The God Particle: If the Universe Is the Answer, What Is the Question? is a 1993 popular science book by Nobel Prize -winning physicist Leon M. Lederman and science writer Dick Teresi .
97-511: The book provides a brief history of particle physics , starting with the pre-Socratic Greek philosopher Democritus , and continuing through Isaac Newton , Roger J. Boscovich , Michael Faraday , and Ernest Rutherford and quantum physics in the 20th century. Lederman explains in the book why he gave the Higgs boson the nickname "The God Particle": This boson is so central to the state of physics today, so crucial to our final understanding of
194-487: A Hilbert space , which is also treated in quantum field theory . Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles. Ordinary matter is made from first- generation quarks ( up , down ) and leptons ( electron , electron neutrino ). Collectively, quarks and leptons are called fermions , because they have
291-552: A chemical element that differ only in neutron number are called isotopes . For example, carbon , with atomic number 6, has an abundant isotope carbon-12 with 6 neutrons and a rare isotope carbon-13 with 7 neutrons. Some elements occur in nature with only one stable isotope , such as fluorine . Other elements occur with many stable isotopes, such as tin with ten stable isotopes, or with no stable isotope, such as technetium . The properties of an atomic nucleus depend on both atomic and neutron numbers. With their positive charge,
388-425: A fermion with intrinsic angular momentum equal to 1 / 2 ħ , where ħ is the reduced Planck constant . For many years after the discovery of the neutron, its exact spin was ambiguous. Although it was assumed to be a spin 1 / 2 Dirac particle , the possibility that the neutron was a spin 3 / 2 particle lingered. The interactions of
485-408: A nuclear chain reaction . These events and findings led to the first self-sustaining nuclear reactor ( Chicago Pile-1 , 1942) and the first nuclear weapon ( Trinity , 1945). Dedicated neutron sources like neutron generators , research reactors and spallation sources produce free neutrons for use in irradiation and in neutron scattering experiments. A free neutron spontaneously decays to
582-498: A quantum spin of half-integers (−1/2, 1/2, 3/2, etc.). This causes the fermions to obey the Pauli exclusion principle , where no two particles may occupy the same quantum state . Quarks have fractional elementary electric charge (−1/3 or 2/3) and leptons have whole-numbered electric charge (0 or 1). Quarks also have color charge , which is labeled arbitrarily with no correlation to actual light color as red, green and blue. Because
679-1055: A " Theory of Everything ", or "TOE". There are also other areas of work in theoretical particle physics ranging from particle cosmology to loop quantum gravity . In principle, all physics (and practical applications developed therefrom) can be derived from the study of fundamental particles. In practice, even if "particle physics" is taken to mean only "high-energy atom smashers", many technologies have been developed during these pioneering investigations that later find wide uses in society. Particle accelerators are used to produce medical isotopes for research and treatment (for example, isotopes used in PET imaging ), or used directly in external beam radiotherapy . The development of superconductors has been pushed forward by their use in particle physics. The World Wide Web and touchscreen technology were initially developed at CERN . Additional applications are found in medicine, national security, industry, computing, science, and workforce development, illustrating
776-401: A bottle, while the "beam" method employs energetic neutrons in a particle beam. The measurements by the two methods have not been converging with time. The lifetime from the bottle method is presently 877.75 s which is 10 seconds below the value from the beam method of 887.7 s A small fraction (about one per thousand) of free neutrons decay with the same products, but add an extra particle in
873-456: A cascade known as a nuclear chain reaction . For a given mass of fissile material, such nuclear reactions release energy that is approximately ten million times that from an equivalent mass of a conventional chemical explosive . Ultimately, the ability of the nuclear force to store energy arising from the electromagnetic repulsion of nuclear components is the basis for most of the energy that makes nuclear reactors or bombs possible; most of
970-544: A deuteron is formed by a proton capturing a neutron (this is exothermic and happens with zero-energy neutrons). The small recoil kinetic energy ( E r d {\displaystyle E_{rd}} ) of the deuteron (about 0.06% of the total energy) must also be accounted for. The energy of the gamma ray can be measured to high precision by X-ray diffraction techniques, as was first done by Bell and Elliot in 1948. The best modern (1986) values for neutron mass by this technique are provided by Greene, et al. These give
1067-452: A fourth generation of fermions does not exist. Bosons are the mediators or carriers of fundamental interactions, such as electromagnetism , the weak interaction , and the strong interaction . Electromagnetism is mediated by the photon , the quanta of light . The weak interaction is mediated by the W and Z bosons . The strong interaction is mediated by the gluon , which can link quarks together to form composite particles. Due to
SECTION 10
#17331180533601164-782: A long and growing list of beneficial practical applications with contributions from particle physics. Major efforts to look for physics beyond the Standard Model include the Future Circular Collider proposed for CERN and the Particle Physics Project Prioritization Panel (P5) in the US that will update the 2014 P5 study that recommended the Deep Underground Neutrino Experiment , among other experiments. Neutron The neutron
1261-437: A magnetic field to separate the neutron spin states. They recorded two such spin states, consistent with a spin 1 / 2 particle. As a fermion, the neutron is subject to the Pauli exclusion principle ; two neutrons cannot have the same quantum numbers. This is the source of the degeneracy pressure which counteracts gravity in neutron stars and prevents them from forming black holes. Even though
1358-417: A mass spectrometer, the mass of a neutron can be deduced by subtracting proton mass from deuteron mass, with the difference being the mass of the neutron plus the binding energy of deuterium (expressed as a positive emitted energy). The latter can be directly measured by measuring the energy ( B d {\displaystyle B_{d}} ) of the single 2.224 MeV gamma photon emitted when
1455-416: A mean-square radius of about 0.8 × 10 m , or 0.8 fm , and it is a spin-½ fermion . The neutron has no measurable electric charge. With its positive electric charge, the proton is directly influenced by electric fields , whereas the neutron is unaffected by electric fields. The neutron has a magnetic moment , however, so it is influenced by magnetic fields . The specific properties of
1552-404: A neutron by some heavy nuclides (such as uranium-235 ) can cause the nuclide to become unstable and break into lighter nuclides and additional neutrons. The positively charged light nuclides, or "fission fragments", then repel, releasing electromagnetic potential energy . If this reaction occurs within a mass of fissile material , the additional neutrons cause additional fission events, inducing
1649-445: A neutron mass of: The value for the neutron mass in MeV is less accurately known, due to less accuracy in the known conversion of Da to MeV/ c : Another method to determine the mass of a neutron starts from the beta decay of the neutron, when the momenta of the resulting proton and electron are measured. The neutron is a spin 1 / 2 particle, that is, it is
1746-479: A nucleon. The discrepancy stems from the complexity of the Standard Model for nucleons, where most of their mass originates in the gluon fields, virtual particles, and their associated energy that are essential aspects of the strong force . Furthermore, the complex system of quarks and gluons that constitute a neutron requires a relativistic treatment. But the nucleon magnetic moment has been successfully computed numerically from first principles , including all of
1843-489: A nucleus. The observed properties of atoms and molecules were inconsistent with the nuclear spin expected from the proton–electron hypothesis. Protons and electrons both carry an intrinsic spin of 1 / 2 ħ , and the isotopes of the same species were found to have either integer or fractional spin. By the hypothesis, isotopes would be composed of the same number of protons, but differing numbers of neutral bound proton+electron "particles". This physical picture
1940-417: A pair of protons, one with spin up, another with spin down. When all available proton states are filled, the Pauli exclusion principle disallows the decay of a neutron to a proton. The situation is similar to electrons of an atom, where electrons that occupy distinct atomic orbitals are prevented by the exclusion principle from decaying to lower, already-occupied, energy states. The stability of matter
2037-423: A proton, an electron , and an antineutrino , with a mean lifetime of about 15 minutes. Free neutrons do not directly ionize atoms, but they do indirectly cause ionizing radiation , so they can be a biological hazard, depending on dose. A small natural "neutron background" flux of free neutrons exists on Earth, caused by cosmic ray showers , and by the natural radioactivity of spontaneously fissionable elements in
SECTION 20
#17331180533602134-476: A series of experiments that showed that the new radiation consisted of uncharged particles with about the same mass as the proton. These properties matched Rutherford's hypothesized neutron. Chadwick won the 1935 Nobel Prize in Physics for this discovery. Models for an atomic nucleus consisting of protons and neutrons were quickly developed by Werner Heisenberg and others. The proton–neutron model explained
2231-404: A simple nonrelativistic , quantum mechanical wavefunction for baryons composed of three quarks. A straightforward calculation gives fairly accurate estimates for the magnetic moments of neutrons, protons, and other baryons. For a neutron, the result of this calculation is that the magnetic moment of the neutron is given by μ n = 4/3 μ d − 1/3 μ u , where μ d and μ u are
2328-435: A wide range of exotic particles . All particles and their interactions observed to date can be described almost entirely by the Standard Model. Dynamics of particles are also governed by quantum mechanics ; they exhibit wave–particle duality , displaying particle-like behaviour under certain experimental conditions and wave -like behaviour in others. In more technical terms, they are described by quantum state vectors in
2425-537: Is a subatomic particle , symbol n or n , that has no electric charge, and a mass slightly greater than that of a proton . Protons and neutrons constitute the nuclei of atoms . Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons . Nucleons have a mass of approximately one atomic mass unit, or dalton (symbol: Da). Their properties and interactions are described by nuclear physics . Protons and neutrons are not elementary particles ; each
2522-413: Is a consequence of these constraints. The decay of a neutron within a nuclide is illustrated by the decay of the carbon isotope carbon-14 , which has 6 protons and 8 neutrons. With its excess of neutrons, this isotope decays by beta decay to nitrogen-14 (7 protons, 7 neutrons), a process with a half-life of about 5,730 years . Nitrogen-14 is stable. "Beta decay" reactions can also occur by
2619-425: Is a particle physics theory suggesting that systems with higher energy have a smaller number of dimensions. A third major effort in theoretical particle physics is string theory . String theorists attempt to construct a unified description of quantum mechanics and general relativity by building a theory based on small strings, and branes rather than particles. If the theory is successful, it may be considered
2716-411: Is composed of three quarks . The chemical properties of an atom are mostly determined by the configuration of electrons that orbit the atom's heavy nucleus. The electron configuration is determined by the charge of the nucleus, which is determined by the number of protons, or atomic number . The number of neutrons is the neutron number . Neutrons do not affect the electron configuration. Atoms of
2813-403: Is essential to the production of nuclear power. In the decade after the neutron was discovered by James Chadwick in 1932, neutrons were used to induce many different types of nuclear transmutations . With the discovery of nuclear fission in 1938, it was quickly realized that, if a fission event produced neutrons, each of these neutrons might cause further fission events, in a cascade known as
2910-448: Is for one of the neutron's quarks to change flavour (through a Cabibbo–Kobayashi–Maskawa matrix ) via the weak interaction . The decay of one of the neutron's down quarks into a lighter up quark can be achieved by the emission of a W boson . By this process, the Standard Model description of beta decay, the neutron decays into a proton (which contains one down and two up quarks), an electron, and an electron antineutrino . The decay of
3007-508: Is fundamentally composed of elementary particles dates from at least the 6th century BC. In the 19th century, John Dalton , through his work on stoichiometry , concluded that each element of nature was composed of a single, unique type of particle. The word atom , after the Greek word atomos meaning "indivisible", has since then denoted the smallest particle of a chemical element , but physicists later discovered that atoms are not, in fact,
The God Particle (book) - Misplaced Pages Continue
3104-544: Is in model building where model builders develop ideas for what physics may lie beyond the Standard Model (at higher energies or smaller distances). This work is often motivated by the hierarchy problem and is constrained by existing experimental data. It may involve work on supersymmetry , alternatives to the Higgs mechanism , extra spatial dimensions (such as the Randall–Sundrum models ), Preon theory, combinations of these, or other ideas. Vanishing-dimensions theory
3201-521: Is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons , and electrons and electron neutrinos . The three fundamental interactions known to be mediated by bosons are electromagnetism , the weak interaction , and the strong interaction . Quarks cannot exist on their own but form hadrons . Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons . Two baryons,
3298-420: Is the nuclear magneton . The neutron's magnetic moment has a negative value, because its orientation is opposite to the neutron's spin. The magnetic moment of the neutron is an indication of its quark substructure and internal charge distribution. In the quark model for hadrons , the neutron is composed of one up quark (charge +2/3 e ) and two down quarks (charge −1/3 e ). The magnetic moment of
3395-566: Is the study of fundamental particles and forces that constitute matter and radiation . The field also studies combinations of elementary particles up to the scale of protons and neutrons , while the study of combination of protons and neutrons is called nuclear physics . The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter
3492-483: Is the study of these particles in radioactive processes and in particle accelerators such as the Large Hadron Collider . Theoretical particle physics is the study of these particles in the context of cosmology and quantum theory . The two are closely interrelated: the Higgs boson was postulated by theoretical particle physicists and its presence confirmed by practical experiments. The idea that all matter
3589-600: Is used to extract the parameters of the Standard Model with less uncertainty. This work probes the limits of the Standard Model and therefore expands scientific understanding of nature's building blocks. Those efforts are made challenging by the difficulty of calculating high precision quantities in quantum chromodynamics . Some theorists working in this area use the tools of perturbative quantum field theory and effective field theory , referring to themselves as phenomenologists . Others make use of lattice field theory and call themselves lattice theorists . Another major effort
3686-683: The Chicago Pile-1 at the University of Chicago in 1942, the first self-sustaining nuclear reactor . Just three years later the Manhattan Project was able to test the first atomic bomb , the Trinity nuclear test in July 1945. The mass of a neutron cannot be directly determined by mass spectrometry since it has no electric charge. But since the masses of a proton and of a deuteron can be measured with
3783-599: The Earth's crust . An atomic nucleus is formed by a number of protons, Z (the atomic number ), and a number of neutrons, N (the neutron number ), bound together by the nuclear force . Protons and neutrons each have a mass of approximately one dalton . The atomic number determines the chemical properties of the atom, and the neutron number determines the isotope or nuclide . The terms isotope and nuclide are often used synonymously , but they refer to chemical and nuclear properties, respectively. Isotopes are nuclides with
3880-544: The atomic nuclei are baryons – the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark. A baryon is composed of three quarks, and a meson is composed of two quarks (one normal, one anti). Baryons and mesons are collectively called hadrons . Quarks inside hadrons are governed by the strong interaction, thus are subjected to quantum chromodynamics (color charges). The bounded quarks must have their color charge to be neutral, or "white" for analogy with mixing
3977-417: The proton and the neutron , make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of a microsecond . They occur after collisions between particles made of quarks, such as fast-moving protons and neutrons in cosmic rays . Mesons are also produced in cyclotrons or other particle accelerators . Particles have corresponding antiparticles with
The God Particle (book) - Misplaced Pages Continue
4074-421: The quantum fields that also govern their interactions. The dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model . The reconciliation of gravity to the current particle physics theory is not solved; many theories have addressed this problem, such as loop quantum gravity , string theory and supersymmetry theory . Practical particle physics
4171-480: The 1920s, physicists assumed that the atomic nucleus was composed of protons and "nuclear electrons", but this raised obvious problems. It was difficult to reconcile the proton–electron model of the nucleus with the Heisenberg uncertainty relation of quantum mechanics. The Klein paradox , discovered by Oskar Klein in 1928, presented further quantum mechanical objections to the notion of an electron confined within
4268-507: The 1944 Nobel Prize in Chemistry "for his discovery of the fission of heavy atomic nuclei". The discovery of nuclear fission would lead to the development of nuclear power and the atomic bomb by the end of World War II. It was quickly realized that, if a fission event produced neutrons, each of these neutrons might cause further fission events, in a cascade known as a nuclear chain reaction. These events and findings led Fermi to construct
4365-454: The 1950s and 1960s, a bewildering variety of particles was found in collisions of particles from beams of increasingly high energy. It was referred to informally as the " particle zoo ". Important discoveries such as the CP violation by James Cronin and Val Fitch brought new questions to matter-antimatter imbalance . After the formulation of the Standard Model during the 1970s, physicists clarified
4462-586: The 1990s. The increasingly doomed project was finally shelved that same year after some $ 2 billion of expenditure. The proximate causes of the closure were the rising US budget deficit , rising projected costs of the project, and the cessation of the Cold War , which reduced the perceived political pressure within the United States to undertake and complete high-profile science megaprojects . Particle physics Particle physics or high-energy physics
4559-545: The American chemist W. D. Harkins first named the hypothetical particle a "neutron". The name derives from the Latin root for neutralis (neuter) and the Greek suffix -on (a suffix used in the names of subatomic particles, i.e. electron and proton ). References to the word neutron in connection with the atom can be found in the literature as early as 1899, however. Throughout
4656-488: The Nobel Prize in Physics "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". In December 1938 Otto Hahn , Lise Meitner , and Fritz Strassmann discovered nuclear fission , or the fractionation of uranium nuclei into lighter elements, induced by neutron bombardment. In 1945 Hahn received
4753-571: The aforementioned color confinement, gluons are never observed independently. The Higgs boson gives mass to the W and Z bosons via the Higgs mechanism – the gluon and photon are expected to be massless . All bosons have an integer quantum spin (0 and 1) and can have the same quantum state . Most aforementioned particles have corresponding antiparticles , which compose antimatter . Normal particles have positive lepton or baryon number , and antiparticles have these numbers negative. Most properties of corresponding antiparticles and particles are
4850-406: The beta decay process. The neutrons and protons in a nucleus form a quantum mechanical system according to the nuclear shell model . Protons and neutrons of a nuclide are organized into discrete hierarchical energy levels with unique quantum numbers . Nucleon decay within a nucleus can occur if allowed by basic energy conservation and quantum mechanical constraints. The decay products, that is,
4947-400: The capture of a lepton by the nucleon. The transformation of a proton to a neutron inside of a nucleus is possible through electron capture : A rarer reaction, inverse beta decay , involves the capture of a neutrino by a nucleon. Rarer still, positron capture by neutrons can occur in the high-temperature environment of stars. Three types of beta decay in competition are illustrated by
SECTION 50
#17331180533605044-438: The common chemical element lead , Pb, has 82 protons and 126 neutrons, for example. The table of nuclides comprises all the known nuclides. Even though it is not a chemical element, the neutron is included in this table. Protons and neutrons behave almost identically under the influence of the nuclear force within the nucleus. They are therefore both referred to collectively as nucleons . The concept of isospin , in which
5141-441: The complex behavior of quarks to be subtracted out between models, and merely exploring what the effects would be of differing quark charges (or quark type). Such calculations are enough to show that the interior of neutrons is very much like that of protons, save for the difference in quark composition with a down quark in the neutron replacing an up quark in the proton. The neutron magnetic moment can be roughly computed by assuming
5238-584: The constituents of all matter . Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson . On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson. The Standard Model, as currently formulated, has 61 elementary particles. Those elementary particles can combine to form composite particles, accounting for
5335-552: The difference in mass represents the mass equivalent to nuclear binding energy, the energy which would need to be added to take the nucleus apart. The nucleus of the most common isotope of the hydrogen atom (with the chemical symbol H) is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium (D or H) and tritium (T or H) contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons. The most common nuclide of
5432-567: The discovery of the Higgs boson, Lederman co-authored, with theoretical physicist Christopher T. Hill , a sequel: Beyond the God Particle which delves into the future of particle physics in the post-Higgs boson era. This book is part of a trilogy, with companions, Symmetry and the Beautiful Universe and Quantum Physics for Poets (see bibliography below). Fermilab director and subsequent Nobel physics prize winner Leon Lederman
5529-459: The electron fails to gain the 13.6 eV necessary energy to escape the proton (the ionization energy of hydrogen ), and therefore simply remains bound to it, forming a neutral hydrogen atom (one of the "two bodies"). In this type of free neutron decay, almost all of the neutron decay energy is carried off by the antineutrino (the other "body"). (The hydrogen atom recoils with a speed of only about (decay energy)/(hydrogen rest energy) times
5626-405: The emitted particles, carry away the energy excess as a nucleon falls from one quantum state to one with less energy, while the neutron (or proton) changes to a proton (or neutron). For a neutron to decay, the resulting proton requires an available state at lower energy than the initial neutron state. In stable nuclei the possible lower energy states are all filled, meaning each state is occupied by
5723-593: The energy released from fission is the kinetic energy of the fission fragments. Neutrons and protons within a nucleus behave similarly and can exchange their identities by similar reactions. These reactions are a form of radioactive decay known as beta decay . Beta decay, in which neutrons decay to protons, or vice versa, is governed by the weak force , and it requires the emission or absorption of electrons and neutrinos, or their antiparticles. The neutron and proton decay reactions are: where p , e , and ν e denote
5820-478: The first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model. Modern particle physics research is focused on subatomic particles , including atomic constituents, such as electrons , protons , and neutrons (protons and neutrons are composite particles called baryons , made of quarks ), that are produced by radioactive and scattering processes; such particles are photons , neutrinos , and muons , as well as
5917-445: The form of an emitted gamma ray: Called a "radiative decay mode" of the neutron, the gamma ray may be thought of as resulting from an "internal bremsstrahlung " that arises from the electromagnetic interaction of the emitted beta particle with the proton. A smaller fraction (about four per million) of free neutrons decay in so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but
SECTION 60
#17331180533606014-424: The fundamental particles of nature, but are conglomerates of even smaller particles, such as the electron . The early 20th century explorations of nuclear physics and quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner (based on experiments by Otto Hahn ), and nuclear fusion by Hans Bethe in that same year; both discoveries also led to the development of nuclear weapons . Throughout
6111-538: The gravitational interaction, but it has not been detected or completely reconciled with current theories. Many other hypothetical particles have been proposed to address the limitations of the Standard Model. Notably, supersymmetric particles aim to solve the hierarchy problem , axions address the strong CP problem , and various other particles are proposed to explain the origins of dark matter and dark energy . The world's major particle physics laboratories are: Theoretical particle physics attempts to develop
6208-424: The hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the experimental tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery (See Theory of Everything ). In recent years, measurements of neutrino mass have provided
6305-433: The interactions between the quarks store energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called color confinement . There are three known generations of quarks (up and down, strange and charm , top and bottom ) and leptons (electron and its neutrino, muon and its neutrino , tau and its neutrino ), with strong indirect evidence that
6402-437: The magnetic moments for the down and up quarks, respectively. This result combines the intrinsic magnetic moments of the quarks with their orbital magnetic moments, and assumes the three quarks are in a particular, dominant quantum state. The results of this calculation are encouraging, but the masses of the up or down quarks were assumed to be 1/3 the mass of a nucleon. The masses of the quarks are actually only about 1% that of
6499-456: The mid-1970s after experimental confirmation of the existence of quarks . It describes the strong , weak , and electromagnetic fundamental interactions , using mediating gauge bosons . The species of gauge bosons are eight gluons , W , W and Z bosons , and the photon . The Standard Model also contains 24 fundamental fermions (12 particles and their associated anti-particles), which are
6596-497: The models, theoretical framework, and mathematical tools to understand current experiments and make predictions for future experiments (see also theoretical physics ). There are several major interrelated efforts being made in theoretical particle physics today. One important branch attempts to better understand the Standard Model and its tests. Theorists make quantitative predictions of observables at collider and astronomical experiments, which along with experimental measurements
6693-406: The neutron and its magnetic moment both indicate that the neutron is a composite , rather than elementary , particle. The quarks of the neutron are held together by the strong force , mediated by gluons . The nuclear force results from secondary effects of the more fundamental strong force . The only possible decay mode for the neutron that obeys the conservation law for the baryon number
6790-401: The neutron and its properties is central to the extraordinary developments in atomic physics that occurred in the first half of the 20th century, leading ultimately to the atomic bomb in 1945. In the 1911 Rutherford model , the atom consisted of a small positively charged massive nucleus surrounded by a much larger cloud of negatively charged electrons. In 1920, Ernest Rutherford suggested that
6887-456: The neutron are described below in the Intrinsic properties section . Outside the nucleus, free neutrons undergo beta decay with a mean lifetime of about 14 minutes, 38 seconds, corresponding to a half-life of about 10 minutes, 11 s. The mass of the neutron is greater than that of the proton by 1.293 32 MeV/ c , hence the neutron's mass provides energy sufficient for the creation of
6984-401: The neutron can be modeled as a sum of the magnetic moments of the constituent quarks. The calculation assumes that the quarks behave like point-like Dirac particles, each having their own magnetic moment. Simplistically, the magnetic moment of the neutron can be viewed as resulting from the vector sum of the three quark magnetic moments, plus the orbital magnetic moments caused by the movement of
7081-434: The neutron is a neutral particle, the magnetic moment of a neutron is not zero. The neutron is not affected by electric fields, but it is affected by magnetic fields. The value for the neutron's magnetic moment was first directly measured by Luis Alvarez and Felix Bloch at Berkeley, California , in 1940. Alvarez and Bloch determined the magnetic moment of the neutron to be μ n = −1.93(2) μ N , where μ N
7178-431: The neutron's magnetic moment with an external magnetic field were exploited to finally determine the spin of the neutron. In 1949, Hughes and Burgy measured neutrons reflected from a ferromagnetic mirror and found that the angular distribution of the reflections was consistent with spin 1 / 2 . In 1954, Sherwood, Stephenson, and Bernstein employed neutrons in a Stern–Gerlach experiment that used
7275-431: The nucleus consisted of positive protons and neutrally charged particles, suggested to be a proton and an electron bound in some way. Electrons were assumed to reside within the nucleus because it was known that beta radiation consisted of electrons emitted from the nucleus. About the time Rutherford suggested the neutral proton-electron composite, several other publications appeared making similar suggestions, and in 1921
7372-420: The nucleus via the nuclear force , effectively moderating the repulsive forces between the protons and stabilizing the nucleus. Heavy nuclei carry a large positive charge, hence they require "extra" neutrons to be stable. While a free neutron is unstable and a free proton is stable, within nuclei neutrons are often stable and protons are sometimes unstable. When bound within a nucleus, nucleons can decay by
7469-426: The origin of the particle zoo. The large number of particles was explained as combinations of a (relatively) small number of more fundamental particles and framed in the context of quantum field theories . This reclassification marked the beginning of modern particle physics. The current state of the classification of all elementary particles is explained by the Standard Model , which gained widespread acceptance in
7566-446: The original particle is not composed of the product particles; rather, the product particles are created at the instant of the reaction. "Free" neutrons or protons are nucleons that exist independently, free of any nucleus. The free neutron has a mass of 939 565 413 .3 eV/ c , or 939.565 4133 MeV/ c . This mass is equal to 1.674 927 471 × 10 kg , or 1.008 664 915 88 Da . The neutron has
7663-483: The photon or gluon, have no antiparticles. Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue (though the particle itself have no physical color), and in antiquarks are called antired, antigreen and antiblue. The gluon can have eight color charges , which are the result of quarks' interactions to form composite particles (gauge symmetry SU(3) ). The neutrons and protons in
7760-426: The primary colors . More exotic hadrons can have other types, arrangement or number of quarks ( tetraquark , pentaquark ). An atom is made from protons, neutrons and electrons. By modifying the particles inside a normal atom, exotic atoms can be formed. A simple example would be the hydrogen-4.1 , which has one of its electrons replaced with a muon. The graviton is a hypothetical particle that can mediate
7857-400: The proton and neutron are viewed as two quantum states of the same particle, is used to model the interactions of nucleons by the nuclear or weak forces. Because of the strength of the nuclear force at short distances, the nuclear energy binding nucleons is many orders of magnitude greater than the electromagnetic energy binding electrons in atoms. In nuclear fission , the absorption of
7954-406: The proton to a neutron occurs similarly through the weak force. The decay of one of the proton's up quarks into a down quark can be achieved by the emission of a W boson. The proton decays into a neutron, a positron, and an electron neutrino. This reaction can only occur within an atomic nucleus which has a quantum state at lower energy available for the created neutron. The story of the discovery of
8051-409: The proton, electron and electron anti- neutrino decay products, and where n , e , and ν e denote the neutron, positron and electron neutrino decay products. The electron and positron produced in these reactions are historically known as beta particles , denoted β or β respectively, lending the name to the decay process. In these reactions,
8148-464: The proton, electron, and anti-neutrino. In the decay process, the proton, electron, and electron anti-neutrino conserve the energy, charge, and lepton number of the neutron. The electron can acquire a kinetic energy up to 0.782 ± 0.013 MeV . Still unexplained, different experimental methods for measuring the neutron's lifetime, the "bottle" and "beam" methods, produce different values for it. The "bottle" method employs "cold" neutrons trapped in
8245-521: The protons within the nucleus are repelled by the long-range electromagnetic force , but the much stronger, but short-range, nuclear force binds the nucleons closely together. Neutrons are required for the stability of nuclei, with the exception of the single-proton hydrogen nucleus. Neutrons are produced copiously in nuclear fission and fusion . They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes. The neutron
8342-519: The puzzle of nuclear spins. The origins of beta radiation were explained by Enrico Fermi in 1934 by the process of beta decay , in which the neutron decays to a proton by creating an electron and a (at the time undiscovered) neutrino. In 1935, Chadwick and his doctoral student Maurice Goldhaber reported the first accurate measurement of the mass of the neutron. By 1934, Fermi had bombarded heavier elements with neutrons to induce radioactivity in elements of high atomic number. In 1938, Fermi received
8439-412: The same mass but with opposite electric charges . For example, the antiparticle of the electron is the positron . The electron has a negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter . Some particles, such as the photon , are their own antiparticle. These elementary particles are excitations of
8536-429: The same atomic number, but different neutron number. Nuclides with the same neutron number, but different atomic number, are called isotones . The atomic mass number , A , is equal to the sum of atomic and neutron numbers. Nuclides with the same atomic mass number, but different atomic and neutron numbers, are called isobars . The mass of a nucleus is always slightly less than the sum of its proton and neutron masses:
8633-444: The same, with a few gets reversed; the electron's antiparticle, positron, has an opposite charge. To differentiate between antiparticles and particles, a plus or negative sign is added in superscript . For example, the electron and the positron are denoted e and e . When a particle and an antiparticle interact with each other, they are annihilated and convert to other particles. Some particles, such as
8730-469: The single isotope copper-64 (29 protons, 35 neutrons), which has a half-life of about 12.7 hours. This isotope has one unpaired proton and one unpaired neutron, so either the proton or the neutron can decay. This particular nuclide is almost equally likely to undergo proton decay (by positron emission , 18% or by electron capture , 43%; both forming Ni ) or neutron decay (by electron emission, 39%; forming Zn ). Within
8827-429: The speed of light, or 250 km/s .) Neutrons are a necessary constituent of any atomic nucleus that contains more than one proton. As a result of their positive charges, interacting protons have a mutual electromagnetic repulsion that is stronger than their attractive nuclear interaction , so proton-only nuclei are unstable (see diproton and neutron–proton ratio ). Neutrons bind with protons and one another in
8924-459: The structure of matter, yet so elusive, that I have given it a nickname: the God Particle. Why God Particle? Two reasons. One, the publisher wouldn't let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing. And two, there is a connection, of sorts, to another book , a much older one... In 2013, subsequent to
9021-417: The theoretical framework of the Standard Model for particle physics, a neutron comprises two down quarks with charge − 1 / 3 e and one up quark with charge + 2 / 3 e . The neutron is therefore a composite particle classified as a hadron . The neutron is also classified as a baryon , because it is composed of three valence quarks . The finite size of
9118-435: The three charged quarks within the neutron. In one of the early successes of the Standard Model, in 1964 Mirza A.B. Beg, Benjamin W. Lee , and Abraham Pais calculated the ratio of proton to neutron magnetic moments to be −3/2 (or a ratio of −1.5), which agrees with the experimental value to within 3%. The measured value for this ratio is −1.459 898 05 (34) . The above treatment compares neutrons with protons, allowing
9215-567: Was gamma radiation . The following year Irène Joliot-Curie and Frédéric Joliot-Curie in Paris showed that if this "gamma" radiation fell on paraffin , or any other hydrogen -containing compound, it ejected protons of very high energy. Neither Rutherford nor James Chadwick at the Cavendish Laboratory in Cambridge were convinced by the gamma ray interpretation. Chadwick quickly performed
9312-418: Was a contradiction, since there is no way to arrange the spins of an electron and a proton in a bound state to get a fractional spin. In 1931, Walther Bothe and Herbert Becker found that if alpha particle radiation from polonium fell on beryllium , boron , or lithium , an unusually penetrating radiation was produced. The radiation was not influenced by an electric field, so Bothe and Becker assumed it
9409-504: Was a very prominent early supporter – some sources say the architect or proposer – of the Superconducting Super Collider project, which was endorsed around 1983, and was a major proponent and advocate throughout its lifetime. Lederman wrote his 1993 popular science book – which sought to promote awareness of the significance of such a project – in the context of the project's last years and the changing political climate of
#359640