Misplaced Pages

Kalahari Craton

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Kalahari Craton is a craton , an old and stable part of the continental lithosphere , that occupies large portions of South Africa , Botswana , Namibia and Zimbabwe . It consists of two cratons separated by the Limpopo Belt : the larger Kaapvaal Craton to the south and the smaller Zimbabwe Craton to the north. The Namaqua Belt is the southern margin of the Kaapvaal Craton.

#111888

50-783: Parts of the Kalahari Craton are now in East Antarctica (the Grunehogna Craton ) and West Antarctica ( Haag Nunataks ) and the Falkland Islands . The name was introduced by Clifford 1970 . Following a terminology introduced in 2008, the Archaean-Palaeoproterozoic core of the craton is called the Proto-Kalahari Craton. This core plus accreted Mesoproterozoic crust and dispersed non-African fragments compose

100-560: A billion years. Grunehogna collided with the rest of East Antarctica during the Mesoproterozoic assembly of the supercontinent Rodinia and the Grenville orogeny . The Neoproterozoic Pan-African orogeny and the assembly of Gondwana/ Pannotia produced large shear zones between Grunehogna and Kalahari. During the Jurassic break-up of Gondwana, these shear zones finally separated Grunehogna and

150-732: A collisional orogeny). Orogeny typically produces orogenic belts or orogens , which are elongated regions of deformation bordering continental cratons (the stable interiors of continents). Young orogenic belts, in which subduction is still taking place, are characterized by frequent volcanic activity and earthquakes . Older orogenic belts are typically deeply eroded to expose displaced and deformed strata . These are often highly metamorphosed and include vast bodies of intrusive igneous rock called batholiths . Subduction zones consume oceanic crust , thicken lithosphere, and produce earthquakes and volcanoes. Not all subduction zones produce orogenic belts; mountain building takes place only when

200-497: A delamination of the orogenic root beneath them. Mount Rundle on the Trans-Canada Highway between Banff and Canmore provides a classic example of a mountain cut in dipping-layered rocks. Millions of years ago a collision caused an orogeny, forcing horizontal layers of an ancient ocean crust to be thrust up at an angle of 50–60°. That left Rundle with one sweeping, tree-lined smooth face, and one sharp, steep face where

250-581: A life span similar to that of later supercontinents such as Gondwana and Rodinia . Some palaeomagnetic reconstructions suggest a Palaeoarchaean proto-Vaalbara is possible, although the existence of this 3.6–3.2 Ga continent cannot be proven. South Africa's Kaapvaal craton and Western Australia's Pilbara craton have similar early Precambrian cover sequences. Kaapvaal's Barberton granite-greenstone terrane and Pilbara's eastern block show evidence of four large meteorite impacts between 3.2 and 3.5 billion years ago. Similar greenstone belts are found at

300-582: A major continent-continent collision, is called an accretionary orogen. The North American Cordillera and the Lachlan Orogen of southeast Australia are examples of accretionary orogens. The orogeny may culminate with continental crust from the opposite side of the subducting oceanic plate arriving at the subduction zone. This ends subduction and transforms the accretional orogen into a Himalayan -type collisional orogen. The collisional orogeny may produce extremely high mountains, as has been taking place in

350-412: A noncollisional orogenic belt, and such belts are sometimes called Andean-type orogens . As subduction continues, island arcs , continental fragments , and oceanic material may gradually accrete onto the continental margin. This is one of the main mechanisms by which continents have grown. An orogen built of crustal fragments ( terranes ) accreted over a long period of time, without any indication of

400-442: A pronounced linear structure resulting in terranes or blocks of deformed rocks, separated generally by suture zones or dipping thrust faults . These thrust faults carry relatively thin slices of rock (which are called nappes or thrust sheets, and differ from tectonic plates ) from the core of the shortening orogen out toward the margins, and are intimately associated with folds and the development of metamorphism . Before

450-510: A reconstruction contradicted by later orogenic events and incompatible with the Vaalbara hypothesis. Cheney 1996 , nevertheless, found a three-fold stratigraphic similarity and proposed that the two cratons once formed a continent which he named Vaalbara. This model is supported by the palaeomagnetic data of Zegers, de Wit & White 1998 . Reconstructions of the palaeolatitudes of the two cratons at 2.78–2.77 Ga are ambiguous however. In

500-420: Is a mountain - building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges . This involves a series of geological processes collectively called orogenesis . These include both structural deformation of existing continental crust and

550-687: Is a hypothetical Archean supercontinent consisting of the Kaapvaal Craton (now in eastern South Africa ) and the Pilbara Craton (now in north-western Western Australia ). E. S. Cheney derived the name from the last four letters of each craton 's name. The two cratons consist of continental crust dating from 2.7 to 3.6 Ga , which would make Vaalbara one of Earth 's earliest supercontinents. There has been some debate as to when and even if Vaalbara existed. An Archaean – Palaeoproterozoic (2.8–2.1 Ga) link between South Africa and Western Australia

SECTION 10

#1732852577112

600-446: Is initiated along one or both of the continental margins of the ocean basin, producing a volcanic arc and possibly an Andean-type orogen along that continental margin. This produces deformation of the continental margins and possibly crustal thickening and mountain building. Mountain formation in orogens is largely a result of crustal thickening. The compressive forces produced by plate convergence result in pervasive deformation of

650-517: Is producing garnets and diamonds. During the Palaeoproterozoic the northwest margin of the Archaean core grew by accretion and had formed a Proto-Kalahari Craton by 1.75 Ga. During the period 1.4–1.0 Ga subduction occurred along the northwest margin followed by continental collisions along the eastern and southern margins. By this time enough Mesoproterozoic crust had accreted to transform

700-422: Is still in use today, though commonly investigated by geochronology using radiometric dating. Based on available observations from the metamorphic differences in orogenic belts of Europe and North America, H. J. Zwart (1967) proposed three types of orogens in relationship to tectonic setting and style: Cordillerotype, Alpinotype, and Hercynotype. His proposal was revised by W. S. Pitcher in 1979 in terms of

750-473: Is taking place today in the Southern Alps of New Zealand). Orogens have a characteristic structure, though this shows considerable variation. A foreland basin forms ahead of the orogen due mainly to loading and resulting flexure of the lithosphere by the developing mountain belt. A typical foreland basin is subdivided into a wedge-top basin above the active orogenic wedge, the foredeep immediately beyond

800-449: The Alpine type orogenic belt , typified by a flysch and molasse geometry to the sediments; ophiolite sequences, tholeiitic basalts, and a nappe style fold structure. In terms of recognising orogeny as an event , Leopold von Buch (1855) recognised that orogenies could be placed in time by bracketing between the youngest deformed rock and the oldest undeformed rock, a principle which

850-613: The Himalayas for the last 65 million years. The processes of orogeny can take tens of millions of years and build mountains from what were once sedimentary basins . Activity along an orogenic belt can be extremely long-lived. For example, much of the basement underlying the United States belongs to the Transcontinental Proterozoic Provinces, which accreted to Laurentia (the ancient heart of North America) over

900-683: The San Andreas Fault , restraining bends result in regions of localized crustal shortening and mountain building without a plate-margin-wide orogeny. Hotspot volcanism results in the formation of isolated mountains and mountain chains that look as if they are not necessarily on present tectonic-plate boundaries, but they are essentially the product of plate tectonism. Likewise, uplift and erosion related to epeirogenesis (large-scale vertical motions of portions of continents without much associated folding, metamorphism, or deformation) can create local topographic highs. Eventually, seafloor spreading in

950-604: The Vredefort impact event (2.025 Ga), and no traces of these events have been found in the Pilbara craton, clearly indicating that the two cratons were separated before 2.05 Ga. Furthermore, geochronological and palaeomagnetic evidence show that the two cratons had a rotational 30° latitudinal separation in the time period of 2.78–2.77 Ga, which indicates they were no longer joined after c. 2.8 billion years ago. Vaalbara thus remained stable for 1–0.4 Ga and hence had

1000-556: The Zimbabwe and Yilgarn cratons at 2.41 Ga, is distinct from Vaalbara. Zimgarn should have disintegrated around 2.1–2.0 Ga to reassemble as the Kalahari and West Australian (Yilgarn and Pilbara) cratons around 1.95–1.8 Ga. The Archaean–Palaeoproterozoic Grunehogna Craton in Queen Maud Land , East Antarctica , formed the eastern part of the Kalahari Craton for at least

1050-634: The late Devonian (about 380 million years ago) with the Antler orogeny and continuing with the Sonoma orogeny and Sevier orogeny and culminating with the Laramide orogeny . The Laramide orogeny alone lasted 40 million years, from 75 million to 35 million years ago. Orogens show a great range of characteristics, but they may be broadly divided into collisional orogens and noncollisional orogens (Andean-type orogens). Collisional orogens can be further divided by whether

SECTION 20

#1732852577112

1100-484: The Archaean in both Africa and Australia. The oldest widely accepted evidence of photosynthesis by early life forms is molecular fossils found in 2.7 Ga-old shales in the Pilbara Craton . These fossils have been interpreted as traces of eukaryotes and cyanobacteria , though some scientists argue that these biomarkers must have entered these rocks later and date the fossils to 2.15–1.68 Ga. This later time span agrees with estimates based on molecular clocks which dates

1150-742: The Kalahari Craton. At 1.11 Ga, during the assembly of the supercontinent Rodinia , the Kalahari Craton was affected by the Umkondo-Borg Large Igneous Province . At c. 1.15–.98 Ga the Kalahari Craton collided with the eastern margin of Laurentia . [REDACTED] Africa [REDACTED] Antarctica [REDACTED] Asia [REDACTED] Australia [REDACTED] Europe [REDACTED] North America [REDACTED] South America [REDACTED] Afro-Eurasia [REDACTED] Americas [REDACTED] Eurasia [REDACTED] Oceania Grunehogna Craton Vaalbara

1200-484: The Kalahari Craton. Before the Pan-African Orogeny , the Kalahari Craton was much larger than it is today, but its sutures and therefore its extent are difficult to locate due to later overprinting . The Kaapvaal Craton, Zimbabwe Craton, and Limpopo Belt are made of Archaean terranes and contain crust at least 3.2  Ga and are underlain by a thick (250 km (160 mi)) layer of buoyant mantle that

1250-497: The acceptance of plate tectonics , geologists had found evidence within many orogens of repeated cycles of deposition, deformation, crustal thickening and mountain building, and crustal thinning to form new depositional basins. These were named orogenic cycles , and various theories were proposed to explain them. Canadian geologist Tuzo Wilson first put forward a plate tectonic interpretation of orogenic cycles, now known as Wilson cycles. Wilson proposed that orogenic cycles represented

1300-414: The active front, a forebulge high of flexural origin and a back-bulge area beyond, although not all of these are present in all foreland-basin systems. The basin migrates with the orogenic front and early deposited foreland basin sediments become progressively involved in folding and thrusting. Sediments deposited in the foreland basin are mainly derived from the erosion of the actively uplifting rocks of

1350-631: The collision is with a second continent or a continental fragment or island arc. Repeated collisions of the later type, with no evidence of collision with a major continent or closure of an ocean basin, result in an accretionary orogen. Examples of orogens arising from collision of an island arc with a continent include Taiwan and the collision of Australia with the Banda arc. Orogens arising from continent-continent collisions can be divided into those involving ocean closure (Himalayan-type orogens) and those involving glancing collisions with no ocean basin closure (as

1400-527: The course of 200 million years in the Paleoproterozoic . The Yavapai and Mazatzal orogenies were peaks of orogenic activity during this time. These were part of an extended period of orogenic activity that included the Picuris orogeny and culminated in the Grenville orogeny , lasting at least 600 million years. A similar sequence of orogenies has taken place on the west coast of North America, beginning in

1450-539: The creation of new continental crust through volcanism . Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere ( crust and uppermost mantle ). A synorogenic (or synkinematic ) process or event is one that occurs during an orogeny. The word orogeny comes from Ancient Greek ὄρος ( óros )  'mountain' and γένεσις ( génesis )  'creation, origin'. Although it

1500-427: The crust of the continental margin ( thrust tectonics ). This takes the form of folding of the ductile deeper crust and thrust faulting in the upper brittle crust. Crustal thickening raises mountains through the principle of isostasy . Isostacy is the balance of the downward gravitational force upon an upthrust mountain range (composed of light, continental crust material) and the buoyant upward forces exerted by

1550-562: The dense underlying mantle . Portions of orogens can also experience uplift as a result of delamination of the orogenic lithosphere , in which an unstable portion of cold lithospheric root drips down into the asthenospheric mantle, decreasing the density of the lithosphere and causing buoyant uplift. An example is the Sierra Nevada in California. This range of fault-block mountains experienced renewed uplift and abundant magmatism after

Kalahari Craton - Misplaced Pages Continue

1600-738: The development of geologic concepts during the 19th century, the presence of marine fossils in mountains was explained in Christian contexts as a result of the Biblical Deluge . This was an extension of Neoplatonic thought, which influenced early Christian writers . The 13th-century Dominican scholar Albert the Great posited that, as erosion was known to occur, there must be some process whereby new mountains and other land-forms were thrust up, or else there would eventually be no land; he suggested that marine fossils in mountainsides must once have been at

1650-512: The edge of the uplifted layers are exposed. Although mountain building mostly takes place in orogens, a number of secondary mechanisms are capable of producing substantial mountain ranges. Areas that are rifting apart, such as mid-ocean ridges and the East African Rift , have mountains due to thermal buoyancy related to the hot mantle underneath them; this thermal buoyancy is known as dynamic topography . In strike-slip orogens, such as

1700-610: The eukaryote last common ancestor at 1.8–1.7 Ga. If the Pilbara fossils are traces of early eukaryotes, they could represent groups that went extinct before modern groups emerged. [REDACTED] Africa [REDACTED] Antarctica [REDACTED] Asia [REDACTED] Australia [REDACTED] Europe [REDACTED] North America [REDACTED] South America [REDACTED] Afro-Eurasia [REDACTED] Americas [REDACTED] Eurasia [REDACTED] Oceania Orogeny Orogeny ( / ɒ ˈ r ɒ dʒ ə n i / )

1750-409: The final form of the majority of old orogenic belts is a long arcuate strip of crystalline metamorphic rocks sequentially below younger sediments which are thrust atop them and which dip away from the orogenic core. An orogen may be almost completely eroded away, and only recognizable by studying (old) rocks that bear traces of orogenesis. Orogens are usually long, thin, arcuate tracts of rock that have

1800-792: The margins of the Superior Craton of Canada. The high temperatures created by the impacts' forces fused sediments into small glassy spherules. Spherules of 3.5 billion years old exist in South Africa, and spherules of a similar age have been found in Western Australia; they are the oldest-known terrestrial impact products. The spherules resemble the glassy chondrules (rounded granules) in carbonaceous chondrites , which are found in carbon-rich meteorites and lunar soils. Remarkably similar lithostratigraphic and chronostratigraphic structural sequences between these two cratons have been noted for

1850-538: The mountain range, although some sediments derive from the foreland. The fill of many such basins shows a change in time from deepwater marine ( flysch -style) through shallow water to continental ( molasse -style) sediments. While active orogens are found on the margins of present-day continents, older inactive orogenies, such as the Algoman , Penokean and Antler , are represented by deformed and metamorphosed rocks with sedimentary basins further inland. Long before

1900-416: The ocean basin comes to a halt, and continued subduction begins to close the ocean basin. The closure of the ocean basin ends with a continental collision and the associated Himalayan-type orogen. Erosion represents the final phase of the orogenic cycle. Erosion of overlying strata in orogenic belts, and isostatic adjustment to the removal of this overlying mass of rock, can bring deeply buried strata to

1950-498: The period between 3.5 and 2.7 Ga. Paleomagnetic data from two ultramafic complexes in the cratons showed that at 3.87 Ga the two cratons could have been part of the same supercontinent. Both the Pilbara and Kaapvaal cratons show extensional faults which were active about 3.47 Ga during felsic volcanism and coeval with the impact layers. The Pilbara and Kaapvaal cratons contain well-preserved Archaean microfossils. Drilling has revealed traces of microbial life and photosynthesis from

2000-416: The periodic opening and closing of an ocean basin, with each stage of the process leaving its characteristic record on the rocks of the orogen. The Wilson cycle begins when previously stable continental crust comes under tension from a shift in mantle convection . Continental rifting takes place, which thins the crust and creates basins in which sediments accumulate. As the basins deepen, the ocean invades

2050-450: The reconstruction of Wingate 1998 they fail to overlap, but they do in more recent reconstructions, for example Strik et al. 2003 . Other scientists dispute the existence of Vaalbara and explain similarities between the two cratons as the product of global processes. They point, for example, to thick volcanic deposits on other cratons such as Amazonia , São Francisco , and Karnataka . Zimgarn, another proposed supercraton composed of

Kalahari Craton - Misplaced Pages Continue

2100-582: The rest of Antarctica from Africa. In the Annandags Peaks in Antarctica, the only exposed parts of Grunehogna, detrital zircons from several crustal sources have been dated to 3.9–3.0 Ga suggesting intracrustal recycling was an important part in the formation of the first cratons. The Kaapvaal craton is marked by dramatic events such as the intrusion of the Bushveld Complex (2.045 Ga) and

2150-441: The rift zone, and as the continental crust rifts completely apart, shallow marine sedimentation gives way to deep marine sedimentation on the thinned marginal crust of the two continents. As the two continents rift apart, seafloor spreading commences along the axis of a new ocean basin. Deep marine sediments continue to accumulate along the thinned continental margins, which are now passive margins . At some point, subduction

2200-491: The sea-floor. Orogeny was used by Amanz Gressly (1840) and Jules Thurmann (1854) as orogenic in terms of the creation of mountain elevations, as the term mountain building was still used to describe the processes. Elie de Beaumont (1852) used the evocative "Jaws of a Vise" theory to explain orogeny, but was more concerned with the height rather than the implicit structures created by and contained in orogenic belts. His theory essentially held that mountains were created by

2250-414: The squeezing of certain rocks. Eduard Suess (1875) recognised the importance of horizontal movement of rocks. The concept of a precursor geosyncline or initial downward warping of the solid earth (Hall, 1859) prompted James Dwight Dana (1873) to include the concept of compression in the theories surrounding mountain-building. With hindsight, we can discount Dana's conjecture that this contraction

2300-423: The subduction produces compression in the overriding plate. Whether subduction produces compression depends on such factors as the rate of plate convergence and the degree of coupling between the two plates, while the degree of coupling may in turn rely on such factors as the angle of subduction and rate of sedimentation in the oceanic trench associated with the subduction zone. The Andes Mountains are an example of

2350-460: The surface. The erosional process is called unroofing . Erosion inevitably removes much of the mountains, exposing the core or mountain roots ( metamorphic rocks brought to the surface from a depth of several kilometres). Isostatic movements may help such unroofing by balancing out the buoyancy of the evolving orogen. Scholars debate about the extent to which erosion modifies the patterns of tectonic deformation (see erosion and tectonics ). Thus,

2400-447: Was due to the cooling of the Earth (aka the cooling Earth theory). The cooling Earth theory was the chief paradigm for most geologists until the 1960s. It was, in the context of orogeny, fiercely contested by proponents of vertical movements in the crust, or convection within the asthenosphere or mantle . Gustav Steinmann (1906) recognised different classes of orogenic belts, including

2450-679: Was first proposed by A. Button in 1976. He found a wide range of similarities between the Transvaal Basin in South Africa and the Hamersley Basin in Australia. Button, however, placed Madagascar between Africa and Australia and concluded that Gondwana must have had a long stable tectonic history. Similarly, in the reconstruction of Rogers 1993 , 1996 the oldest continent is Ur . In Rogers' reconstructions, however, Kaapvaal and Pilbara are placed far apart already in their Gondwana configuration,

2500-494: Was used before him, the American geologist G. K. Gilbert used the term in 1890 to mean the process of mountain-building, as distinguished from epeirogeny . Orogeny takes place on the convergent margins of continents. The convergence may take the form of subduction (where a continent rides forcefully over an oceanic plate to form a noncollisional orogeny) or continental collision (convergence of two or more continents to form

#111888