Misplaced Pages

Hyper-threading

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In computing , scheduling is the action of assigning resources to perform tasks . The resources may be processors , network links or expansion cards . The tasks may be threads , processes or data flows .

#232767

119-733: Hyper-threading (officially called Hyper-Threading Technology or HT Technology and abbreviated as HTT or HT ) is Intel 's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations (doing multiple tasks at once) performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium , Atom , and Core 'i' Series CPUs, among others. For each processor core that

238-466: A Workload Manager feature to the scheduler, which schedules processor resources according to an elaborate scheme defined by the installation. Very early MS-DOS and Microsoft Windows systems were non-multitasking, and as such did not feature a scheduler. Windows 3.1x used a non-preemptive scheduler, meaning that it did not interrupt programs. It relied on the program to end or tell the OS that it didn't need

357-423: A long-term scheduler (also known as an admission scheduler or high-level scheduler), a mid-term or medium-term scheduler , and a short-term scheduler . The names suggest the relative frequency with which their functions are performed. The process scheduler is a part of the operating system that decides which process runs at a certain point in time. It usually has the ability to pause a running process, move it to

476-520: A multilevel feedback queue with priority levels ranging from 0 to 140 was used; 0–99 are reserved for real-time tasks and 100–140 are considered nice task levels. For real-time tasks, the time quantum for switching processes was approximately 200 ms, and for nice tasks approximately 10 ms. The scheduler ran through the run queue of all ready processes, letting the highest priority processes go first and run through their time slices, after which they will be placed in an expired queue. When

595-424: A 30% performance improvement compared with an otherwise identical, non-simultaneous multithreading Pentium 4. Tom's Hardware states: "In some cases a P4 running at 3.0 GHz with HT on can even beat a P4 running at 3.6 GHz with HT turned off." Intel also claims significant performance improvements with a hyper-threading-enabled Pentium 4 processor in some artificial-intelligence algorithms. Overall

714-427: A 37% decrease. In 2010, ARM said it might include simultaneous multithreading in its future chips; however, this was rejected in favor of their 2012 64-bit design. ARM produced SMT cores in 2018. In 2013, Intel dropped SMT in favor of out-of-order execution for its Silvermont processor cores, as they found this gave better performance with better power efficiency than a lower number of cores with SMT. In 2017, it

833-432: A November 2009 analysis by Intel, performance impacts of hyper-threading result in increased overall latency in case the execution of threads does not result in significant overall throughput gains, which vary by the application. In other words, overall processing latency is significantly increased due to hyper-threading, with the negative effects becoming smaller as there are more simultaneous threads that can effectively use

952-432: A common division is made between foreground (interactive) processes and background (batch) processes. These two types of processes have different response-time requirements and so may have different scheduling needs. It is very useful for shared memory problems. A work-conserving scheduler is a scheduler that always tries to keep the scheduled resources busy, if there are submitted jobs ready to be scheduled. In contrast,

1071-611: A decade, from 2007 to 2016 fiscal years, until it was removed from the ranking in 2018. In 2020, it was reinstated and ranked 45th, being the 7th-largest technology company in the ranking . Intel supplies microprocessors for most manufacturers of computer systems, and is one of the developers of the x86 series of instruction sets found in most personal computers (PCs). It also manufactures chipsets , network interface controllers , flash memory , graphics processing units (GPUs), field-programmable gate arrays (FPGAs), and other devices related to communications and computing. Intel has

1190-480: A general purpose computer was written by Edward S. Davidson and Leonard. E. Shar in 1973. Denelcor, Inc. introduced multi-threading with the Heterogeneous Element Processor (HEP) in 1982. The HEP pipeline could not hold multiple instructions from the same process. Only one instruction from a given process was allowed to be present in the pipeline at any point in time. Should an instruction from

1309-423: A given process block the pipe, instructions from other processes would continue after the pipeline drained. US patent for the technology behind hyper-threading was granted to Kenneth Okin at Sun Microsystems in November 1994. At that time, CMOS process technology was not advanced enough to allow for a cost-effective implementation. Intel implemented hyper-threading on an x86 architecture processor in 2002 with

SECTION 10

#1732852616233

1428-575: A lighter load on the system if converted to a multithreaded structure. AIX 5 implements the following scheduling policies: FIFO, round robin, and a fair round robin. The FIFO policy has three different implementations: FIFO, FIFO2, and FIFO3. The round robin policy is named SCHED_RR in AIX, and the fair round robin is called SCHED_OTHER. Linux 1.2 used a round-robin scheduling policy. Linux 2.2 added scheduling classes and support for symmetric multiprocessing (SMP). In Linux 2.4, an O(n) scheduler with

1547-437: A limited group of private investors (equivalent to $ 21 million in 2022), convertible at $ 5 per share. Just 2 years later, Intel became a public company via an initial public offering (IPO), raising $ 6.8 million ($ 23.50 per share). Intel was one of the very first companies to be listed on the then-newly established National Association of Securities Dealers Automated Quotations ( NASDAQ ) stock exchange. Intel's third employee

1666-437: A logical processor to borrow resources from a stalled logical core (assuming both logical cores are associated with the same physical core). A processor stalls when it must wait for data it has requested, in order to finish processing the present thread. The degree of benefit seen when using a hyper-threaded, or multi-core, processor depends on the needs of the software, and how well it and the operating system are written to manage

1785-563: A major retrenchment for most of the major semiconductor manufacturers, except for Qualcomm, which continued to see healthy purchases from its largest customer, Apple. As of July 2013, five companies were using Intel's fabs via the Intel Custom Foundry division: Achronix , Tabula , Netronome , Microsemi , and Panasonic  – most are field-programmable gate array (FPGA) makers, but Netronome designs network processors. Only Achronix began shipping chips made by Intel using

1904-419: A malicious thread on a Pentium 4 can use a timing-based side-channel attack to monitor the memory access patterns of another thread with which it shares a cache, allowing the theft of cryptographic information. This is not actually a timing attack , as the malicious thread measures the time of only its own execution. Potential solutions to this include the processor changing its cache eviction strategy or

2023-616: A new microprocessor manufacturing facility in Chandler, Arizona , completed in 2013 at a cost of $ 5 billion. The building is now the 10 nm-certified Fab 42 and is connected to the other Fabs (12, 22, 32) on Ocotillo Campus via an enclosed bridge known as the Link. The company produces three-quarters of its products in the United States, although three-quarters of its revenue come from overseas. The Alliance for Affordable Internet (A4AI)

2142-425: A non-work conserving scheduler is a scheduler that, in some cases, may leave the scheduled resources idle despite the presence of jobs ready to be scheduled. There are several scheduling problems in which the goal is to decide which job goes to which station at what time, such that the total makespan is minimized: A very common method in embedded systems is to schedule jobs manually. This can for example be done in

2261-515: A preemptive scheduling algorithm. All Process Manager processes run within a special multiprocessing task, called the blue task . Those processes are scheduled cooperatively, using a round-robin scheduling algorithm; a process yields control of the processor to another process by explicitly calling a blocking function such as WaitNextEvent . Each process has its own copy of the Thread Manager that schedules that process's threads cooperatively;

2380-441: A process that has a low priority, a process that is page faulting frequently, or a process that is taking up a large amount of memory in order to free up main memory for other processes, swapping the process back in later when more memory is available, or when the process has been unblocked and is no longer waiting for a resource. In many systems today (those that support mapping virtual address space to secondary storage other than

2499-676: A processor for tablets and smartphones – to the market in 2012, as an effort to compete with Arm. As a 32-nanometer processor, Medfield is designed to be energy-efficient, which is one of the core features in Arm's chips. At the Intel Developers Forum (IDF) 2011 in San Francisco, Intel's partnership with Google was announced. In January 2012, Google announced Android 2.3, supporting Intel's Atom microprocessor. In 2013, Intel's Kirk Skaugen said that Intel's exclusive focus on Microsoft platforms

SECTION 20

#1732852616233

2618-465: A single central processing unit (CPU). A scheduler may aim at one or more goals, for example: In practice, these goals often conflict (e.g. throughput versus latency), thus a scheduler will implement a suitable compromise. Preference is measured by any one of the concerns mentioned above, depending upon the user's needs and objectives. In real-time environments, such as embedded systems for automatic control in industry (for example robotics ),

2737-461: A specified thread, independently from the other logical processor sharing the same physical core. Unlike a traditional dual-processor configuration that uses two separate physical processors, the logical processors in a hyper-threaded core share the execution resources. These resources include the execution engine, caches, and system bus interface; the sharing of resources allows two logical processors to work with each other more efficiently, and allows

2856-579: A standalone business unit. Unlike Intel Custom Foundry, IFS will offer a combination of packaging and process technology, and Intel's IP portfolio including x86 cores. Other plans for the company include a partnership with IBM and a new event for developers and engineers, called "Intel ON". Gelsinger also confirmed that Intel's 7 nm process is on track, and that the first products using their 7 nm process (also known as Intel 4) are Ponte Vecchio and Meteor Lake . In January 2022, Intel reportedly selected New Albany, Ohio , near Columbus, Ohio , as

2975-623: A stroke regained much of its leadership of the field. In 2008, Intel had another "tick" when it introduced the Penryn microarchitecture, fabricated using the 45 nm process node. Later that year, Intel released a processor with the Nehalem architecture to positive reception. On June 27, 2006, the sale of Intel's XScale assets was announced. Intel agreed to sell the XScale processor business to Marvell Technology Group for an estimated $ 600 million and

3094-418: A strong presence in the high-performance general-purpose and gaming PC market with its Intel Core line of CPUs, whose high-end models are among the fastest consumer CPUs, as well as its Intel Arc series of GPUs. The Open Source Technology Center at Intel hosts PowerTOP and LatencyTOP , and supports other open source projects such as Wayland , Mesa , Threading Building Blocks (TBB), and Xen . Intel

3213-531: A struggle with Microsoft for control over the direction of the PC industry. Since the 2000s and especially since the late 2010s, Intel has faced increasing competition, which has led to a reduction in Intel's dominance and market share in the PC market. Nevertheless, with a 68.4% market share as of 2023, Intel still leads the x86 market by a wide margin. In addition, Intel's ability to design and manufacture its own chips

3332-748: A thread yields control of the processor to another thread by calling YieldToAnyThread or YieldToThread . macOS uses a multilevel feedback queue, with four priority bands for threads – normal, system high priority, kernel mode only, and real-time. Threads are scheduled preemptively; macOS also supports cooperatively scheduled threads in its implementation of the Thread Manager in Carbon . In AIX Version 4 there are three possible values for thread scheduling policy: Threads are primarily of interest for applications that currently consist of several asynchronous processes. These applications might impose

3451-451: A time-multiplexed fashion. Sometimes the kernel is divided in three or more parts: Manual scheduling, preemptive and interrupt level. Exact methods for scheduling jobs are often proprietary. When designing an operating system, a programmer must consider which scheduling algorithm will perform best for the use the system is going to see. There is no universal best scheduling algorithm, and many operating systems use extended or combinations of

3570-414: A total of four logical processors). If the operating system's thread scheduler is unaware of hyper-threading, it will treat all four logical processors the same. If only two threads are eligible to run, it might choose to schedule those threads on the two logical processors that happen to belong to the same physical processor. That processor would be extremely busy, and would share execution resources, while

3689-452: Is RISC-V , which is an open source CPU instruction set. The major Chinese phone and telecommunications manufacturer Huawei has released chips based on the RISC-V instruction set due to US sanctions against China . Intel has been involved in several disputes regarding the violation of antitrust laws , which are noted below. Intel reported total CO 2 e emissions (direct + indirect) for

Hyper-threading - Misplaced Pages Continue

3808-404: Is a form of simultaneous multithreading technology introduced by Intel, while the concept behind the technology has been patented by Sun Microsystems . Architecturally, a processor with Hyper-Threading Technology consists of two logical processors per core, each of which has its own processor architectural state. Each logical processor can be individually halted, interrupted or directed to execute

3927-608: Is an American multinational corporation and technology company headquartered in Santa Clara, California , and incorporated in Delaware . Intel designs, manufactures, and sells computer components and related products for business and consumer markets. It is considered one of the world's largest semiconductor chip manufacturers by revenue and ranked in the Fortune 500 list of the largest United States corporations by revenue for nearly

4046-498: Is another large customer for Intel. In September 2024, Intel reportedly qualified for as much as $ 3.5 billion in federal grants to make semiconductors for the Defense Department. According to IDC , while Intel enjoyed the biggest market share in both the overall worldwide PC microprocessor market (73.3%) and the mobile PC microprocessor (80.4%) in the second quarter of 2011, the numbers decreased by 1.5% and 1.9% compared to

4165-490: Is capable of forcibly removing processes from a CPU when it decides to allocate that CPU to another process, or non-preemptive (also known as voluntary or co-operative ), in which case the scheduler is unable to force processes off the CPU. A preemptive scheduler relies upon a programmable interval timer which invokes an interrupt handler that runs in kernel mode and implements the scheduling function. Another component that

4284-455: Is carried out by a mechanism called a scheduler . Schedulers are often designed so as to keep all computer resources busy (as in load balancing ), allow multiple users to share system resources effectively, or to achieve a target quality-of-service . Scheduling is fundamental to computation itself, and an intrinsic part of the execution model of a computer system; the concept of scheduling makes it possible to have computer multitasking with

4403-411: Is considered a rarity in the semiconductor industry , as most chip designers do not have their own production facilities and instead rely on contract manufacturers (e.g. AMD and Nvidia ). In 2023, Dell accounted for about 19% of Intel's total revenues, Lenovo accounted for 11% of total revenues, and HP Inc. accounted for 10% of total revenues. As of May 2024, the U.S. Department of Defense

4522-509: Is due to the replay system of the Pentium ;4 tying up valuable execution resources, equalizing the processor resources between the two programs, which adds a varying amount of execution time. The Pentium 4 "Prescott" and the Xeon "Nocona" processors received a replay queue that reduces execution time needed for the replay system and completely overcomes the performance penalty. According to

4641-438: Is expected to affect Intel minimally; however, it might prompt other PC manufacturers to reevaluate their reliance on Intel and the x86 architecture. On March 23, 2021, CEO Pat Gelsinger laid out new plans for the company. These include a new strategy, called IDM 2.0, that includes investments in manufacturing facilities, use of both internal and external foundries, and a new foundry business called Intel Foundry Services (IFS),

4760-447: Is given equal time (for instance 1 ms, usually between 1 ms and 100 ms) in a cycling list. So, process A executes for 1 ms, then process B, then process C, then back to process A. More advanced algorithms take into account process priority, or the importance of the process. This allows some processes to use more time than other processes. The kernel always uses whatever resources it needs to ensure proper functioning of

4879-463: Is important that a long-term scheduler selects a good process mix of I/O-bound and CPU-bound processes. If all processes are I/O-bound, the ready queue will almost always be empty, and the short-term scheduler will have little to do. On the other hand, if all processes are CPU-bound, the I/O waiting queue will almost always be empty, devices will go unused, and again the system will be unbalanced. The system with

Hyper-threading - Misplaced Pages Continue

4998-458: Is involved in the CPU-scheduling function is the dispatcher, which is the module that gives control of the CPU to the process selected by the short-term scheduler. It receives control in kernel mode as the result of an interrupt or system call. The functions of a dispatcher involve the following: The dispatcher should be as fast as possible since it is invoked during every process switch. During

5117-462: Is offered, as opposed to best-effort communication, weighted fair queuing may be utilized. In advanced packet radio wireless networks such as HSDPA (High-Speed Downlink Packet Access) 3.5G cellular system, channel-dependent scheduling may be used to take advantage of channel state information . If the channel conditions are favourable, the throughput and system spectral efficiency may be increased. In even more advanced systems such as LTE ,

5236-468: Is often required to prevent them from blocking due to waiting on each other. In these cases, special-purpose job scheduler software is typically used to assist these functions, in addition to any underlying admission scheduling support in the operating system. Some operating systems only allow new tasks to be added if it is sure all real-time deadlines can still be met. The specific heuristic algorithm used by an operating system to accept or reject new tasks

5355-421: Is physically present, the operating system addresses two virtual (logical) cores and shares the workload between them when possible. The main function of hyper-threading is to increase the number of independent instructions in the pipeline; it takes advantage of superscalar architecture, in which multiple instructions operate on separate data in parallel . With HTT, one physical core appears as two processors to

5474-466: Is planned for 2027. Including subcontractors, this would create 10,000 new jobs. In August 2022, Intel signed a $ 30   billion partnership with Brookfield Asset Management to fund its recent factory expansions. As part of the deal, Intel would have a controlling stake by funding 51% of the cost of building new chip-making facilities in Chandler, with Brookfield owning the remaining 49% stake, allowing

5593-554: Is reserved for the Operating System. User interfaces and APIs work with priority classes for the process and the threads in the process, which are then combined by the system into the absolute priority level. The kernel may change the priority level of a thread depending on its I/O and CPU usage and whether it is interactive (i.e. accepts and responds to input from humans), raising the priority of interactive and I/O bounded processes and lowering that of CPU bound processes, to increase

5712-414: Is the admission control mechanism . The medium-term scheduler temporarily removes processes from main memory and places them in secondary memory (such as a hard disk drive ) or vice versa, which is commonly referred to as swapping out or swapping in (also incorrectly as paging out or paging in ). The medium-term scheduler may decide to swap out a process that has not been active for some time,

5831-435: Is to be executed (allocated a CPU) after a clock interrupt , an I/O interrupt, an operating system call or another form of signal . Thus the short-term scheduler makes scheduling decisions much more frequently than the long-term or mid-term schedulers – A scheduling decision will at a minimum have to be made after every time slice, and these are very short. This scheduler can be preemptive , implying that it

5950-416: Is to use performance tools to understand what areas contribute to performance gains and what areas contribute to performance degradation. As a result, performance improvements are very application-dependent; however, when running two programs that require full attention of the processor, it can actually seem like one or both of the programs slows down slightly when Hyper-Threading Technology is turned on. This

6069-491: Is transparent to operating systems and programs. The minimum that is required to take advantage of hyper-threading is symmetric multiprocessing (SMP) support in the operating system, since the logical processors appear no different to the operating system than physical processors. It is possible to optimize operating system behavior on multi-processor, hyper-threading capable systems. For example, consider an SMP system with two physical processors that are both hyper-threaded (for

SECTION 50

#1732852616233

6188-597: The Core microarchitecture did not have hyper-threading because the Core microarchitecture was a descendant of the older P6 microarchitecture . The P6 microarchitecture was used in earlier iterations of Pentium processors, namely, the Pentium Pro , Pentium II and Pentium III (plus their Celeron & Xeon derivatives at the time). Windows 2000 SP3 and Windows XP SP1 have added support for hyper-threading. Intel released

6307-618: The Nehalem microarchitecture (Core i7) in November 2008, in which hyper-threading made a return. The first generation Nehalem processors contained four physical cores and effectively scaled to eight threads. Since then, both two- and six-core models have been released, scaling four and twelve threads respectively. Earlier Intel Atom cores were in-order processors, sometimes with hyper-threading ability, for low power mobile PCs and low-price desktop PCs. The Itanium  9300 launched with eight threads per processor (two threads per core) through enhanced hyper-threading technology. The next model,

6426-507: The PowerPC architecture developed by the AIM alliance . This was seen as a win for Intel; an analyst called the move "risky" and "foolish", as Intel's current offerings at the time were considered to be behind those of AMD and IBM. In 2006, Intel unveiled its Core microarchitecture to widespread critical acclaim; the product range was perceived as an exceptional leap in processor performance that at

6545-587: The Semiconductor Chip Protection Act of 1984 , a law sought by Intel and the Semiconductor Industry Association (SIA). During the late 1980s and 1990s (after this law was passed), Intel also sued companies that tried to develop competitor chips to the 80386 CPU . The lawsuits were noted to significantly burden the competition with legal bills, even if Intel lost the suits. Antitrust allegations had been simmering since

6664-489: The Zen microarchitecture and a new chiplet -based design to critical acclaim. Since its introduction, AMD, once unable to compete with Intel in the high-end CPU market, has undergone a resurgence, and Intel's dominance and market share have considerably decreased. In addition, Apple began to transition away from the x86 architecture and Intel processors to their own Apple silicon for their Macintosh computers in 2020. The transition

6783-519: The semiconductor memory market, widely predicted to replace magnetic-core memory . Its first product, a quick entry into the small, high-speed memory market in 1969, was the 3101 Schottky TTL bipolar 64-bit static random-access memory (SRAM), which was nearly twice as fast as earlier Schottky diode implementations by Fairchild and the Electrotechnical Laboratory in Tsukuba, Japan . In

6902-457: The x86 processor market is AMD, with which Intel has had full cross-licensing agreements since 1976: each partner can use the other's patented technological innovations without charge after a certain time. However, the cross-licensing agreement is canceled in the event of an AMD bankruptcy or takeover. Some smaller competitors, such as VIA Technologies, produce low-power x86 processors for small factor computers and portable equipment. However,

7021-459: The 22 nm Tri-Gate process. Several other customers also exist but were not announced at the time. The foundry business was closed in 2018 due to Intel's issues with its manufacturing. Intel continued its tick-tock model of a microarchitecture change followed by a die shrink until the 6th-generation Core family based on the Skylake microarchitecture. This model was deprecated in 2016, with

7140-518: The Foster MP-based Xeon . It was also included on the 3.06 GHz Northwood-based Pentium 4 in the same year, and then remained as a feature in every Pentium 4 HT, Pentium 4 Extreme Edition and Pentium Extreme Edition processor since. The Intel Core & Core 2 processor lines (2006) that succeeded the Pentium 4 model line didn't utilize hyper-threading. The processors based on

7259-475: The Itanium 9500 (Poulson), features a 12-wide issue architecture, with eight CPU cores with support for eight more virtual cores via hyper-threading. The Intel Xeon 5500 server chips also utilize two-way hyper-threading. According to Intel, the first hyper-threading implementation used only 5% more die area than the comparable non-hyperthreaded processor, but the performance was 15–30% better. Intel claims up to

SECTION 60

#1732852616233

7378-595: The UN Broadband Commission's worldwide target of 5% of monthly income. In April 2011, Intel began a pilot project with ZTE Corporation to produce smartphones using the Intel Atom processor for China's domestic market. In December 2011, Intel announced that it reorganized several of its business units into a new mobile and communications group that would be responsible for the company's smartphone, tablet, and wireless efforts. Intel planned to introduce Medfield –

7497-682: The United States. Intel was incorporated in Mountain View, California , on July 18, 1968, by Gordon E. Moore (known for " Moore's law "), a chemist ; Robert Noyce , a physicist and co-inventor of the integrated circuit ; and Arthur Rock , an investor and venture capitalist . Moore and Noyce had left Fairchild Semiconductor , where they were part of the " traitorous eight " who founded it. There were originally 500,000 shares outstanding of which Dr. Noyce bought 245,000 shares, Dr. Moore 245,000 shares, and Mr. Rock 10,000 shares; all at $ 1 per share. Rock offered $ 2,500,000 of convertible debentures to

7616-414: The Xeon 6 processor, aiming for better performance and power efficiency compared to its predecessor. Intel's Gaudi 2 and Gaudi 3 AI accelerators were revealed to be more cost-effective than competitors' offerings. Additionally, Intel disclosed architecture details for its Lunar Lake processors for AI PCs, which were released on September 24, 2024. Scheduling (computing) The scheduling activity

7735-422: The additional hardware resource utilization provided by hyper-threading. A similar performance analysis is available for the effects of hyper-threading when used to handle tasks related to managing network traffic, such as for processing interrupt requests generated by network interface controllers (NICs). Another paper claims no performance improvements when hyper-threading is used for interrupt handling. When

7854-584: The advent of such mobile computing devices, in particular, smartphones , has led to a decline in PC sales . Since over 95% of the world's smartphones currently use processors cores designed by Arm , using the Arm instruction set , Arm has become a major competitor for Intel's processor market. Arm is also planning to make attempts at setting foot into the PC and server market, with Ampere and IBM each individually designing CPUs for servers and supercomputers . The only other major competitor in processor instruction sets

7973-402: The assumption of unspecified liabilities. The move was intended to permit Intel to focus its resources on its core x86 and server businesses, and the acquisition completed on November 9, 2006. In 2008, Intel spun off key assets of a solar startup business effort to form an independent company, SpectraWatt Inc. In 2011, SpectraWatt filed for bankruptcy. In February 2011, Intel began to build

8092-413: The back of the running queue and start a new process; such a scheduler is known as a preemptive scheduler , otherwise it is a cooperative scheduler . We distinguish between long-term scheduling , medium-term scheduling , and short-term scheduling based on how often decisions must be made. The long-term scheduler , or admission scheduler , decides which jobs or processes are to be admitted to

8211-448: The best performance will thus have a combination of CPU-bound and I/O-bound processes. In modern operating systems, this is used to make sure that real-time processes get enough CPU time to finish their tasks. Long-term scheduling is also important in large-scale systems such as batch processing systems, computer clusters , supercomputers , and render farms . For example, in concurrent systems , coscheduling of interacting processes

8330-420: The companies to split the revenue from those facilities. On January 31, 2023, as part of $ 3 billion in cost reductions, Intel announced pay cuts affecting employees above midlevel, ranging from 5% upwards. It also suspended bonuses and merit pay increases, while reducing retirement plan matching. These cost reductions followed layoffs announced in the fall of 2022. In October 2023, Intel confirmed it would be

8449-451: The company as NM Electronics on July 18, 1968, but by the end of the month had changed the name to Intel , which stood for Int egrated El ectronics. Since "Intel" was already trademarked by the hotel chain Intelco, they had to buy the rights for the name. At its founding, Intel was distinguished by its ability to make logic circuits using semiconductor devices . The founders' goal was

8568-425: The company's focus to microprocessors and to change fundamental aspects of that business model. Moore's decision to sole-source Intel's 386 chip played into the company's continuing success. By the end of the 1980s, buoyed by its fortuitous position as microprocessor supplier to IBM and IBM's competitors within the rapidly growing personal computer market , Intel embarked on a 10-year period of unprecedented growth as

8687-815: The context switches, the processor is virtually idle for a fraction of time, thus unnecessary context switches should be avoided. The time it takes for the dispatcher to stop one process and start another is known as the dispatch latency . A scheduling discipline (also called scheduling policy or scheduling algorithm ) is an algorithm used for distributing resources among parties which simultaneously and asynchronously request them. Scheduling disciplines are used in routers (to handle packet traffic) as well as in operating systems (to share CPU time among both threads and processes ), disk drives ( I/O scheduling ), printers ( print spooler ), most embedded systems, etc. The main purposes of scheduling algorithms are to minimize resource starvation and to ensure fairness amongst

8806-560: The early 1980s, and manufacturing and development centers in China, India, and Costa Rica in the 1990s. By the early 1980s, its business was dominated by DRAM chips. However, increased competition from Japanese semiconductor manufacturers had, by 1983, dramatically reduced the profitability of this market. The growing success of the IBM personal computer, based on an Intel microprocessor, was among factors that convinced Gordon Moore (CEO since 1975) to shift

8925-506: The early 1990s and had been the cause of one lawsuit against Intel in 1991. In 2004 and 2005, AMD brought further claims against Intel related to unfair competition . In 2005, CEO Paul Otellini reorganized the company to refocus its core processor and chipset business on platforms (enterprise, digital home, digital health, and mobility). On June 6, 2005, Steve Jobs , then CEO of Apple , announced that Apple would be using Intel's x86 processors for its Macintosh computers, switching from

9044-495: The first HT processors were released, many operating systems were not optimized for hyper-threading technology (e.g. Windows 2000 and Linux older than 2.4). In 2006, hyper-threading was criticised for energy inefficiency. For example, ARM (a specialized, low-power, CPU design company), stated that simultaneous multithreading can use up to 46% more power than ordinary dual-core designs. Furthermore, they claimed that SMT increases cache thrashing by 42%, whereas dual core results in

9163-653: The first commercial user of high-NA EUV lithography tool, as part of its plan to regain process leadership from TSMC . In August 2024, following a below-expectations Q2 earnings announcement, Intel announced "significant actions to reduce our costs. We plan to deliver $ 10 billion in cost savings in 2025, and this includes reducing our head count by roughly 15,000 roles, or 15% of our workforce." In December 2023, Intel unveiled Gaudi3, an artificial intelligence (AI) chip for generative AI software which will launch in 2024 and compete with rival chips from Nvidia and AMD. On 4 June 2024, Intel announced AI chips for data centers,

9282-445: The first commercially available dynamic random-access memory (DRAM), the 1103 released in 1970, solved these issues. The 1103 was the bestselling semiconductor memory chip in the world by 1972, as it replaced core memory in many applications. Intel's business grew during the 1970s as it expanded and improved its manufacturing processes and produced a wider range of products , still dominated by various memory devices. Intel created

9401-456: The first commercially available microprocessor, the Intel 4004 , in 1971. The microprocessor represented a notable advance in the technology of integrated circuitry, as it miniaturized the central processing unit of a computer, which then made it possible for small machines to perform calculations that in the past only very large machines could do. Considerable technological innovation was needed before

9520-440: The first quarter of 2011. Intel's market share decreased significantly in the enthusiast market as of 2019, and they have faced delays for their 10 nm products. According to former Intel CEO Bob Swan, the delay was caused by the company's overly aggressive strategy for moving to its next node. In the 1980s, Intel was among the world's top ten sellers of semiconductors (10th in 1987 ). Along with Microsoft Windows , it

9639-419: The high-priority threads and FIFO among the lower-priority ones. In this sense, response time is short for most threads, and short but critical system threads get completed very quickly. Since threads can only use one time unit of the round-robin in the highest-priority queue, starvation can be a problem for longer high-priority threads. The algorithm used may be as simple as round-robin in which each process

9758-416: The majority of its business until 1981. Although Intel created the world's first commercial microprocessor chip—the Intel 4004 —in 1971, it was not until the success of the PC in the early 1990s that this became its primary business. During the 1990s, the partnership between Microsoft Windows and Intel, known as " Wintel ", became instrumental in shaping the PC landscape and solidified Intel's position on

9877-400: The market. As a result, Intel invested heavily in new microprocessor designs in the mid to late 1990s, fostering the rapid growth of the computer industry . During this period, it became the dominant supplier of PC microprocessors, with a market share of 90%, and was known for aggressive and anti-competitive tactics in defense of its market position, particularly against AMD , as well as

9996-526: The microprocessor could actually become the basis of what was first known as a "mini computer" and then known as a "personal computer". Intel also created one of the first microcomputers in 1973. Intel opened its first international manufacturing facility in 1972, in Malaysia , which would host multiple Intel operations, before opening assembly facilities and semiconductor plants in Singapore and Jerusalem in

10115-405: The next to be scheduled for execution. Similar to shortest job first (SJF). With this strategy the scheduler arranges processes with the least estimated processing time remaining to be next in the queue. This requires advanced knowledge or estimations about the time required for a process to complete. The operating system assigns a fixed-priority rank to every process, and the scheduler arranges

10234-605: The node. The first microprocessor under that node, Cannon Lake (marketed as 8th-generation Core), was released in small quantities in 2018. The company first delayed the mass production of their 10 nm products to 2017. They later delayed mass production to 2018, and then to 2019. Despite rumors of the process being cancelled, Intel finally introduced mass-produced 10 nm 10th-generation Intel Core mobile processors (codenamed " Ice Lake ") in September 2019. Intel later acknowledged that their strategy to shrink to 10 nm

10353-586: The operating system preventing the simultaneous execution, on the same physical core, of threads with different privileges. In 2018 the OpenBSD operating system has disabled hyper-threading "in order to avoid data potentially leaking from applications to other software" caused by the Foreshadow/L1TF vulnerabilities. In 2019 a set of vulnerabilities led to security experts recommending the disabling of hyper-threading on all devices. Intel Intel Corporation

10472-414: The operating system to schedule two threads or processes simultaneously and appropriately. When execution resources in a hyper-threaded processor are not in use by the current task, and especially when the processor is stalled, those execution resources can be used to execute another scheduled task. (The processor may stall due to a cache miss , branch misprediction , or data dependency .) This technology

10591-477: The operating system, allowing concurrent scheduling of two processes per core. In addition, two or more processes can use the same resources: If resources for one process are not available, then another process can continue if its resources are available. In addition to requiring simultaneous multithreading support in the operating system, hyper-threading can be properly utilized only with an operating system specifically optimized for it. Hyper-Threading Technology

10710-428: The other processor would remain idle, leading to poorer performance than if the threads were scheduled on different physical processors. This problem can be avoided by improving the scheduler to treat logical processors differently from physical processors, which is, in a sense, a limited form of the scheduler changes required for NUMA systems. The first published paper describing what is now known as hyper-threading in

10829-674: The parties utilizing the resources. Scheduling deals with the problem of deciding which of the outstanding requests is to be allocated resources. There are many different scheduling algorithms. In this section, we introduce several of them. In packet-switched computer networks and other statistical multiplexing , the notion of a scheduling algorithm is used as an alternative to first-come first-served queuing of data packets. The simplest best-effort scheduling algorithms are round-robin , fair queuing (a max-min fair scheduling algorithm), proportional-fair scheduling and maximum throughput . If differentiated or guaranteed quality of service

10948-415: The performance history of hyper-threading was a mixed one in the beginning. As one commentary on high-performance computing from November 2002 notes: Hyper-Threading can improve the performance of some MPI applications, but not all. Depending on the cluster configuration and, most importantly, the nature of the application running on the cluster, performance gains can vary or even be negative. The next step

11067-670: The primary and most profitable hardware supplier to the PC industry, part of the winning 'Wintel' combination. Moore handed over his position as CEO to Andy Grove in 1987. By launching its Intel Inside marketing campaign in 1991, Intel was able to associate brand loyalty with consumer selection, so that by the end of the 1990s, its line of Pentium processors had become a household name. After 2000, growth in demand for high-end microprocessors slowed. Competitors, most notably AMD (Intel's largest competitor in its primary x86 architecture market), garnered significant market share, initially in low-end and mid-range processors but ultimately across

11186-462: The processes in the ready queue in order of their priority. Lower-priority processes get interrupted by incoming higher-priority processes. The scheduler assigns a fixed time unit per process, and cycles through them. If process completes within that time-slice it gets terminated otherwise it is rescheduled after giving a chance to all other processes. This is used for situations in which processes are easily divided into different groups. For example,

11305-416: The processor efficiently. Hyper-threading works by duplicating certain sections of the processor—those that store the architectural state —but not duplicating the main execution resources . This allows a hyper-threading processor to appear as the usual "physical" processor plus an extra " logical " processor to the host operating system (HTT-unaware operating systems see two "physical" processors), allowing

11424-523: The processor so that it could move on to another process. This is usually called cooperative multitasking. Windows 95 introduced a rudimentary preemptive scheduler; however, for legacy support opted to let 16-bit applications run without preemption. Windows NT -based operating systems use a multilevel feedback queue. 32 priority levels are defined, 0 through to 31, with priorities 0 through 15 being normal priorities and priorities 16 through 31 being soft real-time priorities, requiring privileges to assign. 0

11543-514: The product range, and Intel's dominant position in its core market was greatly reduced, mostly due to controversial NetBurst microarchitecture. In the early 2000s then-CEO, Craig Barrett attempted to diversify the company's business beyond semiconductors, but few of these activities were ultimately successful. Bob had also for a number of years been embroiled in litigation. U.S. law did not initially recognize intellectual property rights related to microprocessor topology (circuit layouts), until

11662-422: The ready queue (in main memory); that is, when an attempt is made to execute a program, its admission to the set of currently executing processes is either authorized or delayed by the long-term scheduler. Thus, this scheduler dictates what processes are to run on a system, the degree of concurrency to be supported at any one time – whether many or few processes are to be executed concurrently, and how

11781-434: The ready queue. This is commonly used for a task queue , for example as illustrated in this section. Earliest deadline first (EDF) or least time to go is a dynamic scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (a task finishes, new task is released, etc.), the queue will be searched for the process closest to its deadline, which will be

11900-531: The release of the 7th-generation Core family (codenamed Kaby Lake ), ushering in the process–architecture–optimization model . As Intel struggled to shrink their process node from 14 nm to 10 nm , processor development slowed down and the company continued to use the Skylake microarchitecture until 2020, albeit with optimizations. While Intel originally planned to introduce 10 nm products in 2016, it later became apparent that there were manufacturing issues with

12019-712: The responsiveness of interactive applications. The scheduler was modified in Windows Vista to use the cycle counter register of modern processors to keep track of exactly how many CPU cycles a thread has executed, rather than just using an interval-timer interrupt routine. Vista also uses a priority scheduler for the I/O queue so that disk defragmenters and other such programs do not interfere with foreground operations. Mac OS 9 uses cooperative scheduling for threads, where one process controls multiple cooperative threads, and also provides preemptive scheduling for multiprocessing tasks. The kernel schedules multiprocessing tasks using

12138-405: The same year, Intel also produced the 3301 Schottky bipolar 1024-bit read-only memory (ROM) and the first commercial metal–oxide–semiconductor field-effect transistor (MOSFET) silicon gate SRAM chip, the 256-bit 1101. While the 1101 was a significant advance, its complex static cell structure made it too slow and costly for mainframe memories. The three- transistor cell implemented in

12257-440: The scheduler also must ensure that processes can meet deadlines ; this is crucial for keeping the system stable. Scheduled tasks can also be distributed to remote devices across a network and managed through an administrative back end. The scheduler is an operating system module that selects the next jobs to be admitted into the system and the next process to run. Operating systems may feature up to three distinct scheduler types:

12376-457: The scheduling algorithms above. For example, Windows NT /XP/Vista uses a multilevel feedback queue , a combination of fixed-priority preemptive scheduling, round-robin, and first in, first out algorithms. In this system, threads can dynamically increase or decrease in priority depending on if it has been serviced already, or if it has been waiting extensively. Every priority level is represented by its own queue, with round-robin scheduling among

12495-410: The scheduling is combined by channel-dependent packet-by-packet dynamic channel allocation , or by assigning OFDMA multi-carriers or other frequency-domain equalization components to the users that best can utilize them. First in, first out ( FIFO ), also known as first come, first served (FCFS), is the simplest scheduling algorithm. FIFO simply queues processes in the order that they arrive in

12614-508: The site for a major new manufacturing facility. The facility will cost at least $ 20 billion. The company expects the facility to begin producing chips by 2025. The same year Intel also choose Magdeburg , Germany , as a site for two new chip mega factories for €17 billion (topping Tesla 's investment in Brandenburg ). The start of the construction was initially planned for 2023, but this has been postponed to late 2024, while production start

12733-498: The smartphone market. Finding itself with excess fab capacity after the failure of the Ultrabook to gain market traction and with PC sales declining, in 2013 Intel reached a foundry agreement to produce chips for Altera using a 14 nm process. General Manager of Intel's custom foundry division Sunit Rikhi indicated that Intel would pursue further such deals in the future. This was after poor sales of Windows 8 hardware caused

12852-467: The split between I/O-intensive and CPU-intensive processes is to be handled. The long-term scheduler is responsible for controlling the degree of multiprogramming. In general, most processes can be described as either I/O-bound or CPU-bound . An I/O-bound process is one that spends more of its time doing I/O than it spends doing computations. A CPU-bound process, in contrast, generates I/O requests infrequently, using more of its time doing computations. It

12971-461: The swap file), the medium-term scheduler may actually perform the role of the long-term scheduler, by treating binaries as swapped-out processes upon their execution. In this way, when a segment of the binary is required it can be swapped in on demand, or lazy loaded , also called demand paging . The short-term scheduler (also known as the CPU scheduler ) decides which of the ready, in-memory processes

13090-486: The system, and so can be said to have infinite priority. In SMP systems, processor affinity is considered to increase overall system performance, even if it may cause a process itself to run more slowly. This generally improves performance by reducing cache thrashing . IBM OS/360 was available with three different schedulers. The differences were such that the variants were often considered three different operating systems: Later virtual storage versions of MVS added

13209-400: The twelve months ending December 31, 2020, at 2,882 Kt (+94/+3.4% y-o-y). Intel plans to reduce carbon emissions 10% by 2030 from a 2020 base year. Intel has self-reported that they have Wafer fabrication plants in the United States, Ireland , and Israel. They have also self-reported that they have assembly and testing sites mostly in China, Costa Rica, Malaysia, and Vietnam, and one site in

13328-408: Was Andy Grove , a chemical engineer , who later ran the company through much of the 1980s and the high-growth 1990s. In deciding on a name, Moore and Noyce quickly rejected "Moore Noyce", near homophone for "more noise" – an ill-suited name for an electronics company, since noise in electronics is usually undesirable and typically associated with bad interference . Instead, they founded

13447-547: Was a thing of the past and that they would now support all "tier-one operating systems" such as Linux, Android, iOS, and Chrome. In 2014, Intel cut thousands of employees in response to "evolving market trends", and offered to subsidize manufacturers for the extra costs involved in using Intel chips in their tablets. In April 2016, Intel cancelled the SoFIA platform and the Broxton Atom SoC for smartphones, effectively leaving

13566-402: Was founded on July 18, 1968, by semiconductor pioneers Gordon Moore (of Moore's law ) and Robert Noyce , along with investor Arthur Rock , and is associated with the executive leadership and vision of Andrew Grove . The company was a key component of the rise of Silicon Valley as a high-tech center, as well as being an early developer of SRAM and DRAM memory chips, which represented

13685-505: Was launched in October 2013 and Intel is part of the coalition of public and private organizations that also includes Facebook , Google , and Microsoft . Led by Sir Tim Berners-Lee , the A4AI seeks to make Internet access more affordable so that access is broadened in the developing world, where only 31% of people are online. Google will help to decrease Internet access prices so that they fall below

13804-955: Was part of the " Wintel " personal computer domination in the 1990s and early 2000s. In 1992, Intel became the biggest semiconductor chip maker by revenue and held the position until 2018 when Samsung Electronics surpassed it, but Intel returned to its former position the year after. Other major semiconductor companies include TSMC , GlobalFoundries , Texas Instruments , ASML , STMicroelectronics , United Microelectronics Corporation (UMC), Micron , SK Hynix , Kioxia , and SMIC . Intel's competitors in PC chipsets included AMD , VIA Technologies , Silicon Integrated Systems , and Nvidia . Intel's competitors in networking include NXP Semiconductors , Infineon , Broadcom Limited , Marvell Technology Group and Applied Micro Circuits Corporation , and competitors in flash memory included Spansion , Samsung Electronics, Qimonda , Kioxia, STMicroelectronics, Micron , and SK Hynix . The only major competitor in

13923-401: Was reported that all Intel processors made since 1995 (besides Intel Itanium and pre-2013 Intel Atom ) had been subject to two security flaws dubbed Meltdown and Spectre. Due to Intel's issues with its 10 nm process node and the company's slow processor development, the company now found itself in a market with intense competition. The company's main competitor, AMD, introduced

14042-642: Was revealed that Intel's Skylake and Kaby Lake processors had a bug in their implementation of hyper-threading that could cause data loss. Microcode updates were later released to address the issue. In 2019, with Coffee Lake , Intel temporarily moved away from including hyper-threading in mainstream Core i7 desktop processors except for highest-end Core i9 parts or Pentium Gold CPUs. It also began to recommend disabling hyper-threading, as new CPU vulnerability attacks were revealed which could be mitigated by disabling HT. In May 2005, Colin Percival demonstrated that

14161-428: Was too aggressive. While other foundries used up to four steps in 10 nm or 7 nm processes, the company's 10 nm process required up to five or six multi-pattern steps. In addition, Intel's 10 nm process is denser than its counterpart processes from other foundries. Since Intel's microarchitecture and process node development were coupled, processor development stagnated. In early January 2018, it

#232767