The Idaho Batholith is a granitic and granodioritic batholith of Cretaceous - Paleogene age that covers approximately 25,000 square kilometres (9,700 sq mi) of central Idaho and adjacent Montana . The batholith has two lobes that are separate from each other geographically and geologically. The Bitterroot lobe is the smaller lobe and the larger lobe is the Atlanta lobe. The Bitterroot lobe is in the north and is separated from the larger Atlanta lobe in the south by the Belt Supergroup metamorphic rocks that compose the Salmon River Arch . Much of the Atlanta and Bitterroot lobes are in the Idaho Batholith ecoregion .
60-635: The overall intrusive event that created the Idaho batholith lasted for around 55 million years from Late Cretaceous to the Eocene (98 to 43 Ma) of magmatism and includes the younger Challis suite which is not considered to be part of the Idaho Batholith. The Challis suite intruded both the Atlanta and Bitterroot lobes of the Idaho Batholith as well as the surrounding areas to the east of the Atlanta lobe. The Challis suite
120-481: A geographic coordinate system as defined in the specification of the ISO 19111 standard. Since there are many different reference ellipsoids , the precise latitude of a feature on the surface is not unique: this is stressed in the ISO standard which states that "without the full specification of the coordinate reference system, coordinates (that is latitude and longitude) are ambiguous at best and meaningless at worst". This
180-560: A 300-by-300-pixel sphere, so illustrations usually exaggerate the flattening. The graticule on the ellipsoid is constructed in exactly the same way as on the sphere. The normal at a point on the surface of an ellipsoid does not pass through the centre, except for points on the equator or at the poles, but the definition of latitude remains unchanged as the angle between the normal and the equatorial plane. The terminology for latitude must be made more precise by distinguishing: Geographic latitude must be used with care, as some authors use it as
240-458: A location on the surface of the Earth. On its own, the term "latitude" normally refers to the geodetic latitude as defined below. Briefly, the geodetic latitude of a point is the angle formed between the vector perpendicular (or normal ) to the ellipsoidal surface from the point, and the plane of the equator . Two levels of abstraction are employed in the definitions of latitude and longitude. In
300-460: A small portion of the Bitterroot lobe that borders the greater Bitterroot lobe. The Bitterroot lobe is mostly made from the Bitterroot peraluminous suite (66-53 Ma) consisting of the central portion of the Bitterroot lobe. The Bitterroot lobe shows regional strain with foliation that strikes to the northwest and dips to the northeast, which is parallel with other natural features in the area such as
360-443: A survey but, with the advent of GPS , it has become natural to use reference ellipsoids (such as WGS84 ) with centre at the centre of mass of the Earth and minor axis aligned to the rotation axis of the Earth. These geocentric ellipsoids are usually within 100 m (330 ft) of the geoid. Since latitude is defined with respect to an ellipsoid, the position of a given point is different on each ellipsoid: one cannot exactly specify
420-549: A synonym for geodetic latitude whilst others use it as an alternative to the astronomical latitude . "Latitude" (unqualified) should normally refer to the geodetic latitude. The importance of specifying the reference datum may be illustrated by a simple example. On the reference ellipsoid for WGS84, the centre of the Eiffel Tower has a geodetic latitude of 48° 51′ 29″ N, or 48.8583° N and longitude of 2° 17′ 40″ E or 2.2944°E. The same coordinates on
480-471: Is a coordinate that specifies the north – south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator . Lines of constant latitude , or parallels , run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify
540-411: Is also used in the current literature. The parametric latitude is related to the geodetic latitude by: The alternative name arises from the parameterization of the equation of the ellipse describing a meridian section. In terms of Cartesian coordinates p , the distance from the minor axis, and z , the distance above the equatorial plane, the equation of the ellipse is: The Cartesian coordinates of
600-484: Is determined by the shape of the ellipse which is rotated about its minor (shorter) axis. Two parameters are required. One is invariably the equatorial radius, which is the semi-major axis , a . The other parameter is usually (1) the polar radius or semi-minor axis , b ; or (2) the (first) flattening , f ; or (3) the eccentricity , e . These parameters are not independent: they are related by Many other parameters (see ellipse , ellipsoid ) appear in
660-453: Is determined with the meridian altitude method. More precise measurement of latitude requires an understanding of the gravitational field of the Earth, either to set up theodolites or to determine GPS satellite orbits. The study of the figure of the Earth together with its gravitational field is the science of geodesy . The graticule is formed by the lines of constant latitude and constant longitude, which are constructed with reference to
SECTION 10
#1732845011056720-474: Is it particularly evident that a true systematic decline was ever in place, especially with the discovery of smaller pterosaur species. Several old mammal groups began to disappear, with the last eutriconodonts occurring in the Campanian of North America . In the northern hemisphere, cimolodont , multituberculates , metatherians and eutherians were the dominant mammals, with the former two groups being
780-471: Is more petrologically diverse and contains a range of rocks from gabbro to granite . The Atlanta lobe was formed in the Late Cretaceous, 98 to 68 million years ago. The early metaluminous suite (98-87 Ma) makes up the southeastern edge of the Atlanta pluton. The border zone suite (92-85 Ma) makes up the western edge of the Atlanta pluton. The Atlanta peraluminous suite (83-67 Ma) makes up the majority of
840-594: Is named after creta , the Latin word for the white limestone known as chalk . The chalk of northern France and the white cliffs of south-eastern England date from the Cretaceous Period. During the Late Cretaceous, the climate was warmer than present, although throughout the period a cooling trend is evident. The tropics became restricted to equatorial regions and northern latitudes experienced markedly more seasonal climatic conditions. Due to plate tectonics ,
900-462: Is of great importance in accurate applications, such as a Global Positioning System (GPS), but in common usage, where high accuracy is not required, the reference ellipsoid is not usually stated. In English texts, the latitude angle, defined below, is usually denoted by the Greek lower-case letter phi ( ϕ or φ ). It is measured in degrees , minutes and seconds or decimal degrees , north or south of
960-451: Is the angle between the equatorial plane and the normal to the surface at that point: the normal to the surface of the sphere is along the radial vector. The latitude, as defined in this way for the sphere, is often termed the spherical latitude, to avoid ambiguity with the geodetic latitude and the auxiliary latitudes defined in subsequent sections of this article. Besides the equator, four other parallels are of significance: The plane of
1020-421: Is the meridional radius of curvature . The quarter meridian distance from the equator to the pole is For WGS84 this distance is 10 001 .965 729 km . The evaluation of the meridian distance integral is central to many studies in geodesy and map projection. It can be evaluated by expanding the integral by the binomial series and integrating term by term: see Meridian arc for details. The length of
1080-505: The Philosophiæ Naturalis Principia Mathematica , in which he proved that a rotating self-gravitating fluid body in equilibrium takes the form of an oblate ellipsoid. (This article uses the term ellipsoid in preference to the older term spheroid .) Newton's result was confirmed by geodetic measurements in the 18th century. (See Meridian arc .) An oblate ellipsoid is the three-dimensional surface generated by
1140-460: The Deccan Traps , both of which have been firmly dated to the time of the extinction event. In theory, these events reduced sunlight and hindered photosynthesis , leading to a massive disruption in Earth's ecology . A much smaller number of researchers believe the extinction was more gradual, resulting from slower changes in sea level or climate . Latitude In geography , latitude
1200-571: The zenith ). On map projections there is no universal rule as to how meridians and parallels should appear. The examples below show the named parallels (as red lines) on the commonly used Mercator projection and the Transverse Mercator projection . On the former the parallels are horizontal and the meridians are vertical, whereas on the latter there is no exact relationship of parallels and meridians with horizontal and vertical: both are complicated curves. \ In 1687 Isaac Newton published
1260-569: The Americas were gradually moving westward, causing the Atlantic Ocean to expand. The Western Interior Seaway divided North America into eastern and western halves; Appalachia and Laramidia . India maintained a northward course towards Asia. In the Southern Hemisphere, Australia and Antarctica seem to have remained connected and began to drift away from Africa and South America. Europe
SECTION 20
#17328450110561320-476: The Atlanta Lobe) is made almost entirely of preexisting continental material and contains biotite -containing granodiorite and two-mica granite. However, the early metaluminous suite (which makes up the southern edge of the Atlanta lobe) is petrologically different from the early metaluminous suite and contains tonalite , granodiorite and quartz diorite . The early metaluminous suite is also distinguished from
1380-401: The Atlanta lobe that stretches farther south than the early metaluminous suite and ends farther north than the early metaluminous suite. The Atlanta lobe lacks uniform deformation and foliation across the lobe but contains small areas of localized deformation . The Atlanta lobe is petrologically homogeneous overall. The magma from the Atlanta peraluminous suite (which makes up the majority of
1440-540: The Atlanta lobe. The late metaluminous suite (which borders the Bitterroot lobe) is made of a range of diorite from, quartz diorite to granodiorite . Late Cretaceous The Late Cretaceous (100.5–66 Ma ) is the younger of two epochs into which the Cretaceous Period is divided in the geologic time scale . Rock strata from this epoch form the Upper Cretaceous Series . The Cretaceous
1500-428: The Atlanta peraluminous suite by the presence of hornblende and 10 cm long potassium feldspar megachrysts . Like the early metaluminous suite, the border zone suite (which makes up the western edge of the Atlanta Lobe) is made of tonalite, granodiorite and quartz diorite. The Bitterroot lobe was formed in the Late Cretaceous and Paleocene , 75 to 53 million years ago. The Late metaluminous suite (75-69 Ma) makes up
1560-813: The Cretaceous Period derived from the German name Kreidezeit , and T is the abbreviation for the Tertiary Period (a historical term for the period of time now covered by the Paleogene and Neogene periods). The event marks the end of the Mesozoic Era and the beginning of the Cenozoic Era. "Tertiary" being no longer recognized as a formal time or rock unit by the International Commission on Stratigraphy ,
1620-447: The Earth's orbit about the Sun is called the ecliptic , and the plane perpendicular to the rotation axis of the Earth is the equatorial plane. The angle between the ecliptic and the equatorial plane is called variously the axial tilt, the obliquity, or the inclination of the ecliptic, and it is conventionally denoted by i . The latitude of the tropical circles is equal to i and the latitude of
1680-847: The K-T event is now called the Cretaceous—Paleogene (or K-Pg) extinction event by many researchers. Non- avian dinosaur fossils are found only below the Cretaceous–Paleogene boundary and became extinct immediately before or during the event. A very small number of dinosaur fossils have been found above the Cretaceous–Paleogene boundary, but they have been explained as reworked fossils , that is, fossils that have been eroded from their original locations then preserved in later sedimentary layers. Mosasaurs , plesiosaurs , pterosaurs and many species of plants and invertebrates also became extinct. Mammalian and bird clades passed through
1740-539: The Lewis and Clark line. The Lewis and Clark line is an area of weakened crust where major faulting has occurred with steep or vertical dipping and striking to the northwest. This deformation is attributed to the western Idaho shear zone. The Bitterroot lobe is petrologically similar to the Atlanta lobe. The Bitterroot peraluminous suite (which makes up the majority of the Bitterroot lobe) mostly consists of biotite granodiorite , but with less muscovite -bearing granite than
1800-604: The North American varieties. Pachycephalosaurs were also present in both North America and Asia. Dromaeosaurids shared the same geographical distribution, and are well documented in both Mongolia and Western North America. Additionally therizinosaurs (known previously as segnosaurs) appear to have been in North America and Asia. Gondwana held a very different dinosaurian fauna, with most predators being abelisaurids and carcharodontosaurids ; and titanosaurs being among
1860-664: The Sun is overhead at some point of the Tropic of Capricorn . The south polar latitudes below the Antarctic Circle are in daylight, whilst the north polar latitudes above the Arctic Circle are in night. The situation is reversed at the June solstice, when the Sun is overhead at the Tropic of Cancer. Only at latitudes in between the two tropics is it possible for the Sun to be directly overhead (at
Idaho Batholith - Misplaced Pages Continue
1920-567: The WGS84 spheroid is The variation of this distance with latitude (on WGS84 ) is shown in the table along with the length of a degree of longitude (east–west distance): A calculator for any latitude is provided by the U.S. Government's National Geospatial-Intelligence Agency (NGA). The following graph illustrates the variation of both a degree of latitude and a degree of longitude with latitude. There are six auxiliary latitudes that have applications to special problems in geodesy, geophysics and
1980-425: The angle subtended at the centre by the meridian arc from the equator to the point concerned. If the meridian distance is denoted by m ( ϕ ) then where R denotes the mean radius of the Earth. R is equal to 6,371 km or 3,959 miles. No higher accuracy is appropriate for R since higher-precision results necessitate an ellipsoid model. With this value for R the meridian length of 1 degree of latitude on
2040-519: The boundary with few extinctions, and evolutionary radiation from those Maastrichtian clades occurred well past the boundary. Rates of extinction and radiation varied across different clades of organisms. Many scientists hypothesize that the Cretaceous–Paleogene extinctions were caused by catastrophic events such as the massive asteroid impact that caused the Chicxulub crater , in combination with increased volcanic activity , such as that recorded in
2100-572: The centre of the Earth and perpendicular to the rotation axis intersects the surface at a great circle called the Equator . Planes parallel to the equatorial plane intersect the surface in circles of constant latitude; these are the parallels. The Equator has a latitude of 0°, the North Pole has a latitude of 90° North (written 90° N or +90°), and the South Pole has a latitude of 90° South (written 90° S or −90°). The latitude of an arbitrary point
2160-408: The datum ED50 define a point on the ground which is 140 metres (460 feet) distant from the tower. A web search may produce several different values for the latitude of the tower; the reference ellipsoid is rarely specified. The length of a degree of latitude depends on the figure of the Earth assumed. On the sphere the normal passes through the centre and the latitude ( ϕ ) is therefore equal to
2220-401: The dominant herbivores. Spinosaurids were also present during this time. Birds became increasingly common, diversifying in a variety of enantiornithe and ornithurine forms. Early Neornithes such as Vegavis co-existed with forms as bizarre as Yungavolucris and Avisaurus . Though mostly small, marine Hesperornithes became relatively large and flightless, adapted to life in
2280-402: The ellipsoid to that point Q on the surrounding sphere (of radius a ) which is the projection parallel to the Earth's axis of a point P on the ellipsoid at latitude ϕ . It was introduced by Legendre and Bessel who solved problems for geodesics on the ellipsoid by transforming them to an equivalent problem for spherical geodesics by using this smaller latitude. Bessel's notation, u ( ϕ ) ,
2340-509: The equator. For navigational purposes positions are given in degrees and decimal minutes. For instance, The Needles lighthouse is at 50°39.734′ N 001°35.500′ W. This article relates to coordinate systems for the Earth: it may be adapted to cover the Moon, planets and other celestial objects ( planetographic latitude ). For a brief history, see History of latitude . In celestial navigation , latitude
2400-483: The first step the physical surface is modeled by the geoid , a surface which approximates the mean sea level over the oceans and its continuation under the land masses. The second step is to approximate the geoid by a mathematically simpler reference surface. The simplest choice for the reference surface is a sphere , but the geoid is more accurately modeled by an ellipsoid of revolution . The definitions of latitude and longitude on such reference surfaces are detailed in
2460-438: The following sections. Lines of constant latitude and longitude together constitute a graticule on the reference surface. The latitude of a point on the actual surface is that of the corresponding point on the reference surface, the correspondence being along the normal to the reference surface, which passes through the point on the physical surface. Latitude and longitude together with some specification of height constitute
Idaho Batholith - Misplaced Pages Continue
2520-399: The geocentric latitude ( θ ) and the geodetic latitude ( ϕ ) is: For points not on the surface of the ellipsoid, the relationship involves additionally the ellipsoidal height h : where N is the prime vertical radius of curvature. The geodetic and geocentric latitudes are equal at the equator and at the poles but at other latitudes they differ by a few minutes of arc. Taking the value of
2580-451: The latitude and longitude of a geographical feature without specifying the ellipsoid used. Many maps maintained by national agencies are based on older ellipsoids, so one must know how the latitude and longitude values are transformed from one ellipsoid to another. GPS handsets include software to carry out datum transformations which link WGS84 to the local reference ellipsoid with its associated grid. The shape of an ellipsoid of revolution
2640-538: The meridian arc between two given latitudes is given by replacing the limits of the integral by the latitudes concerned. The length of a small meridian arc is given by When the latitude difference is 1 degree, corresponding to π / 180 radians, the arc distance is about The distance in metres (correct to 0.01 metre) between latitudes ϕ {\displaystyle \phi } − 0.5 degrees and ϕ {\displaystyle \phi } + 0.5 degrees on
2700-636: The most common mammals in North America. In the southern hemisphere there was instead a more complex fauna of dryolestoids , gondwanatheres and other multituberculates and basal eutherians ; monotremes were presumably present, as was the last of the haramiyidans , Avashishta . Mammals, though generally small, ranged into a variety of ecological niches, from carnivores ( Deltatheroida ), to mollusc-eater ( Stagodontidae ), to herbivores (multituberculates, Schowalteria , Zhelestidae and Mesungulatidae ) to highly atypical cursorial forms ( Zalambdalestidae , Brandoniidae ). True placentals evolved only at
2760-531: The numerous teleost fishes, which in turn evolved into new advanced and modern forms ( Neoteleostei ). Ichthyosaurs and pliosaurs , on the other hand, became extinct during the Cenomanian-Turonian anoxic event . Near the end of the Cretaceous Period, flowering plants diversified. In temperate regions, familiar plants like magnolias , sassafras , roses , redwoods , and willows could be found in abundance. The Cretaceous–Paleogene extinction event
2820-407: The open sea. Though primarily represented by azhdarchids , other forms like pteranodontids , tapejarids ( Caiuajara and Bakonydraco ), nyctosaurids and uncertain forms ( Piksi , Navajodactylus ) are also present. Historically, it has been assumed that pterosaurs were in decline due to competition with birds, but it appears that neither group overlapped significantly ecologically, nor
2880-458: The polar circles is its complement (90° - i ). The axis of rotation varies slowly over time and the values given here are those for the current epoch . The time variation is discussed more fully in the article on axial tilt . The figure shows the geometry of a cross-section of the plane perpendicular to the ecliptic and through the centres of the Earth and the Sun at the December solstice when
2940-503: The reference ellipsoid to the plane or in calculations of geodesics on the ellipsoid. Their numerical values are not of interest. For example, no one would need to calculate the authalic latitude of the Eiffel Tower. The expressions below give the auxiliary latitudes in terms of the geodetic latitude, the semi-major axis, a , and the eccentricity, e . (For inverses see below .) The forms given are, apart from notational variants, those in
3000-466: The rotation axis of the Earth. The primary reference points are the poles where the axis of rotation of the Earth intersects the reference surface. Planes which contain the rotation axis intersect the surface at the meridians ; and the angle between any one meridian plane and that through Greenwich (the Prime Meridian ) defines the longitude: meridians are lines of constant longitude. The plane through
3060-417: The rotation of an ellipse about its shorter axis (minor axis). "Oblate ellipsoid of revolution" is abbreviated to 'ellipsoid' in the remainder of this article. (Ellipsoids which do not have an axis of symmetry are termed triaxial .) Many different reference ellipsoids have been used in the history of geodesy . In pre-satellite days they were devised to give a good fit to the geoid over the limited area of
SECTION 50
#17328450110563120-515: The semi-major axis and the inverse flattening, 1 / f . For example, the defining values for the WGS84 ellipsoid, used by all GPS devices, are from which are derived The difference between the semi-major and semi-minor axes is about 21 km (13 miles) and as fraction of the semi-major axis it equals the flattening; on a computer monitor the ellipsoid could be sized as 300 by 299 pixels. This would barely be distinguishable from
3180-420: The sphere is 111.2 km (69.1 statute miles) (60.0 nautical miles). The length of one minute of latitude is 1.853 km (1.151 statute miles) (1.00 nautical miles), while the length of 1 second of latitude is 30.8 m or 101 feet (see nautical mile ). In Meridian arc and standard texts it is shown that the distance along a meridian from latitude ϕ to the equator is given by ( ϕ in radians) where M ( ϕ )
3240-403: The squared eccentricity as 0.0067 (it depends on the choice of ellipsoid) the maximum difference of ϕ − θ {\displaystyle \phi {-}\theta } may be shown to be about 11.5 minutes of arc at a geodetic latitude of approximately 45° 6′. The parametric latitude or reduced latitude , β , is defined by the radius drawn from the centre of
3300-454: The standard reference for map projections, namely "Map projections: a working manual" by J. P. Snyder. Derivations of these expressions may be found in Adams and online publications by Osborne and Rapp. The geocentric latitude is the angle between the equatorial plane and the radius from the centre to a point of interest. When the point is on the surface of the ellipsoid, the relation between
3360-468: The study of geodesy, geophysics and map projections but they can all be expressed in terms of one or two members of the set a , b , f and e . Both f and e are small and often appear in series expansions in calculations; they are of the order 1 / 298 and 0.0818 respectively. Values for a number of ellipsoids are given in Figure of the Earth . Reference ellipsoids are usually defined by
3420-407: The theory of map projections: The definitions given in this section all relate to locations on the reference ellipsoid but the first two auxiliary latitudes, like the geodetic latitude, can be extended to define a three-dimensional geographic coordinate system as discussed below . The remaining latitudes are not used in this way; they are used only as intermediate constructs in map projections of
3480-433: The very end of the epoch; the same can be said for true marsupials . Instead, nearly all known eutherian and metatherian fossils belong to other groups. In the seas, mosasaurs suddenly appeared and underwent a spectacular evolutionary radiation. Modern sharks also appeared and penguin-like polycotylid plesiosaurs (3 meters long) and huge long-necked elasmosaurs (13 meters long) also diversified. These predators fed on
3540-537: Was a large-scale mass extinction of animal and plant species in a geologically short period of time, approximately 66 million years ago (Ma). It is widely known as the K–T extinction event and is associated with a geological signature, usually a thin band dated to that time and found in various parts of the world, known as the Cretaceous–Paleogene boundary (K–T boundary). K is the traditional abbreviation for
3600-504: Was an island chain. Populating some of these islands were endemic dwarf dinosaur species. In the Late Cretaceous, the hadrosaurs , ankylosaurs , and ceratopsians experienced success in Asiamerica (Western North America and eastern Asia). Tyrannosaurs dominated the large predator niche in North America. They were also present in Asia, although were usually smaller and more primitive than
#55944