Geology (from Ancient Greek γῆ ( gê ) 'earth' and λoγία ( -logía ) 'study of, discourse') is a branch of natural science concerned with the Earth and other astronomical objects , the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences , including hydrology . It is integrated with Earth system science and planetary science .
75-548: Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages . By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle
150-535: A characteristic fabric . All three types may melt again, and when this happens, new magma is formed, from which an igneous rock may once again solidify. Organic matter, such as coal, bitumen, oil, and natural gas, is linked mainly to organic-rich sedimentary rocks. To study all three types of rock, geologists evaluate the minerals of which they are composed and their other physical properties, such as texture and fabric . Geologists also study unlithified materials (referred to as superficial deposits ) that lie above
225-481: A petrographic microscope , where the minerals can be identified through their different properties in plane-polarized and cross-polarized light, including their birefringence , pleochroism , twinning , and interference properties with a conoscopic lens . In the electron microprobe, individual locations are analyzed for their exact chemical compositions and variation in composition within individual crystals. Stable and radioactive isotope studies provide insight into
300-401: A rock's fabric describes the spatial and geometric configuration of all the elements that make it up. In sedimentary rocks , the fabric developed depends on the depositional environment and can provide information on current directions at the time of deposition. In structural geology , fabrics may provide information on both the orientation and magnitude of the strains that have affected
375-433: A definite homogeneous chemical composition and an ordered atomic arrangement. Each mineral has distinct physical properties, and there are many tests to determine each of them. Minerals are often identified through these tests. The specimens can be tested for: A rock is any naturally occurring solid mass or aggregate of minerals or mineraloids . Most research in geology is associated with the study of rocks, as they provide
450-416: A large amount of matter into a gravity well , and the kinetic energy of accreted matter). Due to increasing pressure deeper in the mantle, the lower part flows less easily, though chemical changes within the mantle may also be important. The viscosity of the mantle ranges between 10 and 10 pascal-second , increasing with depth. In comparison, the viscosity of water at 300 K (27 °C; 80 °F)
525-623: A length of less than a meter. Rocks at the depth to be ductilely stretched are often also metamorphosed. These stretched rocks can also pinch into lenses, known as boudins , after the French word for "sausage" because of their visual similarity. Where rock units slide past one another, strike-slip faults develop in shallow regions, and become shear zones at deeper depths where the rocks deform ductilely. The addition of new rock units, both depositionally and intrusively, often occurs during deformation. Faulting and other deformational processes result in
600-408: A linear fabric such as mineral stretching lineation where aggregates of recrystallised grains are stretched out into the long axis of the finite strain ellipsoid , where it forms the dominant fabric in a rock, it may be called an L-tectonite. Penetrative fabric — a fabric that is present throughout the rock, generally down to the grain scale , although this does also depend on the scale at which
675-468: A liquid outer core whose flow generates the Earth's magnetic field , and a solid inner core . Scientific understanding of the internal structure of Earth is based on observations of topography and bathymetry , observations of rock in outcrop , samples brought to the surface from greater depths by volcanoes or volcanic activity, analysis of the seismic waves that pass through Earth, measurements of
750-399: A means to provide information about geological history and the timing of geological events. The principle of uniformitarianism states that the geological processes observed in operation that modify the Earth's crust at present have worked in much the same way over geological time. A fundamental principle of geology advanced by the 18th-century Scottish physician and geologist James Hutton
825-608: A number of fields, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth. In typical geological investigations, geologists use primary information related to petrology (the study of rocks), stratigraphy (the study of sedimentary layers), and structural geology (the study of positions of rock units and their deformation). In many cases, geologists also study modern soils, rivers , landscapes , and glaciers ; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate
SECTION 10
#1732851718870900-476: A particular piece of deformed rock. Types of fabric [ edit ] Primary fabric — a fabric created during the original formation of the rock, e.g. a preferred orientation of clast long axes in a conglomerate , parallel to the flow direction, deposited by a fast waning current. Shape fabric — a fabric that is defined by the preferred orientation of inequant elements within the rock, such as platy- or needle-like mineral grains. It may also be formed by
975-751: A prism. Likewise, reflections are caused by a large increase in seismic velocity and are similar to light reflecting from a mirror. Fabric (geology) Spatial and geometric configuration of all the elements that make up a rock This article is about the geological term. For other uses, see Fabric (disambiguation) . [REDACTED] Primary fabric in anorthosite intrusion , Rogaland , Norway [REDACTED] Deformed waterlain volcanic sediments. Primary fabric (bedding) shown by abrupt change in clast size , secondary fabric shown by penetrative S-fabric, cleavage , in fine-grained rock, and by shape fabric in deformed volcanic clasts. Cape Forchu, Nova Scotia In geology ,
1050-456: A sample of iron–nickel alloy was subjected to the core-like pressure by gripping it in a vise between 2 diamond tips ( diamond anvil cell ), and then heating to approximately 4000 K. The sample was observed with x-rays, and strongly supported the theory that Earth's inner core was made of giant crystals running north to south. The composition of Earth bears strong similarities to that of certain chondrite meteorites, and even to some elements in
1125-450: A sedimentary rock. Sedimentary rocks are mainly divided into four categories: sandstone, shale, carbonate, and evaporite. This group of classifications focuses partly on the size of sedimentary particles (sandstone and shale), and partly on mineralogy and formation processes (carbonation and evaporation). Igneous and sedimentary rocks can then be turned into metamorphic rocks by heat and pressure that change its mineral content, resulting in
1200-493: A single environment and do not necessarily occur in a single order. The Hawaiian Islands , for example, consist almost entirely of layered basaltic lava flows. The sedimentary sequences of the mid-continental United States and the Grand Canyon in the southwestern United States contain almost-undeformed stacks of sedimentary rocks that have remained in place since Cambrian time. Other areas are much more geologically complex. In
1275-400: A variety of applications. Dating of lava and volcanic ash layers found within a stratigraphic sequence can provide absolute age data for sedimentary rock units that do not contain radioactive isotopes and calibrate relative dating techniques. These methods can also be used to determine ages of pluton emplacement. Thermochemical techniques can be used to determine temperature profiles within
1350-409: Is mafic -rich (dense iron-magnesium silicate mineral or igneous rock ). The thicker crust is the continental crust , which is less dense and is felsic -rich (igneous rocks rich in elements that form feldspar and quartz ). The rocks of the crust fall into two major categories – sial (aluminium silicate) and sima (magnesium silicate). It is estimated that sima starts about 11 km below
1425-512: Is 0.89 millipascal-second and pitch is (2.3 ± 0.5) × 10 pascal-second. Earth's outer core is a fluid layer about 2,260 km (1,400 mi) in height (i.e. distance from the highest point to the lowest point at the edge of the inner core) [36% of the Earth's radius, 15.6% of the volume] and composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle . Its outer boundary lies 2,890 km (1,800 mi) beneath Earth's surface. The transition between
1500-505: Is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust]. The mantle is divided into upper and lower mantle separated by a transition zone . The lowest part of the mantle next to the core-mantle boundary is known as the D″ (D-double-prime) layer. The pressure at the bottom of the mantle is ≈140 G Pa (1.4 M atm ). The mantle is composed of silicate rocks richer in iron and magnesium than
1575-422: Is accomplished in two primary ways: through faulting and folding . In the shallow crust, where brittle deformation can occur, thrust faults form, which causes the deeper rock to move on top of the shallower rock. Because deeper rock is often older, as noted by the principle of superposition , this can result in older rocks moving on top of younger ones. Movement along faults can result in folding, either because
SECTION 20
#17328517188701650-460: Is an intimate coupling between the movement of the plates on the surface and the convection of the mantle (that is, the heat transfer caused by the slow movement of ductile mantle rock). Thus, oceanic parts of plates and the adjoining mantle convection currents always move in the same direction – because the oceanic lithosphere is actually the rigid upper thermal boundary layer of the convecting mantle. This coupling between rigid plates moving on
1725-453: Is estimated to measure 2.5 milliteslas (25 gauss), 50 times stronger than the magnetic field at the surface. The magnetic field generated by core flow is essential to protect life from interplanetary radiation and prevent the atmosphere from dissipating in the solar wind . The rate of cooling by conduction and convection is uncertain, but one estimate is that the core would not be expected to freeze up for approximately 91 billion years, which
1800-512: Is generally composed primarily of iron and some nickel. Since this layer is able to transmit shear waves (transverse seismic waves), it must be solid. Experimental evidence has at times been inconsistent with current crystal models of the core. Other experimental studies show a discrepancy under high pressure: diamond anvil (static) studies at core pressures yield melting temperatures that are approximately 2000 K below those from shock laser (dynamic) studies. The laser studies create plasma, and
1875-432: Is horizontal). The principle of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. Logically a younger layer cannot slip beneath a layer previously deposited. This principle allows sedimentary layers to be viewed as a form of the vertical timeline, a partial or complete record of the time elapsed from deposition of
1950-616: Is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources , understanding natural hazards , remediating environmental problems, and providing insights into past climate change . Geology is a major academic discipline , and it is central to geological engineering and plays an important role in geotechnical engineering . The majority of geological data comes from research on solid Earth materials. Meteorites and other extraterrestrial natural materials are also studied by geological methods. Minerals are naturally occurring elements and compounds with
2025-478: Is primarily accomplished through normal faulting and through the ductile stretching and thinning. Normal faults drop rock units that are higher below those that are lower. This typically results in younger units ending up below older units. Stretching of units can result in their thinning. In fact, at one location within the Maria Fold and Thrust Belt , the entire sedimentary sequence of the Grand Canyon appears over
2100-567: Is that "the present is the key to the past." In Hutton's words: "the past history of our globe must be explained by what can be seen to be happening now." The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock , it can be determined that the igneous intrusion is younger than the sedimentary rock. Different types of intrusions include stocks, laccoliths , batholiths , sills and dikes . The principle of cross-cutting relationships pertains to
2175-523: Is used for geologically young materials containing organic carbon . The geology of an area changes through time as rock units are deposited and inserted, and deformational processes alter their shapes and locations. Rock units are first emplaced either by deposition onto the surface or intrusion into the overlying rock . Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows blanket
2250-563: Is well after the Sun is expected to expand, sterilize the surface of the planet, and then burn out. The layering of Earth has been inferred indirectly using the time of travel of refracted and reflected seismic waves created by earthquakes. The core does not allow shear waves to pass through it, while the speed of travel ( seismic velocity ) is different in other layers. The changes in seismic velocity between different layers causes refraction owing to Snell's law , like light bending as it passes through
2325-461: The Conrad discontinuity , though the discontinuity is not distinct and can be absent in some continental regions. Earth's lithosphere consists of the crust and the uppermost mantle . The crust-mantle boundary occurs as two physically different phenomena. The Mohorovičić discontinuity is a distinct change of seismic wave velocity. This is caused by a change in the rock's density – immediately above
Geology - Misplaced Pages Continue
2400-499: The bedrock . This study is often known as Quaternary geology , after the Quaternary period of geologic history, which is the most recent period of geologic time. Magma is the original unlithified source of all igneous rocks . The active flow of molten rock is closely studied in volcanology , and igneous petrology aims to determine the history of igneous rocks from their original molten source to their final crystallization. In
2475-433: The crust . The core is thus believed to largely be composed of iron (80%), along with nickel and one or more light elements, whereas other dense elements, such as lead and uranium , either are too rare to be significant or tend to bind to lighter elements and thus remain in the crust (see felsic materials ). Some have argued that the inner core may be in the form of a single iron crystal . Under laboratory conditions
2550-508: The geochemical evolution of rock units. Petrologists can also use fluid inclusion data and perform high temperature and pressure physical experiments to understand the temperatures and pressures at which different mineral phases appear, and how they change through igneous and metamorphic processes. This research can be extrapolated to the field to understand metamorphic processes and the conditions of crystallization of igneous rocks. This work can also help to explain processes that occur within
2625-533: The gravitational and magnetic fields of Earth, and experiments with crystalline solids at pressures and temperatures characteristic of Earth's deep interior. Note: In chondrite model (1), the light element in the core is assumed to be Si. Chondrite model (2) is a model of chemical composition of the mantle corresponding to the model of core shown in chondrite model (1). Measurements of the force exerted by Earth's gravity can be used to calculate its mass . Astronomers can also calculate Earth's mass by observing
2700-410: The inner core . Chemically, Earth can be divided into the crust, upper mantle, lower mantle, outer core, and inner core. The geologic component layers of Earth are at increasing depths below the surface. Earth's crust ranges from 5 to 70 kilometres (3.1–43.5 mi) in depth and is the outermost layer. The thin parts are the oceanic crust , which underlies the ocean basins (5–10 km) and
2775-402: The mantle below (separated within itself by seismic discontinuities at 410 and 660 kilometers), and the outer core and inner core below that. More recently, seismologists have been able to create detailed images of wave speeds inside the earth in the same way a doctor images a body in a CT scan . These images have led to a much more detailed view of the interior of the Earth, and have replaced
2850-438: The 1960s, it was discovered that the Earth's lithosphere , which includes the crust and rigid uppermost portion of the upper mantle , is separated into tectonic plates that move across the plastically deforming, solid, upper mantle, which is called the asthenosphere . This theory is supported by several types of observations, including seafloor spreading and the global distribution of mountain terrain and seismicity. There
2925-423: The Earth, such as subduction and magma chamber evolution. Structural geologists use microscopic analysis of oriented thin sections of geological samples to observe the fabric within the rocks, which gives information about strain within the crystalline structure of the rocks. They also plot and combine measurements of geological structures to better understand the orientations of faults and folds to reconstruct
3000-478: The Grand Canyon in the southwestern United States being a very visible example, the lower rock units were metamorphosed and deformed, and then deformation ended and the upper, undeformed units were deposited. Although any amount of rock emplacement and rock deformation can occur, and they can occur any number of times, these concepts provide a guide to understanding the geological history of an area. Geologists use
3075-476: The Moho, the velocities of primary seismic waves ( P wave ) are consistent with those through basalt (6.7–7.2 km/s), and below they are similar to those through peridotite or dunite (7.6–8.6 km/s). Second, in oceanic crust, there is a chemical discontinuity between ultramafic cumulates and tectonized harzburgites , which has been observed from deep parts of the oceanic crust that have been obducted onto
Geology - Misplaced Pages Continue
3150-474: The alloy portion that corresponds to the core of Earth. Dynamo theory suggests that convection in the outer core, combined with the Coriolis effect , gives rise to Earth's magnetic field . The solid inner core is too hot to hold a permanent magnetic field (see Curie temperature ) but probably acts to stabilize the magnetic field generated by the liquid outer core. The average magnetic field in Earth's outer core
3225-537: The beginning of the 20th century, advancement in geological science was facilitated by the ability to obtain accurate absolute dates to geological events using radioactive isotopes and other methods. This changed the understanding of geological time. Previously, geologists could only use fossils and stratigraphic correlation to date sections of rock relative to one another. With isotopic dates, it became possible to assign absolute ages to rock units, and these absolute dates could be applied to fossil sequences in which there
3300-410: The continental crust and preserved as ophiolite sequences . Many rocks making up Earth's crust formed less than 100 million years ago; however, the oldest known mineral grains are about 4.4 billion years old, indicating that Earth has had a solid crust for at least 4.4 billion years. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [This
3375-515: The creation of topographic gradients, causing material on the rock unit that is increasing in elevation to be eroded by hillslopes and channels. These sediments are deposited on the rock unit that is going down. Continual motion along the fault maintains the topographic gradient in spite of the movement of sediment and continues to create accommodation space for the material to deposit. Deformational events are often also associated with volcanism and igneous activity. Volcanic ashes and lavas accumulate on
3450-437: The crust, the uplift of mountain ranges, and paleo-topography. Fractionation of the lanthanide series elements is used to compute ages since rocks were removed from the mantle. Other methods are used for more recent events. Optically stimulated luminescence and cosmogenic radionuclide dating are used to date surfaces and/or erosion rates. Dendrochronology can also be used for the dating of landscapes. Radiocarbon dating
3525-434: The deformation of originally equant elements such as mineral grains. Crystallographic preferred orientation — in plastically deformed rocks, the constituent minerals commonly display a preferred orientation of their crystal axes as a result of dislocation processes. S-fabric — a planar fabric such as cleavage or foliation ; when it forms the dominant fabric in a rock, it may be called an S- tectonite . L-fabric —
3600-569: The fault is a normal fault or a thrust fault . The principle of inclusions and components states that, with sedimentary rocks, if inclusions (or clasts ) are found in a formation, then the inclusions must be older than the formation that contains them. For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks occurs when xenoliths are found. These foreign bodies are picked up as magma or lava flows, and are incorporated, later to cool in
3675-403: The faults are not planar or because rock layers are dragged along, forming drag folds as slip occurs along the fault. Deeper in the Earth, rocks behave plastically and fold instead of faulting. These folds can either be those where the material in the center of the fold buckles upwards, creating " antiforms ", or where it buckles downwards, creating " synforms ". If the tops of the rock units within
3750-483: The folds remain pointing upwards, they are called anticlines and synclines , respectively. If some of the units in the fold are facing downward, the structure is called an overturned anticline or syncline, and if all of the rock units are overturned or the correct up-direction is unknown, they are simply called by the most general terms, antiforms, and synforms. Even higher pressures and temperatures during horizontal shortening can cause both folding and metamorphism of
3825-404: The formation of faults and the age of the sequences through which they cut. Faults are younger than the rocks they cut; accordingly, if a fault is found that penetrates some formations but not those on top of it, then the formations that were cut are older than the fault, and the ones that are not cut must be younger than the fault. Finding the key bed in these situations may help determine whether
SECTION 50
#17328517188703900-579: The geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth . Geology provides evidence for plate tectonics , the evolutionary history of life , and the Earth's past climates . Geologists broadly study the properties and processes of Earth and other terrestrial planets. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including fieldwork , rock description , geophysical techniques , chemical analysis , physical experiments , and numerical modelling . In practical terms, geology
3975-471: The history of rock deformation in the area. In addition, they perform analog and numerical experiments of rock deformation in large and small settings. Structure of the Earth The internal structure of Earth are the layers of the Earth , excluding its atmosphere and hydrosphere . The structure consists of an outer silicate solid crust , a highly viscous asthenosphere , and solid mantle ,
4050-463: The inner core and outer core is located approximately 5,150 km (3,200 mi) beneath Earth's surface. Earth's inner core is the innermost geologic layer of the planet Earth . It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 19% of Earth's radius [0.7% of volume] or 70% of the Moon 's radius. The inner core was discovered in 1936 by Inge Lehmann and
4125-423: The internal composition and structure of the Earth. Seismologists can use the arrival times of seismic waves to image the interior of the Earth. Early advances in this field showed the existence of a liquid outer core (where shear waves were not able to propagate) and a dense solid inner core . These advances led to the development of a layered model of the Earth, with a lithosphere (including crust) on top,
4200-459: The later end of the scale, it is marked by the present day (in the Holocene epoch ). The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in
4275-453: The lowest layer to deposition of the highest bed. The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist during the same period throughout the world, their presence or (sometimes) absence provides a relative age of the formations where they appear. Based on principles that William Smith laid out almost a hundred years before the publication of Charles Darwin 's theory of evolution ,
4350-489: The mantle and show the crystallographic structures expected in the inner core of the Earth. The geological time scale encompasses the history of the Earth. It is bracketed at the earliest by the dates of the first Solar System material at 4.567 Ga (or 4.567 billion years ago) and the formation of the Earth at 4.54 Ga (4.54 billion years), which is the beginning of the Hadean eon – a division of geological time. At
4425-405: The matrix. As a result, xenoliths are older than the rock that contains them. The principle of original horizontality states that the deposition of sediments occurs as essentially horizontal beds. Observation of modern marine and non-marine sediments in a wide variety of environments supports this generalization (although cross-bedding is inclined, the overall orientation of cross-bedded units
4500-483: The motion of orbiting satellites . Earth's average density can be determined through gravimetric experiments, which have historically involved pendulums . The mass of Earth is about 6 × 10 kg . The average density of Earth is 5.515 g/cm . The structure of Earth can be defined in two ways: by mechanical properties such as rheology , or chemically. Mechanically, it can be divided into lithosphere , asthenosphere , mesospheric mantle , outer core , and
4575-427: The outer portion of the Sun. Beginning as early as 1940, scientists, including Francis Birch , built geophysics upon the premise that Earth is like ordinary chondrites, the most common type of meteorite observed impacting Earth. This ignores the less abundant enstatite chondrites, which formed under extremely limited available oxygen, leading to certain normally oxyphile elements existing either partially or wholly in
SECTION 60
#17328517188704650-430: The overlying crust. Although solid, the mantle's extremely hot silicate material can flow over very long timescales. Convection of the mantle propels the motion of the tectonic plates in the crust. The source of heat that drives this motion is the decay of radioactive isotopes in Earth's crust and mantle combined with the initial heat from the planet's formation (from the potential energy released by collapsing
4725-413: The primary record of the majority of the geological history of the Earth. There are three major types of rock: igneous , sedimentary , and metamorphic . The rock cycle illustrates the relationships among them (see diagram). When a rock solidifies or crystallizes from melt ( magma or lava ), it is an igneous rock . This rock can be weathered and eroded , then redeposited and lithified into
4800-567: The principles of succession developed independently of evolutionary thought. The principle becomes quite complex, however, given the uncertainties of fossilization, localization of fossil types due to lateral changes in habitat ( facies change in sedimentary strata), and that not all fossils formed globally at the same time. Geologists also use methods to determine the absolute age of rock samples and geological events. These dates are useful on their own and may also be used in conjunction with relative dating methods or to calibrate relative methods. At
4875-466: The results are suggestive that constraining inner core conditions will depend on whether the inner core is a solid or is a plasma with the density of a solid. This is an area of active research. In early stages of Earth's formation about 4.6 billion years ago, melting would have caused denser substances to sink toward the center in a process called planetary differentiation (see also the iron catastrophe ), while less-dense materials would have migrated to
4950-428: The rocks. This metamorphism causes changes in the mineral composition of the rocks; creates a foliation , or planar surface, that is related to mineral growth under stress. This can remove signs of the original textures of the rocks, such as bedding in sedimentary rocks, flow features of lavas , and crystal patterns in crystalline rocks . Extension causes the rock units as a whole to become longer and thinner. This
5025-433: The simplified layered model with a much more dynamic model. Mineralogists have been able to use the pressure and temperature data from the seismic and modeling studies alongside knowledge of the elemental composition of the Earth to reproduce these conditions in experimental settings and measure changes within the crystal structure. These studies explain the chemical changes associated with the major seismic discontinuities in
5100-524: The southwestern United States, sedimentary, volcanic, and intrusive rocks have been metamorphosed, faulted, foliated, and folded. Even older rocks, such as the Acasta gneiss of the Slave craton in northwestern Canada , the oldest known rock in the world have been metamorphosed to the point where their origin is indiscernible without laboratory analysis. In addition, these processes can occur in stages. In many places,
5175-549: The subsurface. Sub-specialities of geology may distinguish endogenous and exogenous geology. Geological field work varies depending on the task at hand. Typical fieldwork could consist of: In addition to identifying rocks in the field ( lithology ), petrologists identify rock samples in the laboratory. Two of the primary methods for identifying rocks in the laboratory are through optical microscopy and by using an electron microprobe . In an optical mineralogy analysis, petrologists analyze thin sections of rock samples using
5250-405: The surface of the Earth and the convecting mantle is called plate tectonics . The development of plate tectonics has provided a physical basis for many observations of the solid Earth . Long linear regions of geological features are explained as plate boundaries: Plate tectonics has provided a mechanism for Alfred Wegener 's theory of continental drift , in which the continents move across
5325-488: The surface of the Earth over geological time. They also provided a driving force for crustal deformation, and a new setting for the observations of structural geology. The power of the theory of plate tectonics lies in its ability to combine all of these observations into a single theory of how the lithosphere moves over the convecting mantle. Advances in seismology , computer modeling , and mineralogy and crystallography at high temperatures and pressures give insights into
5400-474: The surface, and igneous intrusions enter from below. Dikes , long, planar igneous intrusions, enter along cracks, and therefore often form in large numbers in areas that are being actively deformed. This can result in the emplacement of dike swarms , such as those that are observable across the Canadian shield, or rings of dikes around the lava tube of a volcano. All of these processes do not necessarily occur in
5475-742: The surface. Igneous intrusions such as batholiths , laccoliths , dikes , and sills , push upwards into the overlying rock, and crystallize as they intrude. After the initial sequence of rocks has been deposited, the rock units can be deformed and/or metamorphosed . Deformation typically occurs as a result of horizontal shortening, horizontal extension , or side-to-side ( strike-slip ) motion. These structural regimes broadly relate to convergent boundaries , divergent boundaries , and transform boundaries, respectively, between tectonic plates. When rock units are placed under horizontal compression , they shorten and become thicker. Because rock units, other than muds, do not significantly change in volume , this
5550-407: The third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) Epochs: Methods for relative dating were developed when geology first emerged as a natural science . Geologists still use the following principles today as
5625-613: Was datable material, converting the old relative ages into new absolute ages. For many geological applications, isotope ratios of radioactive elements are measured in minerals that give the amount of time that has passed since a rock passed through its particular closure temperature , the point at which different radiometric isotopes stop diffusing into and out of the crystal lattice . These are used in geochronologic and thermochronologic studies. Common methods include uranium–lead dating , potassium–argon dating , argon–argon dating and uranium–thorium dating . These methods are used for
#869130