Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler , said, astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space– what they are, rather than where they are", which is studied in celestial mechanics .
131-768: The Center for Astrophysics | Harvard & Smithsonian ( CfA ), previously known as the Harvard–Smithsonian Center for Astrophysics , is an astrophysics research institute jointly operated by the Harvard College Observatory and Smithsonian Astrophysical Observatory . Founded in 1973 and headquartered in Cambridge, Massachusetts , United States, the CfA leads a broad program of research in astronomy , astrophysics , Earth and space sciences , as well as science education . The CfA either leads or participates in
262-561: A distance of one astronomical unit (AU) from the Sun (that is, at or near Earth's orbit). Sunlight on the surface of Earth is attenuated by Earth's atmosphere , so that less power arrives at the surface (closer to 1,000 W/m ) in clear conditions when the Sun is near the zenith . Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. The atmosphere filters out over 70% of solar ultraviolet, especially at
393-403: A fairly small amount of power being generated per cubic metre . Theoretical models of the Sun's interior indicate a maximum power density, or energy production, of approximately 276.5 watts per cubic metre at the center of the core, which, according to Karl Kruszelnicki , is about the same power density inside a compost pile . The fusion rate in the core is in a self-correcting equilibrium:
524-414: A few millimeters. Re-emission happens in a random direction and usually at slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for neutrinos , which account for about 2% of the total energy production of
655-401: A granular appearance called the solar granulation at the smallest scale and supergranulation at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun. The Sun's thermal columns are Bénard cells and take the shape of roughly hexagonal prisms. The visible surface of the Sun, the photosphere,
786-618: A group of ten associate editors from Europe and the United States, established The Astrophysical Journal: An International Review of Spectroscopy and Astronomical Physics . It was intended that the journal would fill the gap between journals in astronomy and physics, providing a venue for publication of articles on astronomical applications of the spectroscope; on laboratory research closely allied to astronomical physics, including wavelength determinations of metallic and gaseous spectra and experiments on radiation and absorption; on theories of
917-508: A guide to understanding of other stars. The topic of how stars change, or stellar evolution, is often modeled by placing the varieties of star types in their respective positions on the Hertzsprung–Russell diagram , which can be viewed as representing the state of a stellar object, from birth to destruction. Theoretical astrophysicists use a wide variety of tools which include analytical models (for example, polytropes to approximate
1048-553: A long-running and highly rated REU Summer Intern program as well as many visiting graduate students. The CfA estimates that roughly 10% of the professional astrophysics community in the United States spent at least a portion of their career or education there. The CfA is either a lead or major partner in the operations of the Fred Lawrence Whipple Observatory , the Submillimeter Array , MMT Observatory ,
1179-474: A major focus of the CfA since its founding. In 2018, the CfA rebranded , changing its official name to the "Center for Astrophysics | Harvard & Smithsonian" in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution . Today, the CfA receives roughly 70% of its funding from NASA , 22% from Smithsonian federal funds, and 4% from
1310-414: A millisecond timescale ( millisecond pulsars ) or combine years of data ( pulsar deceleration studies). The information obtained from these different timescales is very different. The study of the Sun has a special place in observational astrophysics. Due to the tremendous distance of all other stars, the Sun can be observed in a kind of detail unparalleled by any other star. Understanding the Sun serves as
1441-561: A model or help in choosing between several alternate or conflicting models. Theorists also try to generate or modify models to take into account new data. In the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model. Topics studied by theoretical astrophysicists include stellar dynamics and evolution; galaxy formation and evolution; magnetohydrodynamics; large-scale structure of matter in
SECTION 10
#17328516312871572-584: A new, major field that was largely dominated by CfA scientists in its early years. Riccardo Giacconi , regarded as the "father of X-ray astronomy", founded the High Energy Astrophysics Division within the new CfA by moving most of his research group (then at American Sciences and Engineering ) to SAO in 1973. That group would later go on to launch the Einstein Observatory (the first imaging X-ray telescope ) in 1976, and ultimately lead
1703-569: A number of major works related to massive compact halo objects , was named the third director of the CfA in 2004. Today Alcock oversees one of the largest and most productive astronomical institutes in the world, with more than 850 staff and an annual budget in excess of $ 100 million. The Harvard Department of Astronomy, housed within the CfA, maintains a continual complement of approximately 60 PhD students , more than 100 postdoctoral researchers , and roughly 25 undergraduate astronomy and astrophysics majors from Harvard College . SAO, meanwhile, hosts
1834-508: A period known as the Maunder minimum . This coincided in time with the era of the Little Ice Age , when Europe experienced unusually cold temperatures. Earlier extended minima have been discovered through analysis of tree rings and appear to have coincided with lower-than-average global temperatures. The temperature of the photosphere is approximately 6,000 K, whereas the temperature of
1965-485: A phenomenon described by Hale's law . During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from
2096-644: A rapid expansion of its research program. Following the launch of Sputnik (the world's first human-made satellite) in 1957, SAO accepted a national challenge to create a worldwide satellite-tracking network, collaborating with the United States Air Force on Project Space Track . With the creation of NASA the following year and throughout the Space Race , SAO led major efforts in the development of orbiting observatories and large ground-based telescopes , laboratory and theoretical astrophysics , as well as
2227-473: A result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin current sheet is formed in the solar wind. At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an Archimedean spiral structure called
2358-410: A slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation ; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate. The radiative zone
2489-542: A substantial amount of work in the realms of theoretical and observational physics. Some areas of study for astrophysicists include their attempts to determine the properties of dark matter , dark energy , black holes , and other celestial bodies ; and the origin and ultimate fate of the universe . Topics also studied by theoretical astrophysicists include Solar System formation and evolution ; stellar dynamics and evolution ; galaxy formation and evolution ; magnetohydrodynamics ; large-scale structure of matter in
2620-406: A transition layer, the tachocline . This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another. Presently, it is hypothesized that a magnetic dynamo, or solar dynamo , within this layer generates
2751-564: Is 1 astronomical unit ( 1.496 × 10 km ) or about 8 light-minutes away. Its diameter is about 1,391,400 km ( 864,600 mi ), 109 times that of Earth. Its mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. Roughly three-quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen , carbon , neon , and iron . The Sun
SECTION 20
#17328516312872882-494: Is a G-type main-sequence star (G2V), informally called a yellow dwarf , though its light is actually white. It formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud . Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System . The central mass became so hot and dense that it eventually initiated nuclear fusion in its core . Every second,
3013-639: Is by far the brightest object in the Earth's sky , with an apparent magnitude of −26.74. This is about 13 billion times brighter than the next brightest star, Sirius , which has an apparent magnitude of −1.46. One astronomical unit (about 150 million kilometres; 93 million miles) is defined as the mean distance between the centres of the Sun and the Earth. The instantaneous distance varies by about ± 2.5 million km or 1.55 million miles as Earth moves from perihelion on ~ January 3rd to aphelion on ~ July 4th. At its average distance, light travels from
3144-436: Is defined to begin at the distance where the flow of the solar wind becomes superalfvénic —that is, where the flow becomes faster than the speed of Alfvén waves, at approximately 20 solar radii ( 0.1 AU ). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through
3275-402: Is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma. The transition region does not occur at a well-defined altitude, but forms a kind of nimbus around chromospheric features such as spicules and filaments , and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but
3406-583: Is mainly concerned with finding out the measurable implications of physical models . It is the practice of observing celestial objects by using telescopes and other astronomical apparatus. Most astrophysical observations are made using the electromagnetic spectrum . Other than electromagnetic radiation, few things may be observed from the Earth that originate from great distances. A few gravitational wave observatories have been constructed, but gravitational waves are extremely difficult to detect. Neutrino observatories have also been built, primarily to study
3537-491: Is not formally an independent legal organization, but rather an institutional entity operated under a memorandum of understanding between Harvard University and the Smithsonian Institution . This collaboration was formalized on July 1, 1973, with the goal of coordinating the related research activities of the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO) under
3668-485: Is one of the 13 stakeholder institutes for the Event Horizon Telescope Board, and the CfA hosts its Array Operations Center. In 2019, the project revealed the first direct image of a black hole. The result is widely regarded as a triumph not only of observational astronomy , but of its intersection with theoretical astrophysics . Union of the observational and theoretical subfields of astrophysics has been
3799-409: Is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the main sequence and become a red giant . The chemical composition of the photosphere is normally considered representative of the composition of
3930-441: Is readily observable from space by instruments sensitive to extreme ultraviolet . The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 10 m to 10 m . The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. Although no complete theory yet exists to account for
4061-410: Is strongly attenuated by Earth's ozone layer , so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color . High-energy gamma ray photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only
Harvard–Smithsonian Center for Astrophysics - Misplaced Pages Continue
4192-422: Is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium , relative to the abundances of these elements in so-called Population II , heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star. The Sun
4323-470: Is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening . The spectrum of sunlight has approximately the spectrum of a black-body radiating at 5,772 K (9,930 °F), interspersed with atomic absorption lines from
4454-437: Is the layer below which the Sun becomes opaque to visible light. Photons produced in this layer escape the Sun through the transparent solar atmosphere above it and become solar radiation, sunlight. The change in opacity is due to the decreasing amount of H ions , which absorb visible light easily. Conversely, the visible light perceived is produced as electrons react with hydrogen atoms to produce H ions. The photosphere
4585-424: Is the most prominent variation in which the number and size of sunspots waxes and wanes. The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field . In an approximation known as ideal magnetohydrodynamics , plasma particles only move along magnetic field lines. As
4716-531: Is the only region of the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the Sun's power is generated in the innermost 24% of its radius, and almost no fusion occurs beyond 30% of the radius. The rest of the Sun is heated by this energy as it is transferred outward through many successive layers, finally to the solar photosphere where it escapes into space through radiation (photons) or advection (massive particles). The proton–proton chain occurs around 9.2 × 10 times each second in
4847-420: Is the thickest layer of the Sun, at 0.45 solar radii. From the core out to about 0.7 solar radii , thermal radiation is the primary means of energy transfer. The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core. This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection, which explains why
4978-444: Is theorized to become a super dense black dwarf , giving off negligible energy. The English word sun developed from Old English sunne . Cognates appear in other Germanic languages , including West Frisian sinne , Dutch zon , Low German Sünn , Standard German Sonne , Bavarian Sunna , Old Norse sunna , and Gothic sunnō . All these words stem from Proto-Germanic * sunnōn . This
5109-527: Is ultimately related to the word for sun in other branches of the Indo-European language family, though in most cases a nominative stem with an l is found, rather than the genitive stem in n , as for example in Latin sōl , ancient Greek ἥλιος ( hēlios ), Welsh haul and Czech slunce , as well as (with *l > r ) Sanskrit स्वर् ( svár ) and Persian خور ( xvar ). Indeed,
5240-402: Is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in
5371-539: The Alfvén surface , the boundary separating the corona from the solar wind, defined as where the coronal plasma's Alfvén speed and the large-scale solar wind speed are equal. During the flyby, Parker Solar Probe passed into and out of the corona several times. This proved the predictions that the Alfvén critical surface is not shaped like a smooth ball, but has spikes and valleys that wrinkle its surface. The Sun emits light across
Harvard–Smithsonian Center for Astrophysics - Misplaced Pages Continue
5502-471: The Dana-Palmer House (where Bond also resided) near Harvard Yard , and consisted of little more than three small telescopes and an astronomical clock. In his 1840 book recounting the history of the college, then Harvard President Josiah Quincy III noted that "there is wanted a reflecting telescope equatorially mounted". This telescope, the 15-inch "Great Refractor", opened seven years later (in 1847) at
5633-505: The Lambda-CDM model , are the Big Bang , cosmic inflation , dark matter, dark energy and fundamental theories of physics. The roots of astrophysics can be found in the seventeenth century emergence of a unified physics, in which the same laws applied to the celestial and terrestrial realms. There were scientists who were qualified in both physics and astronomy who laid the firm foundation for
5764-677: The National Science Foundation . The remaining 4% comes from contributors including the United States Department of Energy , the Annenberg Foundation , as well as other gifts and endowments. Research across the CfA is organized into six divisions and seven research centers: The CfA is also host to the Harvard University Department of Astronomy, large central engineering and computation facilities,
5895-520: The Parker spiral . Sunspots are visible as dark patches on the Sun's photosphere and correspond to concentrations of magnetic field where convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, so they appear dark. At a typical solar minimum , few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As
6026-676: The Solar Dynamics Observatory (SDO) , and Hinode . The CfA, via the Smithsonian Astrophysical Observatory, recently played a major role in the Lynx X-ray Observatory , a NASA-funded large mission concept study commissioned as part of the 2020 Astronomy and Astrophysics Decadal Survey ("Astro2020"). If launched, Lynx would be the most powerful X-ray observatory constructed to date, enabling order-of-magnitude advances in capability over Chandra. SAO
6157-629: The South Pole Telescope , VERITAS , and a number of other smaller ground-based telescopes . The CfA's 2019–2024 Strategic Plan includes the construction of the Giant Magellan Telescope as a driving priority for the center. Along with the Chandra X-ray Observatory , the CfA plays a central role in a number of space-based observing facilities , including the recently launched Parker Solar Probe , Kepler space telescope ,
6288-571: The Sun 's intensity in different regions of the optical electromagnetic spectrum . In doing so, the observatory enabled Abbot to make critical refinements to the Solar constant , as well as to serendipitously discover Solar variability . It is likely that SAO's early history as a solar observatory was part of the inspiration behind the Smithsonian's "sunburst" logo, designed in 1965 by Crimilda Pontes . In 1955,
6419-585: The application of computers to astrophysical problems. Partly in response to renewed public interest in astronomy following the 1835 return of Halley's Comet , the Harvard College Observatory was founded in 1839, when the Harvard Corporation appointed William Cranch Bond as an "Astronomical Observer to the University". For its first four years of operation, the observatory was situated at
6550-410: The corona , and the heliosphere . The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K . This part of the Sun is cool enough to allow for the existence of simple molecules such as carbon monoxide and water. The chromosphere, transition region, and corona are much hotter than the surface of
6681-649: The interstellar medium and the cosmic microwave background . Emissions from these objects are examined across all parts of the electromagnetic spectrum , and the properties examined include luminosity , density , temperature , and chemical composition. Because astrophysics is a very broad subject, astrophysicists apply concepts and methods from many disciplines of physics, including classical mechanics , electromagnetism , statistical mechanics , thermodynamics , quantum mechanics , relativity , nuclear and particle physics , and atomic and molecular physics . In practice, modern astronomical research often involves
SECTION 50
#17328516312876812-602: The l -stem survived in Proto-Germanic as well, as * sōwelan , which gave rise to Gothic sauil (alongside sunnō ) and Old Norse prosaic sól (alongside poetic sunna ), and through it the words for sun in the modern Scandinavian languages: Swedish and Danish sol , Icelandic sól , etc. The principal adjectives for the Sun in English are sunny for sunlight and, in technical contexts, solar ( / ˈ s oʊ l ər / ), from Latin sol . From
6943-428: The photosphere . For the purpose of measurement, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun. By this measure, the Sun is a near-perfect sphere with an oblateness estimated at 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 kilometers (6.2 mi). The tidal effect of
7074-444: The visible spectrum , so its color is white , with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. The Solar radiance per wavelength peaks in the green portion of the spectrum when viewed from space. When the Sun is very low in the sky, atmospheric scattering renders the Sun yellow, red, orange, or magenta, and in rare occasions even green or blue . Some cultures mentally picture
7205-508: The "Harvard-Smithsonian Center for Astrophysics", the CfA rebranded in 2018 to its current name in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution . The CfA's current director (since 2022) is Lisa Kewley , who succeeds Charles R. Alcock (Director from 2004 to 2022), Irwin I. Shapiro (Director from 1982 to 2004) and George B. Field (Director from 1973 to 1982). The Center for Astrophysics | Harvard & Smithsonian
7336-408: The 17th century, natural philosophers such as Galileo , Descartes , and Newton began to maintain that the celestial and terrestrial regions were made of similar kinds of material and were subject to the same natural laws . Their challenge was that the tools had not yet been invented with which to prove these assertions. For much of the nineteenth century, astronomical research was focused on
7467-661: The Center for Astrophysics began with SAO's move to Cambridge in 1955. Fred Whipple , who was already chair of the Harvard Astronomy Department (housed within HCO since 1931), was named SAO's new director at the start of this new era; an early test of the model for a unified directorship across HCO and SAO. The following 18 years would see the two independent entities merge ever closer together, operating effectively (but informally) as one large research center. This joint relationship
7598-674: The CfA's Steven Weinberg won the 1979 Nobel Prize in Physics for his work on electroweak unification . The following decade saw the start of the landmark CfA Redshift Survey (the first attempt to map the large scale structure of the Universe ), as well as the release of the "Field Report", a highly influential Astronomy and Astrophysics Decadal Survey chaired by the outgoing CfA Director George Field . He would be replaced in 1982 by Irwin Shapiro , who during his tenure as director (1982 to 2004) oversaw
7729-461: The Greek helios comes the rare adjective heliac ( / ˈ h iː l i æ k / ). In English, the Greek and Latin words occur in poetry as personifications of the Sun, Helios ( / ˈ h iː l i ə s / ) and Sol ( / ˈ s ɒ l / ), while in science fiction Sol may be used to distinguish the Sun from other stars. The term sol with a lowercase s is used by planetary astronomers for
7860-570: The Science Education Department, the John G. Wolbach Library, the world's largest database of astronomy and physics papers (ADS) , and the world's largest collection of astronomical photographic plates. 42°22′53″N 71°07′42″W / 42.38146°N 71.12837°W / 42.38146; -71.12837 Astrophysics Among the subjects studied are the Sun ( solar physics ), other stars , galaxies , extrasolar planets ,
7991-446: The Solar System . Long-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance, which, in turn, might influence Earth's long-term climate. The solar cycle influences space weather conditions, including those surrounding Earth. For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during
SECTION 60
#17328516312878122-443: The Sun as yellow and some even red; the cultural reasons for this are debated. The Sun is classed as a G2 star, meaning it is a G-type star , with 2 indicating its surface temperature is in the second range of the G class. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m (watts per square meter) at
8253-424: The Sun extends from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm (about 150 times the density of water) and a temperature of close to 15.7 million kelvin (K). By contrast, the Sun's surface temperature is about 5800 K . Recent analysis of SOHO mission data favors the idea that the core is rotating faster than the radiative zone outside it. Through most of
8384-438: The Sun into a red giant . This process will make the Sun large enough to render Earth uninhabitable approximately five billion years from the present. After the red giant phase, models suggest the Sun will shed its outer layers and become a dense type of cooling star (a white dwarf ), and no longer produce energy by fusion, but will still glow and give off heat from its previous fusion for perhaps trillions of years. After that, it
8515-413: The Sun's magnetic field . The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at
8646-398: The Sun's core by radiation rather than by convection (see Radiative zone below), so the fusion products are not lifted outward by heat; they remain in the core, and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere, the helium fraction is reduced, and the metallicity
8777-437: The Sun's core fuses about 600 billion kilograms (kg) of hydrogen into helium and converts 4 billion kg of matter into energy . About 4 to 7 billion years from now, when hydrogen fusion in the Sun's core diminishes to the point where the Sun is no longer in hydrostatic equilibrium , its core will undergo a marked increase in density and temperature which will cause its outer layers to expand, eventually transforming
8908-403: The Sun's horizon to Earth's horizon in about 8 minutes and 20 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports almost all life on Earth by photosynthesis , and drives Earth's climate and weather. The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above
9039-493: The Sun's life, energy has been produced by nuclear fusion in the core region through the proton–proton chain ; this process converts hydrogen into helium. Currently, 0.8% of the energy generated in the Sun comes from another sequence of fusion reactions called the CNO cycle ; the proportion coming from the CNO cycle is expected to increase as the Sun becomes older and more luminous. The core
9170-551: The Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere. All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant. The Sun's original chemical composition was inherited from the interstellar medium out of which it formed. Originally it would have been about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of
9301-473: The Sun, Moon, planets, comets, meteors, and nebulae; and on instrumentation for telescopes and laboratories. Around 1920, following the discovery of the Hertzsprung–Russell diagram still used as the basis for classifying stars and their evolution, Arthur Eddington anticipated the discovery and mechanism of nuclear fusion processes in stars , in his paper The Internal Constitution of the Stars . At that time,
9432-438: The Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter , the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state if the rate of energy generation in its core were suddenly changed. Electron neutrinos are released by fusion reactions in
9563-402: The Sun. The reason is not well understood, but evidence suggests that Alfvén waves may have enough energy to heat the corona. Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma , meaning color, because the chromosphere is visible as a colored flash at
9694-430: The Sun. Cosmic rays consisting of very high-energy particles can be observed hitting the Earth's atmosphere. Observations can also vary in their time scale. Most optical observations take minutes to hours, so phenomena that change faster than this cannot readily be observed. However, historical data on some objects is available, spanning centuries or millennia . On the other hand, radio observations may look at events on
9825-486: The beginning and end of total solar eclipses. The temperature of the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top. In the upper part of the chromosphere helium becomes partially ionized . Above the chromosphere, in a thin (about 200 km ) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K . The temperature increase
9956-494: The behaviors of a star) and computational numerical simulations . Each has some advantages. Analytical models of a process are generally better for giving insight into the heart of what is going on. Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen. Theorists in astrophysics endeavor to create theoretical models and figure out the observational consequences of those models. This helps allow observers to look for data that can refute
10087-460: The core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. However, measurements of the number of these neutrinos produced in the Sun are lower than theories predict by a factor of 3. In 2001, the discovery of neutrino oscillation resolved the discrepancy: the Sun emits the number of electron neutrinos predicted by the theory, but neutrino detectors were missing 2 ⁄ 3 of them because
10218-495: The core, converting about 3.7 × 10 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9 × 10 free protons in the Sun), or about 6.2 × 10 kg/s . However, each proton (on average) takes around 9 billion years to fuse with another using the PP chain. Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of
10349-401: The corona reaches 1,000,000–2,000,000 K . The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere. It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first
10480-499: The current science of astrophysics. In modern times, students continue to be drawn to astrophysics due to its popularization by the Royal Astronomical Society and notable educators such as prominent professors Lawrence Krauss , Subrahmanyan Chandrasekhar , Stephen Hawking , Hubert Reeves , Carl Sagan and Patrick Moore . The efforts of the early, late, and present scientists continue to attract young people to study
10611-422: The development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum , including the forthcoming Giant Magellan Telescope (GMT) and the Chandra X-ray Observatory , one of NASA 's Great Observatories . Hosting more than 850 scientists, engineers, and support staff, the CfA is among the largest astronomical research institutes in
10742-450: The directorship of HCO fell to Harlow Shapley (a major participant in the so-called " Great Debate " of 1920). This era of the observatory was made famous by the work of Cecelia Payne-Gaposchkin , who became the first woman to earn a PhD in astronomy from Radcliffe College (a short walk from the observatory). Payne-Gapochkin's 1925 thesis proposed that stars were composed primarily of hydrogen and helium , an idea thought ridiculous at
10873-400: The duration of a solar day on another planet such as Mars . The astronomical symbol for the Sun is a circle with a center dot, [REDACTED] . It is used for such units as M ☉ ( Solar mass ), R ☉ ( Solar radius ) and L ☉ ( Solar luminosity ). The scientific study of the Sun is called heliology . The Sun is a G-type main-sequence star that makes up about 99.86% of
11004-443: The end of the 20th century, studies of astronomical spectra had expanded to cover wavelengths extending from radio waves through optical, x-ray, and gamma wavelengths. In the 21st century, it further expanded to include observations based on gravitational waves . Observational astronomy is a division of the astronomical science that is concerned with recording and interpreting data, in contrast with theoretical astrophysics , which
11135-484: The energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth . The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity . The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years . From Earth, it
11266-574: The expansion of the CfA's observing facilities around the world, including the newly named Fred Lawrence Whipple Observatory , the Infrared Telescope (IRT) aboard the Space Shuttle , the 6.5-meter Multiple Mirror Telescope (MMT), the SOHO satellite , and the launch of Chandra in 1999. CfA-led discoveries throughout this period include canonical work on Supernova 1987A , the " CfA2 Great Wall " (then
11397-563: The external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength; but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle,
11528-535: The first major " standard candle " with which to measure the distance to galaxies . Now called " Leavitt's law ", the discovery is regarded as one of the most foundational and important in the history of astronomy ; astronomers like Edwin Hubble , for example, would later use Leavitt's law to establish that the Universe is expanding , the primary piece of evidence for the Big Bang model . Upon Pickering's retirement in 1921,
11659-404: The fused mass as energy, so the Sun releases energy at the mass–energy conversion rate of 4.26 billion kg/s (which requires 600 billion kg of hydrogen ), for 384.6 yottawatts ( 3.846 × 10 W ), or 9.192 × 10 megatons of TNT per second. The large power output of the Sun is mainly due to the huge size and density of its core (compared to Earth and objects on Earth), with only
11790-477: The heliosphere, forming the solar magnetic field into a spiral shape, until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. In late 2012, Voyager 1 recorded a marked increase in cosmic ray collisions and a sharp drop in lower energy particles from the solar wind, which suggested that
11921-432: The helium in the Sun would have been produced by Big Bang nucleosynthesis in the first 20 minutes of the universe, and the heavier elements were produced by previous generations of stars before the Sun was formed, and spread into the interstellar medium during the final stages of stellar life and by events such as supernovae . Since the Sun formed, the main fusion process has involved fusing hydrogen into helium. Over
12052-517: The history and science of astrophysics. The television sitcom show The Big Bang Theory popularized the field of astrophysics with the general public, and featured some well known scientists like Stephen Hawking and Neil deGrasse Tyson . Sun The Sun is the star at the center of the Solar System . It is a massive, nearly perfect sphere of hot plasma , heated to incandescence by nuclear fusion reactions in its core, radiating
12183-471: The largest known coherent structure in the Universe), the best-yet evidence for supermassive black holes , and the first convincing evidence for an extrasolar planet . The 1980s also saw the CfA play a distinct role in the history of computer science and the internet: in 1986, SAO started developing SAOImage, one of the world's first X11 -based applications made publicly available (its successor, DS9, remains
12314-509: The leadership of a single director, and housed within the same complex of buildings on the Harvard campus in Cambridge, Massachusetts . The CfA's history is therefore also that of the two fully independent organizations that comprise it. With a combined history of more than 300 years, HCO and SAO have been host to major milestones in astronomical history that predate the CfA's founding. These are briefly summarized below. Samuel Pierpont Langley ,
12445-500: The mass of the Solar System. It has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way , most of which are red dwarfs . It is more massive than 95% of the stars within 7 pc (23 ly). The Sun is a Population I , or heavy-element-rich, star. Its formation approximately 4.6 billion years ago may have been triggered by shockwaves from one or more nearby supernovae . This
12576-543: The most widely used astronomical FITS image viewer worldwide). During this time, scientists and software developers at the CfA also began work on what would become the Astrophysics Data System (ADS), one of the world's first online databases of research papers . By 1993, the ADS was running the first routine transatlantic queries between databases, a foundational aspect of the internet today. Charles Alcock , known for
12707-444: The neutrinos had changed flavor by the time they were detected. The Sun has a stellar magnetic field that varies across its surface. Its polar field is 1–2 gauss (0.0001–0.0002 T ), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called sunspots and 10–100 gauss (0.001–0.01 T) in solar prominences . The magnetic field varies in time and location. The quasi-periodic 11-year solar cycle
12838-471: The observatory's so-called " Computers " (women hired by Pickering as skilled workers to process astronomical data). These "Computers" included Williamina Fleming , Annie Jump Cannon , Henrietta Swan Leavitt , Florence Cushman and Antonia Maury , all widely recognized today as major figures in scientific history . Henrietta Swan Leavitt , for example, discovered the so-called period-luminosity relation for Classical Cepheid variable stars , establishing
12969-419: The past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. The proportion of helium within the core has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere toward the center of the Sun because of gravity . The proportions of heavier elements are unchanged. Heat is transferred outward from
13100-414: The photospheric surface. Both coronal mass ejections and high-speed streams of solar wind carry plasma and the interplanetary magnetic field outward into the Solar System. The effects of solar activity on Earth include auroras at moderate to high latitudes and the disruption of radio communications and electric power . Solar activity is thought to have played a large role in the formation and evolution of
13231-451: The physicist, Gustav Kirchhoff , and the chemist, Robert Bunsen , had demonstrated that the dark lines in the solar spectrum corresponded to bright lines in the spectra of known gases, specific lines corresponding to unique chemical elements . Kirchhoff deduced that the dark lines in the solar spectrum are caused by absorption by chemical elements in the Solar atmosphere. In this way it
13362-450: The planets is weak and does not significantly affect the shape of the Sun. The Sun rotates faster at its equator than at its poles . This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at
13493-473: The poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days. Viewed from a vantage point above its north pole, the Sun rotates counterclockwise around its axis of spin. A survey of solar analogs suggest the early Sun was rotating up to ten times faster than it does today. This would have made the surface much more active, with greater X-ray and UV emission. Sun spots would have covered 5–30% of
13624-557: The poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field. The Sun's magnetic field leads to many effects that are collectively called solar activity . Solar flares and coronal mass ejections tend to occur at sunspot groups. Slowly changing high-speed streams of solar wind are emitted from coronal holes at
13755-448: The primordial Solar System. Typically, the solar heavy-element abundances described above are measured both by using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by the settling of heavy elements. The two methods generally agree well. The core of
13886-470: The probe had passed through the heliopause and entered the interstellar medium , and indeed did so on August 25, 2012, at approximately 122 astronomical units (18 Tm) from the Sun. The heliosphere has a heliotail which stretches out behind it due to the Sun's peculiar motion through the galaxy. On April 28, 2021, NASA's Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii that indicated that it penetrated
14017-472: The proposals and development of what would become the Chandra X-ray Observatory . Chandra, the second of NASA's Great Observatories and still the most powerful X-ray telescope in history, continues operations today as part of the CfA's Chandra X-ray Center. Giacconi would later win the 2002 Nobel Prize in Physics for his foundational work in X-ray astronomy. Shortly after the launch of the Einstein Observatory ,
14148-405: The routine work of measuring the positions and computing the motions of astronomical objects. A new astronomy, soon to be called astrophysics, began to emerge when William Hyde Wollaston and Joseph von Fraunhofer independently discovered that, when decomposing the light from the Sun, a multitude of dark lines (regions where there was less or no light) were observed in the spectrum . By 1860
14279-431: The scientific headquarters of SAO moved from Washington, D.C. to Cambridge, Massachusetts , to affiliate with the Harvard College Observatory (HCO). Fred Lawrence Whipple , then the chairman of the Harvard Astronomy Department, was named the new director of SAO. The collaborative relationship between SAO and HCO therefore predates the official creation of the CfA by 18 years. SAO's move to Harvard's campus also resulted in
14410-437: The shorter wavelengths. Solar ultraviolet radiation ionizes Earth's dayside upper atmosphere, creating the electrically conducting ionosphere . Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. This radiation causes sunburn , and has other biological effects such as the production of vitamin D and sun tanning . It is the main cause of skin cancer . Ultraviolet light
14541-425: The solar cycle progresses toward its maximum , sunspots tend to form closer to the solar equator, a phenomenon known as Spörer's law . The largest sunspots can be tens of thousands of kilometers across. An 11-year sunspot cycle is half of a 22-year Babcock –Leighton dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum,
14672-481: The solar spectrum with any known elements. He thus claimed the line represented a new element, which was called helium , after the Greek Helios , the Sun personified. In 1885, Edward C. Pickering undertook an ambitious program of stellar spectral classification at Harvard College Observatory , in which a team of woman computers , notably Williamina Fleming , Antonia Maury , and Annie Jump Cannon , classified
14803-627: The source of stellar energy was a complete mystery; Eddington correctly speculated that the source was fusion of hydrogen into helium, liberating enormous energy according to Einstein's equation E = mc . This was a particularly remarkable development since at that time fusion and thermonuclear energy, and even that stars are largely composed of hydrogen (see metallicity ), had not yet been discovered. In 1925 Cecilia Helena Payne (later Cecilia Payne-Gaposchkin ) wrote an influential doctoral dissertation at Radcliffe College , in which she applied Saha's ionization theory to stellar atmospheres to relate
14934-504: The spectra recorded on photographic plates. By 1890, a catalog of over 10,000 stars had been prepared that grouped them into thirteen spectral types. Following Pickering's vision, by 1924 Cannon expanded the catalog to nine volumes and over a quarter of a million stars, developing the Harvard Classification Scheme which was accepted for worldwide use in 1922. In 1895, George Ellery Hale and James E. Keeler , along with
15065-408: The spectral classes to the temperature of stars. Most significantly, she discovered that hydrogen and helium were the principal components of stars, not the composition of Earth. Despite Eddington's suggestion, discovery was so unexpected that her dissertation readers (including Russell ) convinced her to modify the conclusion before publication. However, later research confirmed her discovery. By
15196-417: The surface. The rotation rate was gradually slowed by magnetic braking , as the Sun's magnetic field interacted with the outflowing solar wind. A vestige of this rapid primordial rotation still survives at the Sun's core, which has been found to be rotating at a rate of once per week; four times the mean surface rotation rate. The Sun consists mainly of the elements hydrogen and helium . At this time in
15327-431: The tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry most of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from
15458-424: The temperature of the corona, at least some of its heat is known to be from magnetic reconnection . The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into interplanetary space is the solar wind . The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with solar wind plasma and
15589-422: The tenuous layers above the photosphere. The photosphere has a particle density of ~10 m (about 0.37% of the particle number per volume of Earth's atmosphere at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form. The Sun's atmosphere is composed of five layers: the photosphere, the chromosphere , the transition region ,
15720-496: The third Secretary of the Smithsonian , founded the Smithsonian Astrophysical Observatory on the south yard of the Smithsonian Castle (on the U.S. National Mall ) on March 1, 1890. The Astrophysical Observatory's initial, primary purpose was to "record the amount and character of the Sun's heat". Charles Greeley Abbot was named SAO's first director, and the observatory operated solar telescopes to take daily measurements of
15851-440: The time. Between Shapley's tenure and the formation of the CfA, the observatory was directed by Donald H. Menzel and then Leo Goldberg , both of whom maintained widely recognized programs in solar and stellar astrophysics. Menzel played a major role in encouraging the Smithsonian Astrophysical Observatory to move to Cambridge and collaborate more closely with HCO. The collaborative foundation for what would ultimately give rise to
15982-692: The top of Observatory Hill in Cambridge (where it still exists today, housed in the oldest of the CfA's complex of buildings). The telescope was the largest in the United States from 1847 until 1867. William Bond and pioneer photographer John Adams Whipple used the Great Refractor to produce the first clear Daguerrotypes of the Moon (winning them an award at the 1851 Great Exhibition in London). Bond and his son, George Phillips Bond (the second director of HCO), used it to discover Saturn's 8th moon, Hyperion (which
16113-404: The top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped 350-fold to 5,700 K (9,800 °F) and the density to only 0.2 g/m (about 1/10,000 the density of air at sea level, and 1 millionth that of the inner layer of the convective zone). The thermal columns of the convection zone form an imprint on the surface of the Sun giving it
16244-418: The transfer of energy through this zone is by radiation instead of thermal convection. Ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 000 kg/m to 200 kg/m ) between 0.25 solar radii and 0.7 radii, the top of the radiative zone. The radiative zone and the convective zone are separated by
16375-493: The universe; origin of cosmic rays ; general relativity , special relativity , quantum and physical cosmology (the physical study of the largest-scale structures of the universe), including string cosmology and astroparticle physics . Astronomy is an ancient science, long separated from the study of terrestrial physics. In the Aristotelian worldview, bodies in the sky appeared to be unchanging spheres whose only motion
16506-489: The universe; origin of cosmic rays; general relativity and physical cosmology, including string cosmology and astroparticle physics. Relativistic astrophysics serves as a tool to gauge the properties of large-scale structures for which gravitation plays a significant role in physical phenomena investigated and as the basis for black hole ( astro )physics and the study of gravitational waves . Some widely accepted and studied theories and models in astrophysics, now included in
16637-456: The world. Its projects have included Nobel Prize-winning advances in cosmology and high energy astrophysics , the discovery of many exoplanets , and the first image of a black hole . The CfA also serves a major role in the global astrophysics research community : the CfA's Astrophysics Data System (ADS), for example, has been universally adopted as the world's online database of astronomy and physics papers. Known for most of its history as
16768-484: Was also independently discovered by William Lassell ). Under the directorship of Edward Charles Pickering from 1877 to 1919, the observatory became the world's major producer of stellar spectra and magnitudes, established an observing station in Peru , and applied mass-production methods to the analysis of data . It was during this time that HCO became host to a series of major discoveries in astronomical history , powered by
16899-488: Was formalized as the new Harvard–Smithsonian Center for Astrophysics on July 1, 1973. George B. Field , then affiliated with Berkeley , was appointed as its first director. That same year, a new astronomical journal , the CfA Preprint Series was created, and a CfA/SAO instrument flying aboard Skylab discovered coronal holes on the Sun. The founding of the CfA also coincided with the birth of X-ray astronomy as
17030-406: Was proved that the chemical elements found in the Sun and stars were also found on Earth. Among those who extended the study of solar and stellar spectra was Norman Lockyer , who in 1868 detected radiant, as well as dark lines in solar spectra. Working with chemist Edward Frankland to investigate the spectra of elements at various temperatures and pressures, he could not associate a yellow line in
17161-448: Was uniform motion in a circle, while the earthly world was the realm which underwent growth and decay and in which natural motion was in a straight line and ended when the moving object reached its goal . Consequently, it was held that the celestial region was made of a fundamentally different kind of matter from that found in the terrestrial sphere; either Fire as maintained by Plato , or Aether as maintained by Aristotle . During
#286713