. These can be the geothermal heat flux, frictional heat generated by sliding, ice thickness, and ice-surface temperature gradients. Subglacial deformation tills refer to the homogenization of glacial sediments that occur when the stresses and shear forces from
1488-401: The glacier. These consist of clasts and debris that become exposed due to melting via solar radiation. These debris are either just debris that have a high relative position on the glacier, or clasts that have been transported up from the base of the glacier. Debris accumulation has a feedback-loop relationship with melting. Initially, the darker colored debris absorb more heat and thus accelerate
Kame - Misplaced Pages Continue
1536-414: The ice and the adjacent valley side. These kame terraces tend to look like long, flat benches, with many pits on the surface made by kettles. They tend to slope downvalley with gradients similar to the glacier surface along which they formed, and can sometimes be found paired on opposite sides of a valley. Kames are sometimes compared to drumlins , but their formation is distinctively different. A drumlin
1584-403: The ice itself. When the friction between the clast and the bed exceeds the forces of the ice flowing above and around it, the clast will cease to move, and it will become a lodgement till. Subglacial meltout tills are tills that are deposited via the melting of the ice lobe. Clasts are transported to the base of the glacier over time, and as basal melting continues, they are slowly deposited below
1632-539: The inside of meander bends. Erosion and deposition can also be regional; erosion can occur due to dam removal and base level fall. Deposition can occur due to dam emplacement that causes the river to pool and deposit its entire load, or due to base level rise. Seas, oceans, and lakes accumulate sediment over time. The sediment can consist of terrigenous material, which originates on land, but may be deposited in either terrestrial, marine, or lacustrine (lake) environments, or of sediments (often biological) originating in
1680-406: The long, intermediate, and short axis lengths of the particle. The form ψ l {\displaystyle \psi _{l}} varies from 1 for a perfectly spherical particle to very small values for a platelike or rodlike particle. An alternate measure was proposed by Sneed and Folk: which, again, varies from 0 to 1 with increasing sphericity. Roundness describes how sharp
1728-435: The marine environment include: One other depositional environment which is a mixture of fluvial and marine is the turbidite system, which is a major source of sediment to the deep sedimentary and abyssal basins as well as the deep oceanic trenches . Any depression in a marine environment where sediments accumulate over time is known as a sediment trap . The null point theory explains how sediment deposition undergoes
1776-419: The melting of the glacier, streams carry sediment to glacial lakes , building kame deltas on top of the ice . However, with the continuous melting of the glacier, the kame delta eventually collapses onto the land surface, furthering the "kame and kettle" topography. Kame terraces are frequently found along the side of a glacial valley and are stratified deposits of meltwater streams flowing between
1824-650: The melting process. After a significant amount of melting has occurred, the thickness of the till insulates the ice sheet and slows the melting process. Supraglacial meltout tills typically end up forming moraines. Supraglacial flow tills refer to tills that are subject to a dense concentration of clasts and debris from meltout. These debris localities are then subsequently affected by ablation . Due to their unstable nature, they are subject to downslope flow, and thus named "flow till." Properties of flow tills vary, and can depend on factors such as water content, surface gradient, and debris characteristics. Generally, flow tills with
1872-470: The moving glacier rework the topography of the bed. These contain preglacial sediments (non glacial or earlier glacial sediments), which have been run over and thus deformed by meltout processes or lodgement. The constant reworking of these deposited tills leads to a highly homogenized till. Supraglacial meltout tills are similar to subglacial meltout tills. Rather than being the product of basal melting, however, supraglacial meltout tills are imposed on top of
1920-491: The relative input of land (typically fine), marine (typically coarse), and organically-derived (variable with age) sediment. These alterations in marine sediment characterize the amount of sediment suspended in the water column at any given time and sediment-related coral stress. In July 2020, marine biologists reported that aerobic microorganisms (mainly), in " quasi-suspended animation ", were found in organically-poor sediments, up to 101.5 million years old, 250 feet below
1968-473: The removal of native vegetation for the cultivation and harvesting of a single type of crop has left the soil unsupported. Many of these regions are near rivers and drainages. Loss of soil due to erosion removes useful farmland, adds to sediment loads, and can help transport anthropogenic fertilizers into the river system, which leads to eutrophication . The Sediment Delivery Ratio (SDR) is fraction of gross erosion (interill, rill, gully and stream erosion) that
Kame - Misplaced Pages Continue
2016-464: The subglacial environment, such as in tunnel valleys . There are various types of classifying tills: Traditionally (e.g. Dreimanis , 1988 ) a further set of divisions has been made to primary deposits, based upon the method of deposition. Van der Meer et al. 2003 have suggested that these till classifications are outdated and should instead be replaced with only one classification, that of deformation till. The reasons behind this are largely down to
2064-445: The surface of the grain. Form (also called sphericity ) is determined by measuring the size of the particle on its major axes. William C. Krumbein proposed formulas for converting these numbers to a single measure of form, such as where D L {\displaystyle D_{L}} , D I {\displaystyle D_{I}} , and D S {\displaystyle D_{S}} are
2112-413: The top of the stratigraphic sediment sequence, which has a major influence on land usage. Till is deposited as the terminal moraine , along the lateral and medial moraines and in the ground moraine of a glacier, and moraine is often conflated with till in older writings. Till may also be deposited as drumlins and flutes , though some drumlins consist of a core of stratified sediments with only
2160-454: The transporting glacier. The different types of till can be categorized between subglacial (beneath) and supraglacial (surface) deposits. Subglacial deposits include lodgement, subglacial meltout, and deformation tills. Supraglacial deposits include supraglacial meltout and flow till. Supraglacial deposits and landforms are widespread in areas of glacial downwasting (vertical thinning of glaciers, as opposed to ice-retreat. They typically sit at
2208-494: The use of a scanning electron microscope . Composition of sediment can be measured in terms of: This leads to an ambiguity in which clay can be used as both a size-range and a composition (see clay minerals ). Sediment is transported based on the strength of the flow that carries it and its own size, volume, density, and shape. Stronger flows will increase the lift and drag on the particle, causing it to rise, while larger or denser particles will be more likely to fall through
2256-404: The weathering of bedrock below a flowing glacier by fragmented rock on the basal layer of the glacier. The two mechanisms of glacial abrasion are striation of the bedrock by coarse grains moved by the glacier, thus gouging the rock below, and polishing of the bedrock by smaller grains such as silts. Glacial plucking is the removal of large blocks from the bed of a glacier. Much of the silt in till
2304-401: Was first used to describe primary glacial deposits by Archibald Geikie in 1863. Early researchers tended to prefer the term boulder clay for the same kind of sediments, but this has fallen into disfavor. Where it is unclear whether a poorly sorted, unconsolidated glacial deposit was deposited directly from glaciers, it is described as diamict or (when lithified ) as diamictite . Tillite
#909090