Misplaced Pages

Grant Devine Dam

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

An embankment dam is a large artificial dam . It is typically created by the placement and compaction of a complex semi- plastic mound of various compositions of soil or rock. It has a semi-pervious waterproof natural covering for its surface and a dense, impervious core. This makes the dam impervious to surface or seepage erosion . Such a dam is composed of fragmented independent material particles. The friction and interaction of particles binds the particles together into a stable mass rather than by the use of a cementing substance.

#453546

30-565: The Grant Devine Dam , formerly Alameda Dam , is an embankment dam located in the Canadian province of Saskatchewan near Alameda and Oxbow . It was constructed in 1994 to control flows on Moose Mountain Creek and Souris River . It provides flood protection and irrigation for this area of Saskatchewan, along with protection for Minot, North Dakota . The Grant Devine Reservoir provides opportunities for recreational use such as boating and fishing. At

60-436: A central section or core composed of an impermeable material to stop water from seeping through the dam. The core can be of clay, concrete, or asphalt concrete . This type of dam is a good choice for sites with wide valleys. They can be built on hard rock or softer soils. For a rock-fill dam, rock-fill is blasted using explosives to break the rock. Additionally, the rock pieces may need to be crushed into smaller grades to get

90-441: A hydraulic fill dam that failed during an earthquake. In these situations, a dam built of compacted soil may be a better choice. Poorly built hydraulic fill dams pose a risk of catastrophic failure. The Fort Peck Dam is an example of a hydraulic fill dam that failed during construction where the hydraulic filling process may have contributed to the failure. Hydraulic fill is also a term used in hard rock mining and describes

120-598: A rock-fill dam is New Melones Dam in California or the Fierza Dam in Albania . A core that is growing in popularity is asphalt concrete . The majority of such dams are built with rock and/or gravel as the primary fill. Almost 100 dams of this design have now been built worldwide since the first such dam was completed in 1962. All asphalt-concrete core dams built so far have an excellent performance record. The type of asphalt used

150-551: A rock-fill dam. The frozen-core dam is a temporary earth dam occasionally used in high latitudes by circulating a coolant through pipes inside the dam to maintain a watertight region of permafrost within it. Tarbela Dam is a large dam on the Indus River in Pakistan , about 50 km (31 mi) northwest of Islamabad . Its height of 485 ft (148 m) above the river bed and 95 sq mi (250 km ) reservoir make it

180-403: A shell of locally plentiful material with a watertight clay core. Modern zoned-earth embankments employ filter and drain zones to collect and remove seep water and preserve the integrity of the downstream shell zone. An outdated method of zoned earth dam construction used a hydraulic fill to produce a watertight core. Rolled-earth dams may also employ a watertight facing or core in the manner of

210-695: Is 2,140 square kilometres (830 sq mi). A full-time staff of about five people supervises and operates this dam and the Rafferty Dam built at the same time. Together, the two projects provide flow control on the Souris River and flood protection for the city of Minot. Operation of the project is governed by an international treaty between Canada and the United States. Moose Creek Regional Park ( 49°17′38″N 102°12′08″W  /  49.2939°N 102.2022°W  / 49.2939; -102.2022 )

240-417: Is a regional park on the east side of the reservoir, 3 kilometres (1.9 mi) north of the dam. The park encompasses about 3/4 of a section , which is about 480 acres. The park is 3 kilometres (1.9 mi) east of Alameda off of Highway 9 and 6 kilometres (3.7 mi) north of Oxbow off of Highway 18 . The park features full-service camping, tenting, picnicking, swimming, boating, and fishing. There

270-532: Is a viscoelastic - plastic material that can adjust to the movements and deformations imposed on the embankment as a whole, and to settlement of the foundation. The flexible properties of the asphalt make such dams especially suited to earthquake regions. For the Moglicë Hydro Power Plant in Albania the Norwegian power company Statkraft built an asphalt-core rock-fill dam. Upon completion in 2018

300-400: Is a means of selectively emplacing soil or other materials using a stream of water. It is also a term used to describe the materials thus emplaced. Gravity , coupled with velocity control, is used to effect the selected deposition of the material. Borrow pits containing suitable material are accessible at an elevation such that the earth can be sluiced to the fill after being washed from

330-523: Is also Moose Creek Golf Club, a 9-hole golf course. The third weekend in June each year, the Alameda Fishing Derby takes place on the lake. Embankment dam Embankment dams come in two types: the earth-filled dam (also called an earthen dam or terrain dam ) made of compacted earth, and the rock-filled dam . A cross-section of an embankment dam shows a shape like a bank, or hill. Most have

SECTION 10

#1732852003454

360-486: Is at hand, transport is minimized, leading to cost savings during construction. Rock-fill dams are resistant to damage from earthquakes . However, inadequate quality control during construction can lead to poor compaction and sand in the embankment which can lead to liquefaction of the rock-fill during an earthquake. Liquefaction potential can be reduced by keeping susceptible material from being saturated, and by providing adequate compaction during construction. An example of

390-431: Is protected by a 224-metre long spillway with a maximum discharge capacity of 1,400 m (49,000 cu ft) per second. The dam includes a low-level outlet structure for discharge of water to maintain the quality of the riparian environment downstream of the project, and for irrigation outflow. The reservoir has a surface area of 12.4 km (4.8 sq mi) at full supply level. The surrounding drainage area

420-516: The California Gold Rush in the 1860s when miners constructed rock-fill timber-face dams for sluice operations . The timber was later replaced by concrete as the design was applied to irrigation and power schemes. As CFRD designs grew in height during the 1960s, the fill was compacted and the slab's horizontal and vertical joints were replaced with improved vertical joints. In the last few decades, design has become popular. The tallest CFRD in

450-470: The Usoi landslide dam leaks 35-80 cubic meters per second. Sufficiently fast seepage can dislodge a dam's component particles, which results in faster seepage, which turns into a runaway feedback loop that can destroy the dam in a piping-type failure. Seepage monitoring is therefore an essential safety consideration. gn and Construction in the U.S. Bureau of Reclamation Hydraulic fill Hydraulic fill

480-539: The 320 m long, 150 m high and 460 m wide dam is anticipated to be the world's highest of its kind. A concrete-face rock-fill dam (CFRD) is a rock-fill dam with concrete slabs on its upstream face. This design provides the concrete slab as an impervious wall to prevent leakage and also a structure without concern for uplift pressure. In addition, the CFRD design is flexible for topography, faster to construct and less costly than earth-fill dams. The CFRD concept originated during

510-511: The bank by high-pressure nozzles. Hydraulic fill is likely to be the most economic method of construction. Even when the source material lacks sufficient elevation, it can be elevated to the sluice by a dredge pump. In the construction of a hydraulic fill dam , the edges of the dam are defined by low embankments or dykes which are built upward as the fill progresses. The sluices are carried parallel to, and just inside of, these dykes. The sluices discharge their water-earth mixture at intervals,

540-404: The base of the dam than at shallower water levels. Thus the stress level of the dam must be calculated in advance of building to ensure that its break level threshold is not exceeded. Overtopping or overflow of an embankment dam beyond its spillway capacity will cause its eventual failure . The erosion of the dam's material by overtopping runoff will remove masses of material whose weight holds

570-450: The cost of producing or bringing in concrete would be prohibitive. Rock -fill dams are embankments of compacted free-draining granular earth with an impervious zone. The earth used often contains a high percentage of large particles, hence the term "rock-fill". The impervious zone may be on the upstream face and made of masonry , concrete , plastic membrane, steel sheet piles, timber or other material. The impervious zone may also be inside

600-434: The dam in place and against the hydraulic forces acting to move the dam. Even a small sustained overtopping flow can remove thousands of tons of overburden soil from the mass of the dam within hours. The removal of this mass unbalances the forces that stabilize the dam against its reservoir as the mass of water still impounded behind the dam presses against the lightened mass of the embankment, made lighter by surface erosion. As

630-404: The dam. The water flow must be well controlled at all times, otherwise the central section may be bridged by tongues of coarse material which would facilitate seepage through the dam later. Hydraulic fill dams can be dangerous in areas of seismic activity due to the high susceptibility of the uncompacted, cohesion-less soils in them to liquefaction . The Lower San Fernando Dam is an example of

SECTION 20

#1732852003454

660-417: The early 21st century. These techniques include concrete overtopping protection systems, timber cribs , sheet-piles , riprap and gabions , Reinforced Earth , minimum energy loss weirs , embankment overflow stepped spillways , and precast concrete block protection systems. All dams are prone to seepage underneath the dam, but embankment dams are prone to seepage through the dam as well; for example,

690-420: The embankment, in which case it is referred to as a "core". In the instances where clay is used as the impervious material, the dam is referred to as a "composite" dam. To prevent internal erosion of clay into the rock fill due to seepage forces, the core is separated using a filter. Filters are specifically graded soil designed to prevent the migration of fine grain soil particles. When suitable building material

720-485: The flow of the water and continue to fracture into smaller and smaller sections of earth or rock until they disintegrate into a thick suspension of earth, rocks and water. Therefore, safety requirements for the spillway are high, and require it to be capable of containing a maximum flood stage. It is common for its specifications to be written such that it can contain at least a one-hundred-year flood. A number of embankment dam overtopping protection systems were developed in

750-524: The full supply level of 562 metres (1,844 ft), the reservoir holds 105,000,000 m (3.7 × 10 cu ft) of water. The project is owned and operated by the Saskatchewan Water Security Agency (formerly Saskatchewan Watershed Authority). The Grant Devine Dam is a 1660-metre long earthfill dam, with a height of 42 metres (138 ft). The volume of earth in the main dam is 2,900,000 m (100,000,000 cu ft). The dam

780-448: The largest earth-filled dam in the world. The principal element of the project is an embankment 9,000 feet (2,700 m) long with a maximum height of 465 feet (142 m). The dam used approximately 200 million cubic yards (152.8 million cu. meters) of fill, which makes it one of the largest man-made structures in the world. Because earthen dams can be constructed from local materials, they can be cost-effective in regions where

810-423: The mass of the dam erodes, the force exerted by the reservoir begins to move the entire structure. The embankment, having almost no elastic strength, would begin to break into separate pieces, allowing the impounded reservoir water to flow between them, eroding and removing even more material as it passes through. In the final stages of failure, the remaining pieces of the embankment would offer almost no resistance to

840-410: The right range of size for use in an embankment dam. Earth-fill dams, also called earthen dams, rolled-earth dams or earth dams, are constructed as a simple embankment of well-compacted earth. A homogeneous rolled-earth dam is entirely constructed of one type of material but may contain a drain layer to collect seep water. A zoned-earth dam has distinct parts or zones of dissimilar material, typically

870-429: The water fanning out and flowing towards the central pool which is maintained at the desired level by discharge control. While flowing from the sluices, coarse material is deposited first and then finer material is deposited (fine material has a slower terminal velocity thus takes longer to settle, see Stokes' Law ) as the flow velocity is reduced towards the center of the dam. This fine material forms an impervious core to

900-500: The world is the 233 m-tall (764 ft) Shuibuya Dam in China , completed in 2008. The building of a dam and the filling of the reservoir behind it places a new weight on the floor and sides of a valley. The stress of the water increases linearly with its depth. Water also pushes against the upstream face of the dam, a nonrigid structure that under stress behaves semiplastically, and causes greater need for adjustment (flexibility) near

#453546