The Honda NC700D/NC750D Integra is a motorcycle/scooter hybrid made by Honda since 2012. Known internally as the RC62, the Integra was originally unveiled as the New Mid Concept in 2010, before being presented in production form at EICMA 2011 in Milan. The Integra shares a platform with two motorcycle variants, the NC700S (RC61) and the NC700X (RC63). All three variants are powered by a 670 cc engine derived from the unit used in the Honda Fit automobile. The Integra will be available with two different power outputs, one version develops a peak power output of 38.1 kW (51.1 hp) at 6,250 rpm and 62 N⋅m (46 lb⋅ft) of torque at 4,750 rpm, while the other has a lower output of 35 kW (47 hp) and 60 N⋅m (44 lb⋅ft) to meet 2013 A2 European licensing regulations.
89-436: The Integra features motorcycle style 17-inch (430 mm) high-pressure die-cast aluminum alloy wheels and has only 15 litres (0.53 cu ft) of under-seat storage, as the fuel tank is also located under the saddle. Power is delivered through a six- speed dual-clutch transmission with one manual and two automatic drive modes, while combined ABS brakes provide stopping power. German magazine Scooter und Sport tested
178-457: A 4 mm increase in bore), with power rising to 40.3 kW at 6,250 rpm and torque to 68 Nm at 4,750 rpm. The NC750 Integra also received a new aluminum swing arm, which superseded the box section steel arm of the NC700 Integra . The increased performance was also matched with a software update to the dual clutch transmission and taller gearing that provide improvement to fuel economy. Minor changes to
267-461: A compressive force on neighboring atoms, and smaller atoms exert a tensile force on their neighbors, helping the alloy resist deformation. Sometimes alloys may exhibit marked differences in behavior even when small amounts of one element are present. For example, impurities in semiconducting ferromagnetic alloys lead to different properties, as first predicted by White, Hogan, Suhl, Tian Abrie and Nakamura. Unlike pure metals, most alloys do not have
356-466: A gaseous state, such as found in a blast furnace to make pig iron (liquid-gas), nitriding , carbonitriding or other forms of case hardening (solid-gas), or the cementation process used to make blister steel (solid-gas). It may also be done with one, more, or all of the constituents in the solid state, such as found in ancient methods of pattern welding (solid-solid), shear steel (solid-solid), or crucible steel production (solid-liquid), mixing
445-588: A hard bronze-head, but a softer bronze-tang, combining the alloys to prevent both dulling and breaking during use. Mercury has been smelted from cinnabar for thousands of years. Mercury dissolves many metals, such as gold, silver, and tin, to form amalgams (an alloy in a soft paste or liquid form at ambient temperature). Amalgams have been used since 200 BC in China for gilding objects such as armor and mirrors with precious metals. The ancient Romans often used mercury-tin amalgams for gilding their armor. The amalgam
534-518: A modular wheel are held with bolts. BBS RS is one of the most famous three-piece modular forged wheels. A sizable selection of alloy wheels are available to automobile owners who want lighter, more visually appealing, rarer, and/or larger wheels on their cars, going from 14 and 15-inch standard wheels up to 16, 17, 18, 19, 20, 21, 22, 24, 26, 28 and 30-inch wheel sizes. With the larger alloy wheels came Tru-Spinner Wheels and spinner wheel add-on spinners that would free-spin and continue to free-spin after
623-446: A molten metal is mixed with another substance, there are two mechanisms that can cause an alloy to form, called atom exchange and the interstitial mechanism . The relative size of each element in the mix plays a primary role in determining which mechanism will occur. When the atoms are relatively similar in size, the atom exchange method usually happens, where some of the atoms composing the metallic crystals are substituted with atoms of
712-433: A molten metal may not always mix with another element. For example, pure iron is almost completely insoluble with copper. Even when the constituents are soluble, each will usually have a saturation point , beyond which no more of the constituent can be added. Iron, for example, can hold a maximum of 6.67% carbon. Although the elements of an alloy usually must be soluble in the liquid state, they may not always be soluble in
801-455: A more concentrated form of iron carbide (Fe 3 C) in the spaces between the pure iron crystals. The steel then becomes heterogeneous, as it is formed of two phases, the iron-carbon phase called cementite (or carbide ), and pure iron ferrite . Such a heat treatment produces a steel that is rather soft. If the steel is cooled quickly, however, the carbon atoms will not have time to diffuse and precipitate out as carbide, but will be trapped within
890-574: A more expensive trim package . However, alloy wheels have become considerably more common since 2000 , now being offered on economy and subcompact cars, compared to a decade earlier where alloy wheels were often not factory options on inexpensive vehicles. Alloy wheels have long been included as standard equipment on higher-priced luxury or sports cars, with larger-sized or "exclusive" alloy wheels being options. The high cost of alloy wheels makes them attractive to thieves; to counter this, automakers and dealers often use locking lug nuts or bolts which require
979-495: A more open wheel design can help dissipate heat from the brakes , which improves braking performance in more demanding driving conditions and reduces the chance of diminished brake performance or even failure due to overheating. Alloy wheels are also purchased for cosmetic purposes although the cheaper alloys used are usually not corrosion -resistant. Alloys allow the use of attractive bare-metal finishes, but these need to be sealed with paint or wheel covers . Even if so protected
SECTION 10
#17328594850221068-405: A pioneer in steel metallurgy, took an interest and produced a steel alloy containing around 12% manganese. Called mangalloy , it exhibited extreme hardness and toughness, becoming the first commercially viable alloy-steel. Afterward, he created silicon steel, launching the search for other possible alloys of steel. Robert Forester Mushet found that by adding tungsten to steel it could produce
1157-504: A selection of differently sized alloy wheels from 16 to 19 in (41 to 48 cm) all outfitted with the same make and model of tires showed that both acceleration and fuel economy suffered with larger wheels. They also noted that ride comfort and noise were negatively affected by the larger wheels. Magnesium alloy wheels were the first die-cast wheels produced, and were often referred to as simply "mag wheels". Magnesium wheels were originally used for racing, but their popularity during
1246-429: A single melting point , but a melting range during which the material is a mixture of solid and liquid phases (a slush). The temperature at which melting begins is called the solidus , and the temperature when melting is just complete is called the liquidus . For many alloys there is a particular alloy proportion (in some cases more than one), called either a eutectic mixture or a peritectic composition, which gives
1335-447: A special key to remove. Most alloy wheels are manufactured using casting , but some are forged . Forged wheels are usually lighter, stronger, but much more expensive than cast wheels. There are two types of forged wheels: one piece and modular. Modular forged wheels may feature two- or three-piece design. Typical multi-piece wheels consist of the inner rim base, outer rim lip and wheel center piece with openings for lug nuts. All parts of
1424-420: A very hard edge that would resist losing its hardness at high temperatures. "R. Mushet's special steel" (RMS) became the first high-speed steel . Mushet's steel was quickly replaced by tungsten carbide steel, developed by Taylor and White in 1900, in which they doubled the tungsten content and added small amounts of chromium and vanadium, producing a superior steel for use in lathes and machining tools. In 1903,
1513-480: A way to harden aluminium alloys for use in machine-gun cartridge cases. Knowing that aluminium-copper alloys were heat-treatable to some degree, Wilm tried quenching a ternary alloy of aluminium, copper, and the addition of magnesium, but was initially disappointed with the results. However, when Wilm retested it the next day he discovered that the alloy increased in hardness when left to age at room temperature, and far exceeded his expectations. Although an explanation for
1602-576: Is a metal. This is usually called the primary metal or the base metal, and the name of this metal may also be the name of the alloy. The other constituents may or may not be metals but, when mixed with the molten base, they will be soluble and dissolve into the mixture. The mechanical properties of alloys will often be quite different from those of its individual constituents. A metal that is normally very soft ( malleable ), such as aluminium , can be altered by alloying it with another soft metal, such as copper . Although both metals are very soft and ductile ,
1691-423: Is essentially the 1.3 L Honda Fit engine chopped in half — it even retains the same bore and stroke dimensions — tilted 62° forward to provide a low centre of gravity, with near uniform weight distribution. The undersquare engine has programmed fuel injection , separate timing profiles for each cylinder, and is tuned to deliver powerful torque in the low- to mid-speed range. The engine
1780-761: Is extremely slow thus the penetration was not very deep, so the alloy was not homogeneous. In 1740, Benjamin Huntsman began melting blister steel in a crucible to even out the carbon content, creating the first process for the mass production of tool steel . Huntsman's process was used for manufacturing tool steel until the early 1900s. The introduction of the blast furnace to Europe in the Middle Ages meant that people could produce pig iron in much higher volumes than wrought iron. Because pig iron could be melted, people began to develop processes to reduce carbon in liquid pig iron to create steel. Puddling had been used in China since
1869-404: Is further transformed into a wheel, in cases of one-piece forged wheels, or into a wheel part in cases of multi-piece wheels. This process uses a die arranged in a large machine that has high closing force to clamp the die closed. The molten magnesium is poured into a filler tube called a shot sleeve. A piston pushes the metal into the die with high speed and pressure, the magnesium solidifies, and
SECTION 20
#17328594850221958-409: Is hard to ignite but pure magnesium wheels can be ignited by a burning tire or by prolonged scraping of the wheel on the road surface following a puncture. Alloys of magnesium were later developed to alleviate most of these problems. In fact, US Federal Aviation Administration has conducted wide-ranging tests over the past decade, and has reached a conclusion that potential flammability of magnesium
2047-473: Is no longer deemed to be a concern. Modern surface treatment technologies provide protection from corrosion and significantly extend the average lifecycle of magnesium rims. Forging can be done by a one or multistep process forging from various magnesium alloys, most commonly AZ80, ZK60 (MA14 in Russia). Wheels produced by this method are usually of higher toughness and ductility than aluminium wheels, although
2136-400: Is performed by heating the base metal beyond its melting point and then dissolving the solutes into the molten liquid, which may be possible even if the melting point of the solute is far greater than that of the base. For example, in its liquid state, titanium is a very strong solvent capable of dissolving most metals and elements. In addition, it readily absorbs gases like oxygen and burns in
2225-471: Is prevented (forming martensite), most heat-treatable alloys are precipitation hardening alloys, that depend on the diffusion of alloying elements to achieve their strength. When heated to form a solution and then cooled quickly, these alloys become much softer than normal, during the diffusionless transformation, but then harden as they age. The solutes in these alloys will precipitate over time, forming intermetallic phases, which are difficult to discern from
2314-609: The Honda VFR1200F . The version used on the Integra is lighter and more compact due to a simplified hydraulic circuit; a learning function has also been added to each of the drive modes to detect a variety of riding environments. The system uses heavy duty large-diameter clutches to deal with the rigours of use in stop/start city traffic. "Drive" mode on the transmission generally selects a high gear ratio , keeping engine speeds between 2,000 and 2,500 rpm, while selecting "Sport" keeps
2403-560: The Wright brothers used a chromium-nickel steel to make the crankshaft for their airplane engine, while in 1908 Henry Ford began using vanadium steels for parts like crankshafts and valves in his Model T Ford , due to their higher strength and resistance to high temperatures. In 1912, the Krupp Ironworks in Germany developed a rust-resistant steel by adding 21% chromium and 7% nickel, producing
2492-611: The bloomery process , it produced very soft but ductile wrought iron . By 800 BC, iron-making technology had spread to Europe, arriving in Japan around 700 AD. Pig iron , a very hard but brittle alloy of iron and carbon, was being produced in China as early as 1200 BC, but did not arrive in Europe until the Middle Ages. Pig iron has a lower melting point than iron, and was used for making cast-iron . However, these metals found little practical use until
2581-408: The solid state. If the metals remain soluble when solid, the alloy forms a solid solution , becoming a homogeneous structure consisting of identical crystals, called a phase . If as the mixture cools the constituents become insoluble, they may separate to form two or more different types of crystals, creating a heterogeneous microstructure of different phases, some with more of one constituent than
2670-546: The 1960s led to the development of other die-cast wheels, particularly of aluminium alloys. The term "mag wheels" became synonymous with die-cast wheels made from any material, from modern aluminium alloy wheels to plastic and composite wheels used on items like bicycles , wheelchairs , and skateboards . However, pure magnesium wheels are no longer produced, being found only on classic cars. Pure magnesium suffers from many problems. Vintage magnesium rims were very susceptible to pitting , cracking and corrosion. Magnesium in bulk
2759-597: The 1960s, albeit in very limited numbers. In the mid-to-late 1960s, aluminium-casting refinements allowed the manufacture of safer wheels that were not as brittle. Until this time, most aluminium wheels suffered from low ductility , usually ranging from 2–3% elongation. Because light-alloy wheels at the time were often made of magnesium (often referred to as "mags"), these early wheel failures were later attributed to magnesium's low ductility, when in many instances these wheels were poorly cast aluminium alloy wheels. Once these aluminium casting improvements were more widely adopted,
Honda NC700D Integra - Misplaced Pages Continue
2848-413: The Integra and reported a 0 to 100 km/h (0 to 62 mph) time of 5.6 seconds on the way to a measured top speed of 166.9 km/h or 103.7 mph (175 km/h or 109 mph indicated). The Integra was updated for the 2014 model year with engine capacity increased to 745cc. The Integra is powered by a single overhead camshaft 670 cc (41 cu in) parallel-twin engine that
2937-490: The Integra as a “super-scooter”, but wrote that it might be “better understood as the conclusive bridge-builder between mainstream commuting and motorcycling”, noting that it appealed to riders of both motorcycles and scooters, as well as switchers from cars, something that a previous hybrid, the Honda DN-01 had failed to do. The NC series was updated for the 2014 model year with an increase in engine capacity to 745 cc (through
3026-670: The Mediterranean, so it was often valued higher than gold. To make jewellery, cutlery, or other objects from tin, workers usually alloyed it with other metals to increase strength and hardness. These metals were typically lead , antimony , bismuth or copper. These solutes were sometimes added individually in varying amounts, or added together, making a wide variety of objects, ranging from practical items such as dishes, surgical tools, candlesticks or funnels, to decorative items like ear rings and hair clips. The earliest examples of pewter come from ancient Egypt, around 1450 BC. The use of pewter
3115-565: The Middle East, people began alloying copper with zinc to form brass. Ancient civilizations took into account the mixture and the various properties it produced, such as hardness , toughness and melting point, under various conditions of temperature and work hardening , developing much of the information contained in modern alloy phase diagrams . For example, arrowheads from the Chinese Qin dynasty (around 200 BC) were often constructed with
3204-516: The aerospace industry, to beryllium-copper alloys for non-sparking tools. An alloy is a mixture of chemical elements , which forms an impure substance (admixture) that retains the characteristics of a metal. An alloy is distinct from an impure metal in that, with an alloy, the added elements are well controlled to produce desirable properties, while impure metals such as wrought iron are less controlled, but are often considered useful. Alloys are made by mixing two or more elements, at least one of which
3293-414: The air, readily combines with most metals to form metal oxides ; especially at higher temperatures encountered during alloying. Great care is often taken during the alloying process to remove excess impurities, using fluxes , chemical additives, or other methods of extractive metallurgy . Alloying a metal is done by combining it with one or more other elements. The most common and oldest alloying process
3382-420: The alloy a unique and low melting point, and no liquid/solid slush transition. Alloying elements are added to a base metal, to induce hardness , toughness , ductility, or other desired properties. Most metals and alloys can be work hardened by creating defects in their crystal structure. These defects are created during plastic deformation by hammering, bending, extruding, et cetera, and are permanent unless
3471-573: The alloy wheel itself came to rest. American inventor James JD Gragg of International and American Tru-Spinners were the original ones and were leaders in the industry. Another function of Tru-Spinners was they could also spin backward as the alloy wheel was rolling forward. Although replacing standard steel wheel and tire combinations with lighter alloy wheels and potentially lower profile tires can result in increased performance and handling, this doesn't necessarily hold when increasingly large wheels are employed. Research by Car and Driver conducted using
3560-429: The alloy. However, most alloys were not created until the 1900s, such as various aluminium, titanium , nickel , and magnesium alloys . Some modern superalloys , such as incoloy , inconel, and hastelloy , may consist of a multitude of different elements. An alloy is technically an impure metal, but when referring to alloys, the term impurities usually denotes undesirable elements. Such impurities are introduced from
3649-430: The aluminium wheel took the place of magnesium as low cost, high-performance wheels for motorsports . Lighter wheels can improve handling by reducing unsprung mass , allowing suspension to follow the terrain more closely and thus improve grip, however not all alloy wheels are lighter than their steel equivalents. Reduction in overall vehicle mass can also help to reduce fuel consumption . Better heat conduction and
Honda NC700D Integra - Misplaced Pages Continue
3738-444: The atomic arrangement that forms the alloy. They can be further classified as homogeneous (consisting of a single phase), or heterogeneous (consisting of two or more phases) or intermetallic . An alloy may be a solid solution of metal elements (a single phase, where all metallic grains (crystals) are of the same composition) or a mixture of metallic phases (two or more solutions, forming a microstructure of different crystals within
3827-635: The base metal. Unlike steel, in which the solid solution separates into different crystal phases (carbide and ferrite), precipitation hardening alloys form different phases within the same crystal. These intermetallic alloys appear homogeneous in crystal structure, but tend to behave heterogeneously, becoming hard and somewhat brittle. In 1906, precipitation hardening alloys were discovered by Alfred Wilm . Precipitation hardening alloys, such as certain alloys of aluminium, titanium, and copper, are heat-treatable alloys that soften when quenched (cooled quickly), and then harden over time. Wilm had been searching for
3916-554: The base metals and alloying elements, but are removed during processing. For instance, sulfur is a common impurity in steel. Sulfur combines readily with iron to form iron sulfide , which is very brittle, creating weak spots in the steel. Lithium , sodium and calcium are common impurities in aluminium alloys, which can have adverse effects on the structural integrity of castings. Conversely, otherwise pure-metals that contain unwanted impurities are often called "impure metals" and are not usually referred to as alloys. Oxygen, present in
4005-426: The carbon atoms are said to be in solution in the iron, forming a particular single, homogeneous, crystalline phase called austenite . If the steel is cooled slowly, the carbon can diffuse out of the iron and it will gradually revert to its low temperature allotrope. During slow cooling, the carbon atoms will no longer be as soluble with the iron, and will be forced to precipitate out of solution, nucleating into
4094-509: The cheapest of any process. This has allowed small batch production, flexibility in design and short development time. Alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Most alloys are metallic and show good electrical conductivity , ductility , opacity , and luster , and may have properties that differ from those of
4183-402: The costs are much higher. Forging is a complicated process that involves such processes, as heating, rolling, applying high pressure, hammering and/or combination of these. As a result, the crystal structure of the alloy changes, and as a result the material becomes stronger and more lightweight. There are one- two- and three-piece forged wheels. Every piece is originally an alloy billet, which
4272-502: The crystals internally. Some alloys, such as electrum —an alloy of silver and gold —occur naturally. Meteorites are sometimes made of naturally occurring alloys of iron and nickel , but are not native to the Earth. One of the first alloys made by humans was bronze, which is a mixture of the metals tin and copper. Bronze was an extremely useful alloy to the ancients, because it is much stronger and harder than either of its components. Steel
4361-558: The die and pressurized air/cover gas mix is used to force the molten metal up a straw-like filler tube into the die. When processed using best practice methods, low pressure die casting wheels can offer improvements in ductility over magnesium wheels and any cast aluminium wheels, they remain less ductile than forged magnesium. Gravity-cast magnesium wheels have been in production since the early 1920s and provide good ductility, and relative properties above what can be made with aluminium casting. Tooling costs for gravity-cast wheels are among
4450-400: The die is opened, and the wheel is released. Wheels produced by this method can offer reductions in price and improvements in corrosion resistance, but they are less ductile and of lower strength due to the nature of high pressure die casting. This process usually employs a steel die, it is arranged above the crucible filled with molten magnesium. Most commonly, the crucible is sealed against
4539-427: The elements via solid-state diffusion . By adding another element to a metal, differences in the size of the atoms create internal stresses in the lattice of the metallic crystals; stresses that often enhance its properties. For example, the combination of carbon with iron produces steel, which is stronger than iron, its primary element. The electrical and thermal conductivity of alloys is usually lower than that of
SECTION 50
#17328594850224628-477: The engine running at a higher speed for more power on the open road. The Integra is sold as a scooter in many markets but as a touring motorcycle in some. For example, it appears in the 2012 Honda Netherlands "touring" brochure alongside well known tourers like the Goldwing 1800 . Reviewers have noted the model as a hybrid of scooter (or maxi-scooter ) and motorcycle. Guy Procter from Motor Cycle News referred to
4717-430: The fairing and seat also provide increased leg room for taller riders. Alloy wheel In the automotive industry , alloy wheels are wheels that are made from an alloy of aluminium or magnesium . Alloys are mixtures of a metal and other elements. They generally provide greater strength over pure metals, which are usually much softer and more ductile. Alloys of aluminium or magnesium are typically lighter for
4806-466: The first airplane engine in 1903. During the time between 1865 and 1910, processes for extracting many other metals were discovered, such as chromium, vanadium, tungsten, iridium , cobalt , and molybdenum, and various alloys were developed. Prior to 1910, research mainly consisted of private individuals tinkering in their own laboratories. However, as the aircraft and automotive industries began growing, research into alloys became an industrial effort in
4895-416: The first century, and was introduced in Europe during the 1700s, where molten pig iron was stirred while exposed to the air, to remove the carbon by oxidation . In 1858, Henry Bessemer developed a process of steel-making by blowing hot air through liquid pig iron to reduce the carbon content. The Bessemer process led to the first large scale manufacture of steel. Steel is an alloy of iron and carbon, but
4984-499: The first stainless steel. Due to their high reactivity, most metals were not discovered until the 19th century. A method for extracting aluminium from bauxite was proposed by Humphry Davy in 1807, using an electric arc . Although his attempts were unsuccessful, by 1855 the first sales of pure aluminium reached the market. However, as extractive metallurgy was still in its infancy, most aluminium extraction-processes produced unintended alloys contaminated with other elements found in
5073-400: The form of a high-manganese pig-iron called spiegeleisen ), which helped remove impurities such as phosphorus and oxygen; a process adopted by Bessemer and still used in modern steels (albeit in concentrations low enough to still be considered carbon steel). Afterward, many people began experimenting with various alloys of steel without much success. However, in 1882, Robert Hadfield , being
5162-474: The interstices, but some of the iron atoms are substituted by nickel and chromium atoms. The use of alloys by humans started with the use of meteoric iron , a naturally occurring alloy of nickel and iron. It is the main constituent of iron meteorites . As no metallurgic processes were used to separate iron from nickel, the alloy was used as it was. Meteoric iron could be forged from a red heat to make objects such as tools, weapons, and nails. In many cultures it
5251-551: The introduction of crucible steel around 300 BC. These steels were of poor quality, and the introduction of pattern welding , around the 1st century AD, sought to balance the extreme properties of the alloys by laminating them, to create a tougher metal. Around 700 AD, the Japanese began folding bloomery-steel and cast-iron in alternating layers to increase the strength of their swords, using clay fluxes to remove slag and impurities. This method of Japanese swordsmithing produced one of
5340-405: The iron crystals. When rapidly cooled, a diffusionless (martensite) transformation occurs, in which the carbon atoms become trapped in solution. This causes the iron crystals to deform as the crystal structure tries to change to its low temperature state, leaving those crystals very hard but much less ductile (more brittle). While the high strength of steel results when diffusion and precipitation
5429-430: The low number of moving parts in the engine: The oil pump is driven by the balance shaft, while the camshaft also drives the water pump. The design also resulted in water hoses that are 30% shorter. The pistons are resin-coated and lightweight aluminum material is used for the friction-reducing roller rocker arm. The Integra comes standard with a second generation of the six-speed dual-clutch transmission first used on
SECTION 60
#17328594850225518-450: The metal is recrystallized . Otherwise, some alloys can also have their properties altered by heat treatment . Nearly all metals can be softened by annealing , which recrystallizes the alloy and repairs the defects, but not as many can be hardened by controlled heating and cooling. Many alloys of aluminium, copper, magnesium , titanium, and nickel can be strengthened to some degree by some method of heat treatment, but few respond to this to
5607-485: The metal). Examples of alloys include red gold ( gold and copper ), white gold (gold and silver ), sterling silver (silver and copper), steel or silicon steel ( iron with non-metallic carbon or silicon respectively), solder , brass , pewter , duralumin , bronze , and amalgams . Alloys are used in a wide variety of applications, from the steel alloys, used in everything from buildings to automobiles to surgical tools, to exotic titanium alloys used in
5696-455: The ore; the most abundant of which was copper. These aluminium-copper alloys (at the time termed "aluminum bronze") preceded pure aluminium, offering greater strength and hardness over the soft, pure metal, and to a slight degree were found to be heat treatable. However, due to their softness and limited hardenability these alloys found little practical use, and were more of a novelty, until the Wright brothers used an aluminium alloy to construct
5785-418: The other constituent. This is called a substitutional alloy . Examples of substitutional alloys include bronze and brass, in which some of the copper atoms are substituted with either tin or zinc atoms respectively. In the case of the interstitial mechanism, one atom is usually much smaller than the other and can not successfully substitute for the other type of atom in the crystals of the base metal. Instead,
5874-416: The other. However, in other alloys, the insoluble elements may not separate until after crystallization occurs. If cooled very quickly, they first crystallize as a homogeneous phase, but they are supersaturated with the secondary constituents. As time passes, the atoms of these supersaturated alloys can separate from the crystal lattice, becoming more stable, and forming a second phase that serves to reinforce
5963-400: The phenomenon was not provided until 1919, duralumin was one of the first "age hardening" alloys used, becoming the primary building material for the first Zeppelins , and was soon followed by many others. Because they often exhibit a combination of high strength and low weight, these alloys became widely used in many forms of industry, including the construction of modern aircraft . When
6052-441: The presence of nitrogen. This increases the chance of contamination from any contacting surface, and so must be melted in vacuum induction-heating and special, water-cooled, copper crucibles . However, some metals and solutes, such as iron and carbon, have very high melting-points and were impossible for ancient people to melt. Thus, alloying (in particular, interstitial alloying) may also be performed with one or more constituents in
6141-636: The pure elements such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties such as corrosion resistance or mechanical strength. In an alloy, the atoms are joined by metallic bonding rather than by covalent bonds typically found in chemical compounds. The alloy constituents are usually measured by mass percentage for practical applications, and in atomic fraction for basic science studies. Alloys are usually classified as substitutional or interstitial alloys , depending on
6230-415: The pure metals. The physical properties, such as density , reactivity , Young's modulus of an alloy may not differ greatly from those of its base element, but engineering properties such as tensile strength , ductility, and shear strength may be substantially different from those of the constituent materials. This is sometimes a result of the sizes of the atoms in the alloy, because larger atoms exert
6319-443: The purest steel-alloys of the ancient world. While the use of iron started to become more widespread around 1200 BC, mainly because of interruptions in the trade routes for tin, the metal was much softer than bronze. However, very small amounts of steel, (an alloy of iron and around 1% carbon), was always a byproduct of the bloomery process. The ability to modify the hardness of steel by heat treatment had been known since 1100 BC, and
6408-415: The rare material was valued for the manufacture of tools and weapons. Because the ancients could not produce temperatures high enough to melt iron fully, the production of steel in decent quantities did not occur until the introduction of blister steel during the Middle Ages. This method introduced carbon by heating wrought iron in charcoal for long periods of time, but the absorption of carbon in this manner
6497-612: The resulting aluminium alloy will have much greater strength . Adding a small amount of non-metallic carbon to iron trades its great ductility for the greater strength of an alloy called steel. Due to its very-high strength, but still substantial toughness , and its ability to be greatly altered by heat treatment , steel is one of the most useful and common alloys in modern use. By adding chromium to steel, its resistance to corrosion can be enhanced, creating stainless steel , while adding silicon will alter its electrical characteristics, producing silicon steel . Like oil and water,
6586-428: The same degree as does steel. The base metal iron of the iron-carbon alloy known as steel, undergoes a change in the arrangement ( allotropy ) of the atoms of its crystal matrix at a certain temperature (usually between 820 °C (1,500 °F) and 870 °C (1,600 °F), depending on carbon content). This allows the smaller carbon atoms to enter the interstices of the iron crystal. When this diffusion happens,
6675-444: The same strength, provide better heat conduction , and often produce improved cosmetic appearance over steel wheels. Although steel, the most common material used in wheel production, is an alloy of iron and carbon , the term "alloy wheel" is usually reserved for wheels made from nonferrous alloys. The earliest light-alloy wheels were made of magnesium alloys. Although they lost favor on common vehicles, they remained popular through
6764-400: The smaller atoms become trapped in the interstitial sites between the atoms of the crystal matrix. This is referred to as an interstitial alloy . Steel is an example of an interstitial alloy, because the very small carbon atoms fit into interstices of the iron matrix. Stainless steel is an example of a combination of interstitial and substitutional alloys, because the carbon atoms fit into
6853-456: The term alloy steel usually only refers to steels that contain other elements— like vanadium , molybdenum , or cobalt —in amounts sufficient to alter the properties of the base steel. Since ancient times, when steel was used primarily for tools and weapons, the methods of producing and working the metal were often closely guarded secrets. Even long after the Age of Enlightenment , the steel industry
6942-404: The tires to leak air if appropriate preventive measures are not taken. Also, alloy wheels are more difficult to repair than steel wheels when bent, but their higher price usually makes repairs cheaper than replacement. Alloy wheels are more expensive to produce than standard steel wheels, and thus are often not included as standard equipment, instead being marketed as optional add-ons or as part of
7031-456: The wheels in use will eventually start to corrode after 3 to 5 years but refurbishment is now widely available at a cost. The manufacturing processes also allow intricate, bold designs. In contrast, steel wheels are usually pressed from sheet metal , and then welded together (often leaving unsightly bumps) and must be painted to avoid corrosion and/or hidden with wheel covers/hub caps. Alloy wheels are prone to galvanic corrosion , which can cause
7120-824: Was another common alloy. However, in ancient times, it could only be created as an accidental byproduct from the heating of iron ore in fires ( smelting ) during the manufacture of iron. Other ancient alloys include pewter , brass and pig iron . In the modern age, steel can be created in many forms. Carbon steel can be made by varying only the carbon content, producing soft alloys like mild steel or hard alloys like spring steel . Alloy steels can be made by adding other elements, such as chromium , molybdenum , vanadium or nickel , resulting in alloys such as high-speed steel or tool steel . Small amounts of manganese are usually alloyed with most modern steels because of its ability to remove unwanted impurities, like phosphorus , sulfur and oxygen , which can have detrimental effects on
7209-422: Was applied as a paste and then heated until the mercury vaporized, leaving the gold, silver, or tin behind. Mercury was often used in mining, to extract precious metals like gold and silver from their ores. Many ancient civilizations alloyed metals for purely aesthetic purposes. In ancient Egypt and Mycenae , gold was often alloyed with copper to produce red-gold, or iron to produce a bright burgundy-gold. Gold
7298-535: Was commissioned by the King of Syracuse to find a way to check the purity of the gold in a crown, leading to the famous bath-house shouting of "Eureka!" upon the discovery of Archimedes' principle . The term pewter covers a variety of alloys consisting primarily of tin. As a pure metal, tin is much too soft to use for most practical purposes. However, during the Bronze Age , tin was a rare metal in many parts of Europe and
7387-428: Was designed to deliver a "pleasant throbbing feel" of a V-twin through the use of a 270° crankshaft , which Honda "deliberately designed with a uniaxial primary balancer" even though the primary vibration of the crankshaft could have been balanced perfectly using a biaxial balance shaft. The fuel consumption figure of 3.58 L/100 km (79 mpg ‑imp ; 65.7 mpg ‑US ) has been attributed to
7476-416: Was not generally considered an alloy until the decades between 1930 and 1970 (primarily due to the work of scientists like William Chandler Roberts-Austen , Adolf Martens , and Edgar Bain ), so "alloy steel" became the popular term for ternary and quaternary steel-alloys. After Benjamin Huntsman developed his crucible steel in 1740, he began experimenting with the addition of elements like manganese (in
7565-450: Was often found alloyed with silver or other metals to produce various types of colored gold . These metals were also used to strengthen each other, for more practical purposes. Copper was often added to silver to make sterling silver , increasing its strength for use in dishes, silverware, and other practical items. Quite often, precious metals were alloyed with less valuable substances as a means to deceive buyers. Around 250 BC, Archimedes
7654-588: Was shaped by cold hammering into knives and arrowheads. They were often used as anvils. Meteoric iron was very rare and valuable, and difficult for ancient people to work . Iron is usually found as iron ore on Earth, except for one deposit of native iron in Greenland , which was used by the Inuit . Native copper, however, was found worldwide, along with silver, gold, and platinum , which were also used to make tools, jewelry, and other objects since Neolithic times. Copper
7743-492: Was the hardest of these metals, and the most widely distributed. It became one of the most important metals to the ancients. Around 10,000 years ago in the highlands of Anatolia (Turkey), humans learned to smelt metals such as copper and tin from ore . Around 2500 BC, people began alloying the two metals to form bronze, which was much harder than its ingredients. Tin was rare, however, being found mostly in Great Britain. In
7832-557: Was very competitive and manufacturers went through great lengths to keep their processes confidential, resisting any attempts to scientifically analyze the material for fear it would reveal their methods. For example, the people of Sheffield , a center of steel production in England, were known to routinely bar visitors and tourists from entering town to deter industrial espionage . Thus, almost no metallurgical information existed about steel until 1860. Because of this lack of understanding, steel
7921-556: Was widespread across Europe, from France to Norway and Britain (where most of the ancient tin was mined) to the Near East. The alloy was also used in China and the Far East, arriving in Japan around 800 AD, where it was used for making objects like ceremonial vessels, tea canisters, or chalices used in shinto shrines. The first known smelting of iron began in Anatolia , around 1800 BC. Called
#21978