Misplaced Pages

Heartbeat

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole , following a period of robust contraction and pumping of blood, called systole . After emptying, the heart relaxes and expands to receive another influx of blood returning from the lungs and other systems of the body, before again contracting to pump blood to the lungs and those systems.

#895104

95-439: A heartbeat is one cardiac cycle of the heart. Heartbeat , heart beat , heartbeats , and heart beats may refer to: Cardiac cycle Assuming a healthy heart and a typical rate of 70 to 75 beats per minute, each cardiac cycle, or heartbeat, takes about 0.8 second to complete the cycle. Duration of the cardiac cycle is inversely proportional to the heart rate. There are two atrial and two ventricle chambers of

190-466: A futile cycle . Although fat is a common way of storing energy, in vertebrates such as humans the fatty acids in these stores cannot be converted to glucose through gluconeogenesis as these organisms cannot convert acetyl-CoA into pyruvate ; plants do, but animals do not, have the necessary enzymatic machinery. As a result, after long-term starvation, vertebrates need to produce ketone bodies from fatty acids to replace glucose in tissues such as

285-440: A DNA template from its viral RNA genome. RNA in ribozymes such as spliceosomes and ribosomes is similar to enzymes as it can catalyze chemical reactions. Individual nucleosides are made by attaching a nucleobase to a ribose sugar. These bases are heterocyclic rings containing nitrogen, classified as purines or pyrimidines . Nucleotides also act as coenzymes in metabolic-group-transfer reactions. Metabolism involves

380-423: A constant set of conditions within cells, a condition called homeostasis . Metabolic regulation also allows organisms to respond to signals and interact actively with their environments. Two closely linked concepts are important for understanding how metabolic pathways are controlled. Firstly, the regulation of an enzyme in a pathway is how its activity is increased and decreased in response to signals. Secondly,

475-429: A cycle of reactions that add the acyl group, reduce it to an alcohol, dehydrate it to an alkene group and then reduce it again to an alkane group. The enzymes of fatty acid biosynthesis are divided into two groups: in animals and fungi, all these fatty acid synthase reactions are carried out by a single multifunctional type I protein, while in plant plastids and bacteria separate type II enzymes perform each step in

570-458: A hydrogen acceptor. Hundreds of separate types of dehydrogenases remove electrons from their substrates and reduce NAD into NADH. This reduced form of the coenzyme is then a substrate for any of the reductases in the cell that need to transfer hydrogen atoms to their substrates. Nicotinamide adenine dinucleotide exists in two related forms in the cell, NADH and NADPH. The NAD /NADH form is more important in catabolic reactions, while NADP /NADPH

665-558: A large group of compounds that contain fatty acids and glycerol ; a glycerol molecule attached to three fatty acids by ester linkages is called a triacylglyceride . Several variations of the basic structure exist, including backbones such as sphingosine in sphingomyelin , and hydrophilic groups such as phosphate in phospholipids . Steroids such as sterol are another major class of lipids. Carbohydrates are aldehydes or ketones , with many hydroxyl groups attached, that can exist as straight chains or rings. Carbohydrates are

760-404: A larger increase in the entropy of their environments. The metabolism of a cell achieves this by coupling the spontaneous processes of catabolism to the non-spontaneous processes of anabolism. In thermodynamic terms, metabolism maintains order by creating disorder. As the environments of most organisms are constantly changing, the reactions of metabolism must be finely regulated to maintain

855-472: A membrane. Pumping protons out of the mitochondria creates a proton concentration difference across the membrane and generates an electrochemical gradient . This force drives protons back into the mitochondrion through the base of an enzyme called ATP synthase . The flow of protons makes the stalk subunit rotate, causing the active site of the synthase domain to change shape and phosphorylate adenosine diphosphate —turning it into ATP. Chemolithotrophy

950-591: A set of xenobiotic-metabolizing enzymes. In humans, these include cytochrome P450 oxidases , UDP-glucuronosyltransferases , and glutathione S -transferases . This system of enzymes acts in three stages to firstly oxidize the xenobiotic (phase I) and then conjugate water-soluble groups onto the molecule (phase II). The modified water-soluble xenobiotic can then be pumped out of cells and in multicellular organisms may be further metabolized before being excreted (phase III). In ecology , these reactions are particularly important in microbial biodegradation of pollutants and

1045-459: A short ancestral pathway, the duplication and then divergence of entire pathways as well as the recruitment of pre-existing enzymes and their assembly into a novel reaction pathway. The relative importance of these mechanisms is unclear, but genomic studies have shown that enzymes in a pathway are likely to have a shared ancestry, suggesting that many pathways have evolved in a step-by-step fashion with novel functions created from pre-existing steps in

SECTION 10

#1732858989896

1140-530: A source of energy, while switching between carbon fixation and the fermentation of organic compounds. In many organisms, the capture of solar energy is similar in principle to oxidative phosphorylation, as it involves the storage of energy as a proton concentration gradient. This proton motive force then drives ATP synthesis. The electrons needed to drive this electron transport chain come from light-gathering proteins called photosynthetic reaction centres . Reaction centers are classified into two types depending on

1235-413: A vast array of chemical reactions, but most fall under a few basic types of reactions that involve the transfer of functional groups of atoms and their bonds within molecules. This common chemistry allows cells to use a small set of metabolic intermediates to carry chemical groups between different reactions. These group-transfer intermediates are called coenzymes . Each class of group-transfer reactions

1330-419: Is oxidative stress . Here, processes including oxidative phosphorylation and the formation of disulfide bonds during protein folding produce reactive oxygen species such as hydrogen peroxide . These damaging oxidants are removed by antioxidant metabolites such as glutathione and enzymes such as catalases and peroxidases . Living organisms must obey the laws of thermodynamics , which describe

1425-571: Is a type of metabolism found in prokaryotes where energy is obtained from the oxidation of inorganic compounds . These organisms can use hydrogen , reduced sulfur compounds (such as sulfide , hydrogen sulfide and thiosulfate ), ferrous iron (Fe(II)) or ammonia as sources of reducing power and they gain energy from the oxidation of these compounds. These microbial processes are important in global biogeochemical cycles such as acetogenesis , nitrification and denitrification and are critical for soil fertility . The energy in sunlight

1520-425: Is also reflected from branches in the arterial tree and gives rise to a dicrotic notch in main arteries. The summation of the reflected pulse wave and the systolic wave may increase pulse pressure and help tissue perfusion. With increasing age, the aorta stiffens and can become less elastic which will reduce peak pulse in the periphery. The heart is a four-chambered organ consisting of right and left halves, called

1615-401: Is an organic compound needed in small quantities that cannot be made in cells. In human nutrition , most vitamins function as coenzymes after modification; for example, all water-soluble vitamins are phosphorylated or are coupled to nucleotides when they are used in cells. Nicotinamide adenine dinucleotide (NAD ), a derivative of vitamin B 3 ( niacin ), is an important coenzyme that acts as

1710-446: Is called gluconeogenesis . Gluconeogenesis converts pyruvate to glucose-6-phosphate through a series of intermediates, many of which are shared with glycolysis . However, this pathway is not simply glycolysis run in reverse, as several steps are catalyzed by non-glycolytic enzymes. This is important as it allows the formation and breakdown of glucose to be regulated separately, and prevents both pathways from running simultaneously in

1805-409: Is captured by plants , cyanobacteria , purple bacteria , green sulfur bacteria and some protists . This process is often coupled to the conversion of carbon dioxide into organic compounds, as part of photosynthesis, which is discussed below. The energy capture and carbon fixation systems can, however, operate separately in prokaryotes, as purple bacteria and green sulfur bacteria can use sunlight as

1900-405: Is carried out by a particular coenzyme, which is the substrate for a set of enzymes that produce it, and a set of enzymes that consume it. These coenzymes are therefore continuously made, consumed and then recycled. One central coenzyme is adenosine triphosphate (ATP), the energy currency of cells. This nucleotide is used to transfer chemical energy between different chemical reactions. There

1995-638: Is carried out by the enzyme RuBisCO as part of the Calvin–Benson cycle . Three types of photosynthesis occur in plants, C3 carbon fixation , C4 carbon fixation and CAM photosynthesis . These differ by the route that carbon dioxide takes to the Calvin cycle, with C3 plants fixing CO 2 directly, while C4 and CAM photosynthesis incorporate the CO 2 into other compounds first, as adaptations to deal with intense sunlight and dry conditions. In photosynthetic prokaryotes

SECTION 20

#1732858989896

2090-502: Is collected for the next contraction. This period is best viewed at the middle of the Wiggers diagram—see the panel labeled "diastole". Here it shows pressure levels in both atria and ventricles as near-zero during most of the diastole. (See gray and light-blue tracings labeled "atrial pressure" and "ventricular pressure"—Wiggers diagram.) Here also may be seen the red-line tracing of "Ventricular volume", showing an increase in blood volume from

2185-485: Is composed of a phosphate attached to a ribose or deoxyribose sugar group which is attached to a nitrogenous base . Nucleic acids are critical for the storage and use of genetic information, and its interpretation through the processes of transcription and protein biosynthesis . This information is protected by DNA repair mechanisms and propagated through DNA replication . Many viruses have an RNA genome , such as HIV , which uses reverse transcription to create

2280-404: Is efficiently collected and circulated throughout the body. The mitral and tricuspid valves, also known as the atrioventricular, or AV valves , open during ventricular diastole to permit filling. Late in the filling period the atria begin to contract (atrial systole) forcing a final crop of blood into the ventricles under pressure—see cycle diagram. Then, prompted by electrical signals from

2375-477: Is its primary structure . Just as the letters of the alphabet can be combined to form an almost endless variety of words, amino acids can be linked in varying sequences to form a huge variety of proteins. Proteins are made from amino acids that have been activated by attachment to a transfer RNA molecule through an ester bond. This aminoacyl-tRNA precursor is produced in an ATP -dependent reaction carried out by an aminoacyl tRNA synthetase . This aminoacyl-tRNA

2470-635: Is likely due to their efficacy . In various diseases, such as type II diabetes , metabolic syndrome , and cancer , normal metabolism is disrupted. The metabolism of cancer cells is also different from the metabolism of normal cells, and these differences can be used to find targets for therapeutic intervention in cancer. Most of the structures that make up animals, plants and microbes are made from four basic classes of molecules : amino acids , carbohydrates , nucleic acid and lipids (often called fats ). As these molecules are vital for life, metabolic reactions either focus on making these molecules during

2565-559: Is needed, or back to glucose in the Cori cycle . An alternative route for glucose breakdown is the pentose phosphate pathway , which produces less energy but supports anabolism (biomolecule synthesis). This pathway reduces the coenzyme NADP to NADPH and produces pentose compounds such as ribose 5-phosphate for synthesis of many biomolecules such as nucleotides and aromatic amino acids . Fats are catabolized by hydrolysis to free fatty acids and glycerol. The glycerol enters glycolysis and

2660-475: Is only a small amount of ATP in cells, but as it is continuously regenerated, the human body can use about its own weight in ATP per day. ATP acts as a bridge between catabolism and anabolism . Catabolism breaks down molecules, and anabolism puts them together. Catabolic reactions generate ATP, and anabolic reactions consume it. It also serves as a carrier of phosphate groups in phosphorylation reactions. A vitamin

2755-411: Is produced in response to rises in blood glucose levels . Binding of the hormone to insulin receptors on cells then activates a cascade of protein kinases that cause the cells to take up glucose and convert it into storage molecules such as fatty acids and glycogen . The metabolism of glycogen is controlled by activity of phosphorylase , the enzyme that breaks down glycogen, and glycogen synthase ,

2850-546: Is scarce, or when cells undergo metabolic stress. Lipids are the most diverse group of biochemicals. Their main structural uses are as part of internal and external biological membranes , such as the cell membrane . Their chemical energy can also be used. Lipids contain a long, non-polar hydrocarbon chain with a small polar region containing oxygen. Lipids are usually defined as hydrophobic or amphipathic biological molecules but will dissolve in organic solvents such as ethanol , benzene or chloroform . The fats are

2945-617: Is the measure of the amount of energy consumed by all of these chemical reactions. A striking feature of metabolism is the similarity of the basic metabolic pathways among vastly different species. For example, the set of carboxylic acids that are best known as the intermediates in the citric acid cycle are present in all known organisms, being found in species as diverse as the unicellular bacterium Escherichia coli and huge multicellular organisms like elephants . These similarities in metabolic pathways are likely due to their early appearance in evolutionary history , and their retention

Heartbeat - Misplaced Pages Continue

3040-529: Is the set of life -sustaining chemical reactions in organisms . The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins , lipids , nucleic acids , and some carbohydrates ; and the elimination of metabolic wastes . These enzyme -catalyzed reactions allow organisms to grow and reproduce, maintain their structures , and respond to their environments. The word metabolism can also refer to

3135-422: Is the synthesis of carbohydrates from sunlight and carbon dioxide (CO 2 ). In plants, cyanobacteria and algae, oxygenic photosynthesis splits water, with oxygen produced as a waste product. This process uses the ATP and NADPH produced by the photosynthetic reaction centres , as described above, to convert CO 2 into glycerate 3-phosphate , which can then be converted into glucose. This carbon-fixation reaction

3230-495: Is then a substrate for the ribosome , which joins the amino acid onto the elongating protein chain, using the sequence information in a messenger RNA . Nucleotides are made from amino acids, carbon dioxide and formic acid in pathways that require large amounts of metabolic energy. Consequently, most organisms have efficient systems to salvage preformed nucleotides. Purines are synthesized as nucleosides (bases attached to ribose ). Both adenine and guanine are made from

3325-423: Is transformed through a series of steps into another chemical, each step being facilitated by a specific enzyme . Enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy and will not occur by themselves, by coupling them to spontaneous reactions that release energy. Enzymes act as catalysts —they allow a reaction to proceed more rapidly—and they also allow

3420-429: Is used in anabolic reactions. Inorganic elements play critical roles in metabolism; some are abundant (e.g. sodium and potassium ) while others function at minute concentrations. About 99% of a human's body weight is made up of the elements carbon , nitrogen , calcium , sodium , chlorine , potassium , hydrogen , phosphorus , oxygen and sulfur . Organic compounds (proteins, lipids and carbohydrates) contain

3515-456: The aorta and the pulmonary arteries and causing the requisite valves (the aortic and pulmonary valves) to open—which results in separated blood volumes being ejected from the two ventricles. This is the ejection stage of the cardiac cycle; it is depicted (see circular diagram) as the ventricular systole–first phase followed by the ventricular systole–second phase . After ventricular pressures fall below their peak(s) and below those in

3610-426: The bioremediation of contaminated land and oil spills. Many of these microbial reactions are shared with multicellular organisms, but due to the incredible diversity of types of microbes these organisms are able to deal with a far wider range of xenobiotics than multicellular organisms, and can degrade even persistent organic pollutants such as organochloride compounds. A related problem for aerobic organisms

3705-499: The chloroplast . These protons move back through the membrane as they drive the ATP synthase, as before. The electrons then flow through photosystem I and can then be used to reduce the coenzyme NADP . This coenzyme can enter the Calvin cycle or be recycled for further ATP generation. Anabolism is the set of constructive metabolic processes where the energy released by catabolism is used to synthesize complex molecules. In general,

3800-467: The control exerted by this enzyme is the effect that these changes in its activity have on the overall rate of the pathway (the flux through the pathway). For example, an enzyme may show large changes in activity (i.e. it is highly regulated) but if these changes have little effect on the flux of a metabolic pathway, then this enzyme is not involved in the control of the pathway. There are multiple levels of metabolic regulation. In intrinsic regulation,

3895-441: The cytoskeleton , a system of scaffolding that maintains the cell shape. Proteins are also important in cell signaling , immune responses , cell adhesion , active transport across membranes, and the cell cycle . Amino acids also contribute to cellular energy metabolism by providing a carbon source for entry into the citric acid cycle ( tricarboxylic acid cycle ), especially when a primary source of energy, such as glucose ,

Heartbeat - Misplaced Pages Continue

3990-406: The last universal common ancestor . This universal ancestral cell was prokaryotic and probably a methanogen that had extensive amino acid, nucleotide, carbohydrate and lipid metabolism. The retention of these ancient pathways during later evolution may be the result of these reactions having been an optimal solution to their particular metabolic problems, with pathways such as glycolysis and

4085-550: The mevalonate pathway produces these compounds from acetyl-CoA, while in plants and bacteria the non-mevalonate pathway uses pyruvate and glyceraldehyde 3-phosphate as substrates. One important reaction that uses these activated isoprene donors is sterol biosynthesis . Here, the isoprene units are joined to make squalene and then folded up and formed into a set of rings to make lanosterol . Lanosterol can then be converted into other sterols such as cholesterol and ergosterol . Organisms vary in their ability to synthesize

4180-414: The pulmonary veins ). As the ventricles begin to relax, the mitral and tricuspid valves open again, and the completed cycle returns to ventricular diastole and a new "Start" of the cardiac cycle. Throughout the cardiac cycle, blood pressure increases and decreases. The movements of cardiac muscle are coordinated by a series of electrical impulses produced by specialized pacemaker cells found within

4275-426: The regulation of the rate of a metabolic reaction, for example in response to changes in the cell's environment or to signals from other cells. The metabolic system of a particular organism determines which substances it will find nutritious and which poisonous . For example, some prokaryotes use hydrogen sulfide as a nutrient, yet this gas is poisonous to animals. The basal metabolic rate of an organism

4370-410: The right heart and the left heart . The upper two chambers, the left and right atria , are entry points into the heart for blood-flow returning from the circulatory system , while the two lower chambers, the left and right ventricles , perform the contractions that eject the blood from the heart to flow through the circulatory system. Circulation is split into pulmonary circulation —during which

4465-698: The sinoatrial node and the atrioventricular node . Cardiac muscle is composed of myocytes which initiate their internal contractions without receiving signals from external nerves—with the exception of changes in the heart rate due to metabolic demand. In an electrocardiogram , electrical systole initiates the atrial systole at the P wave deflection of a steady signal; and it starts contractions (systole). The cardiac cycle involves four major stages of activity: 1) "isovolumic relaxation", 2) inflow, 3) "isovolumic contraction", 4) "ejection". Stages 1 and 2 together—"isovolumic relaxation" plus inflow (equals "rapid inflow", "diastasis", and "atrial systole")—comprise

4560-454: The sinoatrial node , the ventricles start contracting (ventricular systole), and as back-pressure against them increases the AV valves are forced to close, which stops the blood volumes in the ventricles from flowing in or out; this is known as the isovolumic contraction stage. Due to the contractions of the systole, pressures in the ventricles rise quickly, exceeding the pressures in the trunks of

4655-407: The stomach and pancreas , and in salivary glands . The amino acids or sugars released by these extracellular enzymes are then pumped into cells by active transport proteins. Carbohydrate catabolism is the breakdown of carbohydrates into smaller units. Carbohydrates are usually taken into cells after they have been digested into monosaccharides such as glucose and fructose . Once inside,

4750-428: The 20 common amino acids. Most bacteria and plants can synthesize all twenty, but mammals can only synthesize eleven nonessential amino acids, so nine essential amino acids must be obtained from food. Some simple parasites , such as the bacteria Mycoplasma pneumoniae , lack all amino acid synthesis and take their amino acids directly from their hosts. All amino acids are synthesized from intermediates in glycolysis,

4845-431: The brain that cannot metabolize fatty acids. In other organisms such as plants and bacteria, this metabolic problem is solved using the glyoxylate cycle , which bypasses the decarboxylation step in the citric acid cycle and allows the transformation of acetyl-CoA to oxaloacetate , where it can be used for the production of glucose. Other than fat, glucose is stored in most tissues, as an energy resource available within

SECTION 50

#1732858989896

4940-424: The cardiac cycle. (See Wiggers diagram: "Ventricular volume" tracing (red), at "Systole" panel.) Cardiac diastole is the period of the cardiac cycle when, after contraction, the heart relaxes and expands while refilling with blood returning from the circulatory system . Both atrioventricular (AV) valves open to facilitate the 'unpressurized' flow of blood directly through the atria into both ventricles, where it

5035-439: The cell for energy. M. tuberculosis can also grow on the lipid cholesterol as a sole source of carbon, and genes involved in the cholesterol-use pathway(s) have been validated as important during various stages of the infection lifecycle of M. tuberculosis . Amino acids are either used to synthesize proteins and other biomolecules, or oxidized to urea and carbon dioxide to produce energy. The oxidation pathway starts with

5130-441: The citric acid cycle producing their end products highly efficiently and in a minimal number of steps. The first pathways of enzyme-based metabolism may have been parts of purine nucleotide metabolism, while previous metabolic pathways were a part of the ancient RNA world . Many models have been proposed to describe the mechanisms by which novel metabolic pathways evolve. These include the sequential addition of novel enzymes to

5225-416: The citric acid cycle, or the pentose phosphate pathway. Nitrogen is provided by glutamate and glutamine . Nonessensial amino acid synthesis depends on the formation of the appropriate alpha-keto acid, which is then transaminated to form an amino acid. Amino acids are made into proteins by being joined in a chain of peptide bonds . Each different protein has a unique sequence of amino acid residues: this

5320-637: The coenzyme nicotinamide adenine dinucleotide (NAD ) into NADH. Macromolecules cannot be directly processed by cells. Macromolecules must be broken into smaller units before they can be used in cell metabolism. Different classes of enzymes are used to digest these polymers. These digestive enzymes include proteases that digest proteins into amino acids, as well as glycoside hydrolases that digest polysaccharides into simple sugars known as monosaccharides . Microbes simply secrete digestive enzymes into their surroundings, while animals only secrete these enzymes from specialized cells in their guts , including

5415-534: The complex molecules that make up cellular structures are constructed step-by-step from smaller and simpler precursors. Anabolism involves three basic stages. First, the production of precursors such as amino acids , monosaccharides , isoprenoids and nucleotides , secondly, their activation into reactive forms using energy from ATP, and thirdly, the assembly of these precursors into complex molecules such as proteins , polysaccharides , lipids and nucleic acids . Anabolism in organisms can be different according to

5510-488: The construction of cells and tissues, or on breaking them down and using them to obtain energy, by their digestion. These biochemicals can be joined to make polymers such as DNA and proteins , essential macromolecules of life. Proteins are made of amino acids arranged in a linear chain joined by peptide bonds . Many proteins are enzymes that catalyze the chemical reactions in metabolism. Other proteins have structural or mechanical functions, such as those that form

5605-436: The diastole immediately before the heart again begins contracting and ejecting blood from the ventricles (ventricular systole) to the aorta and arteries. Ventricular systole is the contractions, following electrical stimulations, of the ventricular syncytium of cardiac muscle cells in the left and right ventricles . Contractions in the right ventricle provide pulmonary circulation by pulsing oxygen-depleted blood through

5700-475: The electrical current before it is conducted below the atria and through the circuits known as the bundle of His and the Purkinje fibers —all which stimulate contractions of both ventricles. The programmed delay at the AV node also provides time for blood volume to flow through the atria and fill the ventricular chambers—just before the return of the systole (contractions), ejecting the new blood volume and completing

5795-445: The electrons removed from organic molecules in areas such as the citric acid cycle are transferred to oxygen and the energy released is used to make ATP. This is done in eukaryotes by a series of proteins in the membranes of mitochondria called the electron transport chain . In prokaryotes , these proteins are found in the cell's inner membrane . These proteins use the energy from reduced molecules like NADH to pump protons across

SECTION 60

#1732858989896

5890-440: The end of ventricular diastole –late , the two atria begin to contract ( atrial systole ), and each atrium pumps blood into the ventricle below it. During ventricular systole the ventricles contract and vigorously pulse (or eject) two separated blood supplies from the heart—one to the lungs and one to all other body organs and systems—while the two atria relax ( atrial diastole ). This precise coordination ensures that blood

5985-407: The end of the diastole, the atria begin contracting, then pump blood into the ventricles; this pressurized delivery during ventricular relaxation (ventricular diastole) is called the atrial systole . The closure of the aortic valve causes a rapid change in pressure in the aorta called the incisura. This short sharp change in pressure is rapidly attenuated down the arterial tree. The pulse wave form

6080-683: The end of the reaction catalyzed. Metal micronutrients are taken up into organisms by specific transporters and bind to storage proteins such as ferritin or metallothionein when not in use. Catabolism is the set of metabolic processes that break down large molecules. These include breaking down and oxidizing food molecules. The purpose of the catabolic reactions is to provide the energy and components needed by anabolic reactions which build molecules. The exact nature of these catabolic reactions differ from organism to organism, and organisms can be classified based on their sources of energy, hydrogen, and carbon (their primary nutritional groups ), as shown in

6175-469: The enzyme that makes it. These enzymes are regulated in a reciprocal fashion, with phosphorylation inhibiting glycogen synthase, but activating phosphorylase. Insulin causes glycogen synthesis by activating protein phosphatases and producing a decrease in the phosphorylation of these enzymes. The central pathways of metabolism described above, such as glycolysis and the citric acid cycle, are present in all three domains of living things and were present in

6270-650: The exchange of electrolytes between the extracellular fluid and the cell's fluid, the cytosol . Electrolytes enter and leave cells through proteins in the cell membrane called ion channels . For example, muscle contraction depends upon the movement of calcium, sodium and potassium through ion channels in the cell membrane and T-tubules . Transition metals are usually present as trace elements in organisms, with zinc and iron being most abundant of those. Metal cofactors are bound tightly to specific sites in proteins; although enzyme cofactors can be modified during catalysis, they always return to their original state by

6365-414: The fatty acids are broken down by beta oxidation to release acetyl-CoA, which then is fed into the citric acid cycle. Fatty acids release more energy upon oxidation than carbohydrates. Steroids are also broken down by some bacteria in a process similar to beta oxidation, and this breakdown process involves the release of significant amounts of acetyl-CoA, propionyl-CoA, and pyruvate, which can all be used by

6460-484: The first stage, large organic molecules, such as proteins , polysaccharides or lipids , are digested into their smaller components outside cells. Next, these smaller molecules are taken up by cells and converted to smaller molecules, usually acetyl coenzyme A (acetyl-CoA), which releases some energy. Finally, the acetyl group on acetyl-CoA is oxidized to water and carbon dioxide in the citric acid cycle and electron transport chain , releasing more energy while reducing

6555-405: The form of water-soluble messengers such as hormones and growth factors and are detected by specific receptors on the cell surface. These signals are then transmitted inside the cell by second messenger systems that often involved the phosphorylation of proteins. A very well understood example of extrinsic control is the regulation of glucose metabolism by the hormone insulin . Insulin

6650-445: The heart's electrical conduction system, which is the "wiring" of the heart that carries electrical impulses throughout the body of cardiomyocytes , the specialized muscle cells of the heart. These impulses ultimately stimulate heart muscle to contract and thereby to eject blood from the ventricles into the arteries and the cardiac circulatory system ; and they provide a system of intricately timed and persistent signaling that controls

6745-434: The heart; they are paired as the left heart and the right heart —that is, the left atrium with the left ventricle, the right atrium with the right ventricle—and they work in concert to repeat the cardiac cycle continuously (see cycle diagram at right margin). At the start of the cycle, during ventricular diastole –early , the heart relaxes and expands while receiving blood into both ventricles through both atria; then, near

6840-449: The low plateau of the "isovolumic relaxation" stage to the maximum volume occurring in the "atrial systole" sub-stage. Atrial systole is the contracting of cardiac muscle cells of both atria following electrical stimulation and conduction of electrical currents across the atrial chambers (see above, Physiology ). While nominally a component of the heart's sequence of systolic contraction and ejection, atrial systole actually performs

6935-406: The lower wall of the right heart between the atrium and ventricle. The sinoatrial node, often known as the cardiac pacemaker , is the point of origin for producing a wave of electrical impulses that stimulates atrial contraction by creating an action potential across myocardium cells. Impulses of the wave are delayed upon reaching the AV node, which acts as a gate to slow and to coordinate

7030-529: The major route of breakdown is glycolysis , in which glucose is converted into pyruvate . This process generates the energy-conveying molecule NADH from NAD , and generates ATP from ADP for use in powering many processes within the cell. Pyruvate is an intermediate in several metabolic pathways, but the majority is converted to acetyl-CoA and fed into the citric acid cycle , which enables more ATP production by means of oxidative phosphorylation . This oxidation consumes molecular oxygen and releases water and

7125-506: The majority of the carbon and nitrogen; most of the oxygen and hydrogen is present as water. The abundant inorganic elements act as electrolytes . The most important ions are sodium , potassium , calcium , magnesium , chloride , phosphate and the organic ion bicarbonate . The maintenance of precise ion gradients across cell membranes maintains osmotic pressure and pH . Ions are also critical for nerve and muscle function, as action potentials in these tissues are produced by

7220-680: The mechanisms of carbon fixation are more diverse. Here, carbon dioxide can be fixed by the Calvin–Benson cycle, a reversed citric acid cycle, or the carboxylation of acetyl-CoA. Prokaryotic chemoautotrophs also fix CO 2 through the Calvin–Benson cycle, but use energy from inorganic compounds to drive the reaction. In carbohydrate anabolism, simple organic acids can be converted into monosaccharides such as glucose and then used to assemble polysaccharides such as starch . The generation of glucose from compounds like pyruvate , lactate , glycerol , glycerate 3-phosphate and amino acids

7315-482: The metabolic pathway self-regulates to respond to changes in the levels of substrates or products; for example, a decrease in the amount of product can increase the flux through the pathway to compensate. This type of regulation often involves allosteric regulation of the activities of multiple enzymes in the pathway. Extrinsic control involves a cell in a multicellular organism changing its metabolism in response to signals from other cells. These signals are usually in

7410-512: The most abundant biological molecules, and fill numerous roles, such as the storage and transport of energy ( starch , glycogen ) and structural components ( cellulose in plants, chitin in animals). The basic carbohydrate units are called monosaccharides and include galactose , fructose , and most importantly glucose . Monosaccharides can be linked together to form polysaccharides in almost limitless ways. The two nucleic acids, DNA and RNA , are polymers of nucleotides . Each nucleotide

7505-420: The nature of photosynthetic pigment present, with most photosynthetic bacteria only having one type, while plants and cyanobacteria have two. In plants, algae, and cyanobacteria, photosystem II uses light energy to remove electrons from water, releasing oxygen as a waste product. The electrons then flow to the cytochrome b6f complex , which uses their energy to pump protons across the thylakoid membrane in

7600-412: The pathway. Terpenes and isoprenoids are a large class of lipids that include the carotenoids and form the largest class of plant natural products . These compounds are made by the assembly and modification of isoprene units donated from the reactive precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate . These precursors can be made in different ways. In animals and archaea,

7695-674: The precursor nucleoside inosine monophosphate, which is synthesized using atoms from the amino acids glycine , glutamine , and aspartic acid , as well as formate transferred from the coenzyme tetrahydrofolate . Pyrimidines , on the other hand, are synthesized from the base orotate , which is formed from glutamine and aspartate. All organisms are constantly exposed to compounds that they cannot use as foods and that would be harmful if they accumulated in cells, as they have no metabolic function. These potentially damaging compounds are called xenobiotics . Xenobiotics such as synthetic drugs , natural poisons and antibiotics are detoxified by

7790-532: The pulmonary valve then through the pulmonary arteries to the lungs. Simultaneously, contractions of the left ventricular systole provide systemic circulation of oxygenated blood to all body systems by pumping blood through the aortic valve, the aorta, and all the arteries. (Blood pressure is routinely measured in the larger arteries off the left ventricle during the left ventricular systole). Metabolic Metabolism ( / m ə ˈ t æ b ə l ɪ z ə m / , from Greek : μεταβολή metabolē , "change")

7885-430: The removal of the amino group by a transaminase . The amino group is fed into the urea cycle , leaving a deaminated carbon skeleton in the form of a keto acid . Several of these keto acids are intermediates in the citric acid cycle, for example α- ketoglutarate formed by deamination of glutamate . The glucogenic amino acids can also be converted into glucose, through gluconeogenesis . In oxidative phosphorylation,

7980-400: The rhythmic beating of the heart muscle cells, especially the complex impulse-generation and muscle contractions in the atrial chambers. The rhythmic sequence (or sinus rhythm ) of this signaling across the heart is coordinated by two groups of specialized cells, the sinoatrial (SA) node, which is situated in the upper wall of the right atrium, and the atrioventricular (AV) node located in

8075-403: The right ventricle pumps oxygen-depleted blood to the lungs through the pulmonary trunk and arteries; or the systemic circulation —in which the left ventricle pumps/ejects newly oxygenated blood throughout the body via the aorta and all other arteries. In a healthy heart all activities and rests during each individual cardiac cycle, or heartbeat, are initiated and orchestrated by signals of

8170-627: The source of constructed molecules in their cells. Autotrophs such as plants can construct the complex organic molecules in their cells such as polysaccharides and proteins from simple molecules like carbon dioxide and water. Heterotrophs , on the other hand, require a source of more complex substances, such as monosaccharides and amino acids, to produce these complex molecules. Organisms can be further classified by ultimate source of their energy: photoautotrophs and photoheterotrophs obtain energy from light, whereas chemoautotrophs and chemoheterotrophs obtain energy from oxidation reactions. Photosynthesis

8265-425: The substrate can be acceptors, the polysaccharides produced can have straight or branched structures. The polysaccharides produced can have structural or metabolic functions themselves, or be transferred to lipids and proteins by the enzymes oligosaccharyltransferases . Fatty acids are made by fatty acid synthases that polymerize and then reduce acetyl-CoA units. The acyl chains in the fatty acids are extended by

8360-729: The sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary (or intermediate) metabolism. Metabolic reactions may be categorized as catabolic —the breaking down of compounds (for example, of glucose to pyruvate by cellular respiration ); or anabolic —the building up ( synthesis ) of compounds (such as proteins, carbohydrates, lipids, and nucleic acids). Usually, catabolism releases energy, and anabolism consumes energy. The chemical reactions of metabolism are organized into metabolic pathways , in which one chemical

8455-826: The table below. Organic molecules are used as a source of hydrogen atoms or electrons by organotrophs , while lithotrophs use inorganic substrates. Whereas phototrophs convert sunlight to chemical energy , chemotrophs depend on redox reactions that involve the transfer of electrons from reduced donor molecules such as organic molecules , hydrogen , hydrogen sulfide or ferrous ions to oxygen , nitrate or sulfate . In animals, these reactions involve complex organic molecules that are broken down to simpler molecules, such as carbon dioxide and water. Photosynthetic organisms, such as plants and cyanobacteria , use similar electron-transfer reactions to store energy absorbed from sunlight. The most common set of catabolic reactions in animals can be separated into three main stages. In

8550-407: The tissue through glycogenesis which was usually being used to maintained glucose level in blood. Polysaccharides and glycans are made by the sequential addition of monosaccharides by glycosyltransferase from a reactive sugar-phosphate donor such as uridine diphosphate glucose (UDP-Glc) to an acceptor hydroxyl group on the growing polysaccharide. As any of the hydroxyl groups on the ring of

8645-480: The transfer of heat and work . The second law of thermodynamics states that in any isolated system , the amount of entropy (disorder) cannot decrease. Although living organisms' amazing complexity appears to contradict this law, life is possible as all organisms are open systems that exchange matter and energy with their surroundings. Living systems are not in equilibrium , but instead are dissipative systems that maintain their state of high complexity by causing

8740-415: The trunks of the aorta and pulmonary arteries, the aortic and pulmonary valves close again—see, at the right margin, Wiggers diagram , blue-line tracing. Next is the isovolumic relaxation , during which pressure within the ventricles begin to fall significantly, and thereafter the atria begin refilling as blood returns to flow into the right atrium (from the vena cavae ) and into the left atrium (from

8835-412: The ventricular diastole period, including atrial systole, during which blood returning to the heart flows through the atria into the relaxed ventricles. Stages 3 and 4 together—"isovolumic contraction" plus "ejection"—are the ventricular systole period, which is the simultaneous pumping of separate blood supplies from the two ventricles, one to the pulmonary artery and one to the aorta. Notably, near

8930-448: The vital role of completing the diastole, which is to finalize the filling of both ventricles with blood while they are relaxed and expanded for that purpose. Atrial systole overlaps the end of the diastole, occurring in the sub-period known as ventricular diastole–late (see cycle diagram). At this point, the atrial systole applies contraction pressure to 'topping-off' the blood volumes sent to both ventricles; this atrial contraction closes

9025-465: The waste product carbon dioxide. When oxygen is lacking, or when pyruvate is temporarily produced faster than it can be consumed by the citric acid cycle (as in intense muscular exertion), pyruvate is converted to lactate by the enzyme lactate dehydrogenase , a process that also oxidizes NADH back to NAD for re-use in further glycolysis, allowing energy production to continue. The lactate is later converted back to pyruvate for ATP production where energy

#895104