Misplaced Pages

General Carrera Lake

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

General Carrera Lake (Chilean part, officially renamed in 1959) or Lake Buenos Aires (Argentine part) is a deep lake located in Patagonia and shared by Argentina and Chile . Both names are internationally accepted, while the autochthonous name of the lake is Chelenko , which means "stormy waters" in Aonikenk . Another historical name is Coluguape from Mapuche , a derivative of this name is applied to Colhué Huapí Lake after Argentine explorer Francisco Moreno reached this lake in 1876 conflating it with Coluguape (General Carrera Lake).

#931068

118-607: The lake is of glacial origin and is surrounded by the Andes mountain range. The lake drains to the Pacific Ocean on the west through the Baker River . During the last glaciation the lake drained to the Atlantic through Deseado River . The weather in this area of Chile and Argentina is generally cold and humid. But the lake itself has a sunny microclimate , a weather pattern enjoyed by

236-424: A cirque landform (alternatively known as a corrie or as a cwm ) – a typically armchair-shaped geological feature (such as a depression between mountains enclosed by arêtes ) – which collects and compresses through gravity the snow that falls into it. This snow accumulates and the weight of the snow falling above compacts it, forming névé (granular snow). Further crushing of the individual snowflakes and squeezing

354-588: A Germanic noun for a travel : North Germanic ferd or färd and of the verb to travel , Dutch varen , German fahren ; English to fare . As a loanword from Norwegian, it is one of the few words in the English language to start with the sequence fj . The word was for a long time normally spelled f i ord , a spelling preserved in place names such as Grise Fiord . The fiord spelling mostly remains only in New Zealand English , as in

472-617: A common Germanic origin of the word. The landscape consists mainly of moraine heaps. The Föhrden and some "fjords" on the east side of Jutland, Denmark are also of glacial origin. But while the glaciers digging "real" fjords moved from the mountains to the sea, in Denmark and Germany they were tongues of a huge glacier covering the basin of which is now the Baltic Sea. See Förden and East Jutland Fjorde . Whereas fjord names mostly describe bays (though not always geological fjords), straits in

590-451: A fjord as a kind of sea ( Māori : tai ) that runs by a bluff ( matapari , altogether tai matapari "bluff sea"). The term "fjord" is sometimes applied to steep-sided inlets which were not created by glaciers. Most such inlets are drowned river canyons or rias . Examples include: Some Norwegian freshwater lakes that have formed in long glacially carved valleys with sill thresholds, ice front deltas or terminal moraines blocking

708-451: A glacial river flows in. Velfjorden has little inflow of freshwater. In 2000, some coral reefs were discovered along the bottoms of the Norwegian fjords. These reefs were found in fjords from the north of Norway to the south. The marine life on the reefs is believed to be one of the most important reasons why the Norwegian coastline is such a generous fishing ground. Since this discovery

826-511: A glacier is usually assessed by determining the glacier mass balance or observing terminus behavior. Healthy glaciers have large accumulation zones, more than 60% of their area is snow-covered at the end of the melt season, and they have a terminus with a vigorous flow. Following the Little Ice Age 's end around 1850, glaciers around the Earth have retreated substantially . A slight cooling led to

944-595: A glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water. On Earth, 99% of glacial ice is contained within vast ice sheets (also known as "continental glaciers") in the polar regions , but glaciers may be found in mountain ranges on every continent other than the Australian mainland, including Oceania's high-latitude oceanic island countries such as New Zealand . Between latitudes 35°N and 35°S, glaciers occur only in

1062-411: A glacier via moulins . Streams within or beneath a glacier flow in englacial or sub-glacial tunnels. These tunnels sometimes reemerge at the glacier's surface. Most of the important processes controlling glacial motion occur in the ice-bed contact—even though it is only a few meters thick. The bed's temperature, roughness and softness define basal shear stress, which in turn defines whether movement of

1180-421: A highly productive group of phytoplankton that enable such fjords to be valuable feeding grounds for other species. It is possible that as climate change reduces long-term meltwater output, nutrient dynamics within such fjords will shift to favor less productive species, destabilizing the food web ecology of fjord systems. In addition to nutrient flux, sediment carried by flowing glaciers can become suspended in

1298-408: A kilometer per year. Eventually, the ice will be surging fast enough that it begins to thin, as accumulation cannot keep up with the transport. This thinning will increase the conductive heat loss, slowing the glacier and causing freezing. This freezing will slow the glacier further, often until it is stationary, whence the cycle can begin again. The flow of water under the glacial surface can have

SECTION 10

#1732855790932

1416-404: A large effect on the motion of the glacier itself. Subglacial lakes contain significant amounts of water, which can move fast: cubic kilometers can be transported between lakes over the course of a couple of years. This motion is thought to occur in two main modes: pipe flow involves liquid water moving through pipe-like conduits, like a sub-glacial river; sheet flow involves motion of water in

1534-515: A long, narrow inlet. In eastern Norway, the term is also applied to long narrow freshwater lakes ( Randsfjorden and Tyrifjorden ) and sometimes even to rivers (for instance in Flå Municipality in Hallingdal , the Hallingdal river is referred to as fjorden ). In southeast Sweden, the name fjard fjärd is a subdivision of the term 'fjord' used for bays, bights and narrow inlets on

1652-460: A lower heat conductance, meaning that the basal temperature is also likely to be higher. Bed temperature tends to vary in a cyclic fashion. A cool bed has a high strength, reducing the speed of the glacier. This increases the rate of accumulation, since newly fallen snow is not transported away. Consequently, the glacier thickens, with three consequences: firstly, the bed is better insulated, allowing greater retention of geothermal heat. Secondly,

1770-534: A narrower sound is called sund . In the Finnish language , a word vuono is used although there is only one fjord in Finland. In old Norse genitive was fjarðar whereas dative was firði . The dative form has become common place names like Førde (for instance Førde ), Fyrde or Førre (for instance Førre ). The German use of the word Föhrde for long narrow bays on their Baltic Sea coastline, indicates

1888-500: A protected passage almost the entire 1,601 km (995 mi) route from Stavanger to North Cape , Norway. The Blindleia is a skerry-protected waterway that starts near Kristiansand in southern Norway and continues past Lillesand . The Swedish coast along Bohuslän is likewise skerry guarded. The Inside Passage provides a similar route from Seattle , Washington , and Vancouver , British Columbia , to Skagway , Alaska . Yet another such skerry-protected passage extends from

2006-658: A suffix in names of some Scandinavian fjords and has in same cases also been transferred to adjacent settlements or surrounding areas for instance Hardanger , Stavanger , and Geiranger . The differences in usage between the English and the Scandinavian languages have contributed to confusion in the use of the term fjord. Bodies of water that are clearly fjords in Scandinavian languages are not considered fjords in English; similarly bodies of water that would clearly not be fjords in

2124-484: A thin layer. A switch between the two flow conditions may be associated with surging behavior. Indeed, the loss of sub-glacial water supply has been linked with the shut-down of ice movement in the Kamb ice stream. The subglacial motion of water is expressed in the surface topography of ice sheets, which slump down into vacated subglacial lakes. The speed of glacial displacement is partly determined by friction . Friction makes

2242-410: A tremendous impact as the iceberg strikes the water. Tidewater glaciers undergo centuries-long cycles of advance and retreat that are much less affected by climate change than other glaciers. Thermally, a temperate glacier is at a melting point throughout the year, from its surface to its base. The ice of a polar glacier is always below the freezing threshold from the surface to its base, although

2360-639: Is 160 m (520 ft) deep with a threshold of only 1.5 m (4 ft 11 in), while the 1,300 m (4,300 ft) deep Sognefjorden has a threshold around 100 to 200 m (330 to 660 ft) deep. Hardangerfjord is made up of several basins separated by thresholds: The deepest basin Samlafjorden between Jonaneset ( Jondal ) and Ålvik with a distinct threshold at Vikingneset in Kvam Municipality . Hanging valleys are common along glaciated fjords and U-shaped valleys . A hanging valley

2478-564: Is 2,000 m (6,562 ft) below the surrounding regional topography. Fjord lakes are common on the inland lea of the Coast Mountains and Cascade Range ; notable ones include Lake Chelan , Seton Lake , Chilko Lake , and Atlin Lake . Kootenay Lake , Slocan Lake and others in the basin of the Columbia River are also fjord-like in nature, and created by glaciation in the same way. Along

SECTION 20

#1732855790932

2596-483: Is a tributary valley that is higher than the main valley and was created by tributary glacier flows into a glacier of larger volume. The shallower valley appears to be 'hanging' above the main valley or a fjord. Often, waterfalls form at or near the outlet of the upper valley. Small waterfalls within these fjords are also used as freshwater resources. Hanging valleys also occur underwater in fjord systems. The branches of Sognefjord are for instance much shallower than

2714-450: Is a long, narrow sea inlet with steep sides or cliffs, created by a glacier . Fjords exist on the coasts of Antarctica , the Arctic , and surrounding landmasses of the northern and southern hemispheres. Norway's coastline is estimated to be 29,000 km (18,000 mi) long with its nearly 1,200 fjords, but only 2,500 km (1,600 mi) long excluding the fjords . A true fjord

2832-456: Is above or at freezing at the interface and is able to slide at this contact. This contrast is thought to a large extent to govern the ability of a glacier to effectively erode its bed , as sliding ice promotes plucking at rock from the surface below. Glaciers which are partly cold-based and partly warm-based are known as polythermal . Glaciers form where the accumulation of snow and ice exceeds ablation . A glacier usually originates from

2950-414: Is accompanied by the rebounding of Earth's crust as the ice load and eroded sediment is removed (also called isostasy or glacial rebound). In some cases, this rebound is faster than sea level rise . Most fjords are deeper than the adjacent sea ; Sognefjord , Norway , reaches as much as 1,300 m (4,265 ft) below sea level . Fjords generally have a sill or shoal (bedrock) at their mouth caused by

3068-407: Is affected by factors such as slope, ice thickness, snowfall, longitudinal confinement, basal temperature, meltwater production, and bed hardness. A few glaciers have periods of very rapid advancement called surges . These glaciers exhibit normal movement until suddenly they accelerate, then return to their previous movement state. These surges may be caused by the failure of the underlying bedrock,

3186-412: Is also often described as a fjord, but is actually a freshwater lake cut off from the sea, so is not a fjord in the English sense of the term. Locally they refer to it as a "landlocked fjord". Such lakes are sometimes called "fjord lakes". Okanagan Lake was the first North American lake to be so described, in 1962. The bedrock there has been eroded up to 650 m (2,133 ft) below sea level, which

3304-430: Is at least 500 m (1,600 ft) deep and water takes an average of 16 years to flow through the lake. Such lakes created by glacial action are also called fjord lakes or moraine-dammed lakes . Some of these lakes were salt after the ice age but later cut off from the ocean during the post-glacial rebound . At the end of the ice age Eastern Norway was about 200 m (660 ft) lower (the marine limit). When

3422-411: Is because these peaks are located near or in the hyperarid Atacama Desert . Glaciers erode terrain through two principal processes: plucking and abrasion . As glaciers flow over bedrock, they soften and lift blocks of rock into the ice. This process, called plucking, is caused by subglacial water that penetrates fractures in the bedrock and subsequently freezes and expands. This expansion causes

3540-456: Is borrowed from Norwegian , where it is pronounced [ˈfjuːr] , [ˈfjøːr] , [ˈfjuːɽ] or [ˈfjøːɽ] in various dialects and has a more general meaning, referring in many cases to any long, narrow body of water, inlet or channel (for example, see Oslofjord ). The Norwegian word is inherited from Old Norse fjǫrðr , a noun which refers to a 'lake-like' body of water used for passage and ferrying and

3658-406: Is by basal sliding, where meltwater forms between the ice and the bed itself. Whether a bed is hard or soft depends on the porosity and pore pressure; higher porosity decreases the sediment strength (thus increases the shear stress τ B ). Porosity may vary through a range of methods. Bed softness may vary in space or time, and changes dramatically from glacier to glacier. An important factor

General Carrera Lake - Misplaced Pages Continue

3776-434: Is called glaciology . Glaciers are important components of the global cryosphere . Glaciers are categorized by their morphology, thermal characteristics, and behavior. Alpine glaciers form on the crests and slopes of mountains. A glacier that fills a valley is called a valley glacier , or alternatively, an alpine glacier or mountain glacier . A large body of glacial ice astride a mountain, mountain range, or volcano

3894-416: Is called rock flour and is made up of rock grains between 0.002 and 0.00625 mm in size. Abrasion leads to steeper valley walls and mountain slopes in alpine settings, which can cause avalanches and rock slides, which add even more material to the glacier. Glacial abrasion is commonly characterized by glacial striations . Glaciers produce these when they contain large boulders that carve long scratches in

4012-615: Is closely related to the noun ferð "travelling, ferrying, journey". Both words go back to Indo-European *pértus "crossing", from the root *per- "cross". The words fare and ferry are of the same origin. The Scandinavian fjord , Proto-Scandinavian * ferþuz , is the origin for similar Germanic words: Icelandic fjörður , Faroese fjørður , Swedish fjärd (for Baltic waterbodies), Scots firth (for marine waterbodies, mainly in Scotland and northern England). The Norse noun fjǫrðr

4130-458: Is cut almost in two by the Svelvik "ridge", a sandy moraine that was below sea level when it was covered by ice, but after the post-glacial rebound reaches 60 m (200 ft) above the fjord. In the 19th century, Jens Esmark introduced the theory that fjords are or have been created by glaciers and that large parts of Northern Europe had been covered by thick ice in prehistory. Thresholds at

4248-646: Is fairly new, little research has been done. The reefs are host to thousands of lifeforms such as plankton , coral , anemones , fish, several species of shark, and many more. Most are specially adapted to life under the greater pressure of the water column above it, and the total darkness of the deep sea. New Zealand's fjords are also host to deep-water corals , but a surface layer of dark fresh water allows these corals to grow in much shallower water than usual. An underwater observatory in Milford Sound allows tourists to view them without diving. In some places near

4366-458: Is formed when a glacier cuts a U-shaped valley by ice segregation and abrasion of the surrounding bedrock. According to the standard model, glaciers formed in pre-glacial valleys with a gently sloping valley floor. The work of the glacier then left an overdeepened U-shaped valley that ends abruptly at a valley or trough end. Such valleys are fjords when flooded by the ocean. Thresholds above sea level create freshwater lakes. Glacial melting

4484-580: Is higher, and the mountains above 5,000 m (16,400 ft) usually have permanent snow. Even at high latitudes, glacier formation is not inevitable. Areas of the Arctic , such as Banks Island , and the McMurdo Dry Valleys in Antarctica are considered polar deserts where glaciers cannot form because they receive little snowfall despite the bitter cold. Cold air, unlike warm air, is unable to transport much water vapor. Even during glacial periods of

4602-500: Is located on the southern shore of Lake Superior in Michigan . The principal mountainous regions where fjords have formed are in the higher middle latitudes and the high latitudes reaching to 80°N (Svalbard, Greenland), where, during the glacial period, many valley glaciers descended to the then-lower sea level. The fjords develop best in mountain ranges against which the prevailing westerly marine winds are orographically lifted over

4720-897: Is termed an ice cap or ice field . Ice caps have an area less than 50,000 km (19,000 sq mi) by definition. Glacial bodies larger than 50,000 km (19,000 sq mi) are called ice sheets or continental glaciers . Several kilometers deep, they obscure the underlying topography. Only nunataks protrude from their surfaces. The only extant ice sheets are the two that cover most of Antarctica and Greenland. They contain vast quantities of freshwater, enough that if both melted, global sea levels would rise by over 70 m (230 ft). Portions of an ice sheet or cap that extend into water are called ice shelves ; they tend to be thin with limited slopes and reduced velocities. Narrow, fast-moving sections of an ice sheet are called ice streams . In Antarctica, many ice streams drain into large ice shelves . Some drain directly into

4838-465: Is the freshwater fjord Movatnet (Mo lake) that until 1743 was separated from Romarheimsfjorden by an isthmus and connected by a short river. During a flood in November 1743, the river bed eroded and sea water could flow into the lake at high tide. Eventually, Movatnet became a saltwater fjord and renamed Mofjorden ( Mofjorden ). Like fjords, freshwater lakes are often deep. For instance Hornindalsvatnet

General Carrera Lake - Misplaced Pages Continue

4956-409: Is the isthmus with a village between Hornindalsvatnet lake and Nordfjord . Such lakes are also denoted fjord valley lakes by geologists. One of Norway's largest is Tyrifjorden at 63 m (207 ft) above sea level and an average depth at 97 m (318 ft) most of the lake is under sea level. Norway's largest lake, Mjøsa , is also referred to as "the fjord" by locals. Another example

5074-413: Is the region where there is a net loss in glacier mass. The upper part of a glacier, where accumulation exceeds ablation, is called the accumulation zone . The equilibrium line separates the ablation zone and the accumulation zone; it is the contour where the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. In general, the accumulation zone accounts for 60–70% of

5192-402: Is the underlying geology; glacial speeds tend to differ more when they change bedrock than when the gradient changes. Further, bed roughness can also act to slow glacial motion. The roughness of the bed is a measure of how many boulders and obstacles protrude into the overlying ice. Ice flows around these obstacles by melting under the high pressure on their stoss side ; the resultant meltwater

5310-552: Is then forced into the cavity arising in their lee side , where it re-freezes. As well as affecting the sediment stress, fluid pressure (p w ) can affect the friction between the glacier and the bed. High fluid pressure provides a buoyancy force upwards on the glacier, reducing the friction at its base. The fluid pressure is compared to the ice overburden pressure, p i , given by ρgh. Under fast-flowing ice streams, these two pressures will be approximately equal, with an effective pressure (p i – p w ) of 30 kPa; i.e. all of

5428-410: Is usually a large inflow of river water in the inner areas. This freshwater gets mixed with saltwater creating a layer of brackish water with a slightly higher surface than the ocean which in turn sets up a current from the river mouths towards the ocean. This current is gradually more salty towards the coast and right under the surface current there is a reverse current of saltier water from the coast. In

5546-905: The Andes , the Himalayas , the Rocky Mountains , the Caucasus , Scandinavian Mountains , and the Alps . Snezhnika glacier in Pirin Mountain, Bulgaria with a latitude of 41°46′09″ N is the southernmost glacial mass in Europe. Mainland Australia currently contains no glaciers, although a small glacier on Mount Kosciuszko was present in the last glacial period . In New Guinea, small, rapidly diminishing, glaciers are located on Puncak Jaya . Africa has glaciers on Mount Kilimanjaro in Tanzania, on Mount Kenya , and in

5664-610: The British Columbia Coast , a notable fjord-lake is Owikeno Lake , which is a freshwater extension of Rivers Inlet . Quesnel Lake , located in central British Columbia, is claimed to be the deepest fjord formed lake on Earth. A family of freshwater fjords are the embayments of the North American Great Lakes. Baie Fine is located on the northwestern coast of Georgian Bay of Lake Huron in Ontario , and Huron Bay

5782-636: The Faroe and Crozet Islands were completely glaciated. The permanent snow cover necessary for glacier formation is affected by factors such as the degree of slope on the land, amount of snowfall and the winds. Glaciers can be found in all latitudes except from 20° to 27° north and south of the equator where the presence of the descending limb of the Hadley circulation lowers precipitation so much that with high insolation snow lines reach above 6,500 m (21,330 ft). Between 19˚N and 19˚S, however, precipitation

5900-750: The Himalayas , Andes , and a few high mountains in East Africa, Mexico, New Guinea and on Zard-Kuh in Iran. With more than 7,000 known glaciers, Pakistan has more glacial ice than any other country outside the polar regions. Glaciers cover about 10% of Earth's land surface. Continental glaciers cover nearly 13 million km (5 million sq mi) or about 98% of Antarctica 's 13.2 million km (5.1 million sq mi), with an average thickness of ice 2,100 m (7,000 ft). Greenland and Patagonia also have huge expanses of continental glaciers. The volume of glaciers, not including

6018-663: The Hudson Volcano severely affected the local economy, especially that of sheep farming. A car ferry operates between Puerto Ingeniero Ibáñez and Chile Chico in the Chilean sector of the lake. The lake is known as a trout and salmon fishing destination. The lake has a surface of 1,850 km (710 sq mi) of which 970 square kilometres (370 sq mi) are in the Chilean Aysén del General Carlos Ibáñez del Campo Region , and 880 square kilometres (340 sq mi) in

SECTION 50

#1732855790932

6136-551: The Quaternary , Manchuria , lowland Siberia , and central and northern Alaska , though extraordinarily cold, had such light snowfall that glaciers could not form. In addition to the dry, unglaciated polar regions, some mountains and volcanoes in Bolivia, Chile and Argentina are high (4,500 to 6,900 m or 14,800 to 22,600 ft) and cold, but the relative lack of precipitation prevents snow from accumulating into glaciers. This

6254-521: The Rwenzori Mountains . Oceanic islands with glaciers include Iceland, several of the islands off the coast of Norway including Svalbard and Jan Mayen to the far north, New Zealand and the subantarctic islands of Marion , Heard , Grande Terre (Kerguelen) and Bouvet . During glacial periods of the Quaternary, Taiwan , Hawaii on Mauna Kea and Tenerife also had large alpine glaciers, while

6372-459: The Scandinavian sense of the term, are not universally considered to be fjords by the scientific community, because although glacially formed, most Finnmark fjords lack the steep-sided valleys of the more southerly Norwegian fjords. The glacial pack was deep enough to cover even the high grounds when they were formed. The Oslofjord , on the other hand, is a rift valley , and not glacially formed. The indigenous Māori people of New Zealand see

6490-598: The Straits of Magellan north for 800 km (500 mi). Fjords provide unique environmental conditions for phytoplankton communities. In polar fjords, glacier and ice sheet outflow add cold, fresh meltwater along with transported sediment into the body of water. Nutrients provided by this outflow can significantly enhance phytoplankton growth. For example, in some fjords of the West Antarctic Peninsula (WAP), nutrient enrichment from meltwater drives diatom blooms,

6608-535: The Viking settlers—though the inlet at that place in modern terms is an estuary , not a fjord. Similarly the name of Milford (now Milford Haven) in Wales is derived from Melrfjǫrðr ("sandbank fjord/inlet"), though the inlet on which it is located is actually a ria. Before or in the early phase of Old Norse angr was another common noun for fjords and other inlets of the ocean. This word has survived only as

6726-448: The 1990s and 2000s. In a study using data from January 1993 through October 2005, more events were detected every year since 2002, and twice as many events were recorded in 2005 as there were in any other year. Ogives or Forbes bands are alternating wave crests and valleys that appear as dark and light bands of ice on glacier surfaces. They are linked to seasonal motion of glaciers; the width of one dark and one light band generally equals

6844-616: The Argentine Santa Cruz Province , making it the biggest lake in Chile, and the fourth largest in Argentina. In its western basin, Lake Gen. Carrera has 586 m (1,923 ft) maximum depth. The lake occupies a continental-scale graben formed by SWS-ENE normal faults that have resulted in down-dropping the bottom of the lake to 350 meters (1,150 ft) below mean sea level. Preservation of younger lithostratigraphic units within

6962-835: The Limfjord once was a fjord until the sea broke through from the west. Ringkøbing Fjord on the western coast of Jutland is a lagoon . The long narrow fjords of Denmark's Baltic Sea coast like the German Förden were dug by ice moving from the sea upon land, while fjords in the geological sense were dug by ice moving from the mountains down to the sea. However, some definitions of a fjord is: "A long narrow inlet consisting of only one inlet created by glacial activity". Examples of Danish fjords are: Kolding Fjord , Vejle Fjord and Mariager Fjord . The fjords in Finnmark in Norway, which are fjords in

7080-532: The Scandinavian sense have been named or suggested to be fjords. Examples of this confused usage follow. In the Danish language some inlets are called a fjord, but are, according to the English language definition, technically not a fjord, such as Roskilde Fjord . Limfjord in English terminology is a sound , since it separates the North Jutlandic Island (Vendsyssel-Thy) from the rest of Jutland . However,

7198-468: The Swedish Baltic Sea coast, and in most Swedish lakes. This latter term is also used for bodies of water off the coast of Finland where Finland Swedish is spoken. In Danish, the word may even apply to shallow lagoons . In modern Icelandic, fjörður is still used with the broader meaning of firth or inlet. In Faroese fjørður is used both about inlets and about broader sounds, whereas

SECTION 60

#1732855790932

7316-412: The advance of many alpine glaciers between 1950 and 1985, but since 1985 glacier retreat and mass loss has become larger and increasingly ubiquitous. Glaciers move downhill by the force of gravity and the internal deformation of ice. At the molecular level, ice consists of stacked layers of molecules with relatively weak bonds between layers. When the amount of strain (deformation) is proportional to

7434-520: The air from the snow turns it into "glacial ice". This glacial ice will fill the cirque until it "overflows" through a geological weakness or vacancy, such as a gap between two mountains. When the mass of snow and ice reaches sufficient thickness, it begins to move by a combination of surface slope, gravity, and pressure. On steeper slopes, this can occur with as little as 15 m (49 ft) of snow-ice. In temperate glaciers, snow repeatedly freezes and thaws, changing into granular ice called firn . Under

7552-430: The amount of melting at surface of the glacier, the faster the ice will flow. Basal sliding is dominant in temperate or warm-based glaciers. The presence of basal meltwater depends on both bed temperature and other factors. For instance, the melting point of water decreases under pressure, meaning that water melts at a lower temperature under thicker glaciers. This acts as a "double whammy", because thicker glaciers have

7670-713: The annual movement of the glacier. Ogives are formed when ice from an icefall is severely broken up, increasing ablation surface area during summer. This creates a swale and space for snow accumulation in the winter, which in turn creates a ridge. Sometimes ogives consist only of undulations or color bands and are described as wave ogives or band ogives. Glaciers are present on every continent and in approximately fifty countries, excluding those (Australia, South Africa) that have glaciers only on distant subantarctic island territories. Extensive glaciers are found in Antarctica, Argentina, Chile, Canada, Pakistan, Alaska, Greenland and Iceland. Mountain glaciers are widespread, especially in

7788-432: The bedrock has frequent fractures on the surface, glacial erosion rates tend to increase as plucking is the main erosive force on the surface; when the bedrock has wide gaps between sporadic fractures, however, abrasion tends to be the dominant erosive form and glacial erosion rates become slow. Glaciers in lower latitudes tend to be much more erosive than glaciers in higher latitudes, because they have more meltwater reaching

7906-445: The bedrock. By mapping the direction of the striations, researchers can determine the direction of the glacier's movement. Similar to striations are chatter marks , lines of crescent-shape depressions in the rock underlying a glacier. They are formed by abrasion when boulders in the glacier are repeatedly caught and released as they are dragged along the bedrock. The rate of glacier erosion varies. Six factors control erosion rate: When

8024-513: The bedrock. This may in particular have been the case in Western Norway where the tertiary uplift of the landmass amplified eroding forces of rivers. Confluence of tributary fjords led to excavation of the deepest fjord basins. Near the very coast, the typical West Norwegian glacier spread out (presumably through sounds and low valleys) and lost their concentration and reduced the glaciers' power to erode leaving bedrock thresholds. Bolstadfjorden

8142-514: The case of Hardangerfjord the fractures of the Caledonian fold has guided the erosion by glaciers, while there is no clear relation between the direction of Sognefjord and the fold pattern. This relationship between fractures and direction of fjords is also observed in Lyngen . Preglacial, tertiary rivers presumably eroded the surface and created valleys that later guided the glacial flow and erosion of

8260-559: The created ice's density. The word glacier is a loanword from French and goes back, via Franco-Provençal , to the Vulgar Latin glaciārium , derived from the Late Latin glacia , and ultimately Latin glaciēs , meaning "ice". The processes and features caused by or related to glaciers are referred to as glacial. The process of glacier establishment, growth and flow is called glaciation . The corresponding area of study

8378-467: The deep profile of fjords , which can reach a kilometer in depth as ice is topographically steered into them. The extension of fjords inland increases the rate of ice sheet thinning since they are the principal conduits for draining ice sheets. It also makes the ice sheets more sensitive to changes in climate and the ocean. Although evidence in favor of glacial flow was known by the early 19th century, other theories of glacial motion were advanced, such as

8496-434: The deeper parts of the fjord the cold water remaining from winter is still and separated from the atmosphere by the brackish top layer. This deep water is ventilated by mixing with the upper layer causing it to warm and freshen over the summer. In fjords with a shallow threshold or low levels of mixing this deep water is not replaced every year and low oxygen concentration makes the deep water unsuitable for fish and animals. In

8614-483: The deformation to become a plastic flow rather than elastic. Then, the glacier will begin to deform under its own weight and flow across the landscape. According to the Glen–Nye flow law , the relationship between stress and strain, and thus the rate of internal flow, can be modeled as follows: where: The lowest velocities are near the base of the glacier and along valley sides where friction acts against flow, causing

8732-418: The essentially correct explanation in the 1840s, although it was several decades before it was fully accepted. The top 50 m (160 ft) of a glacier are rigid because they are under low pressure . This upper section is known as the fracture zone and moves mostly as a single unit over the plastic-flowing lower section. When a glacier moves through irregular terrain, cracks called crevasses develop in

8850-402: The few settlements along the lake, such as Puerto Guadal , Fachinal , Mallín Grande, Puerto Murta , Puerto Río Tranquilo, Puerto Sánchez , Puerto Ingeniero Ibáñez and Chile Chico in Chile, and Los Antiguos and Perito Moreno in Argentina. The area near the coast of the lake was first inhabited by criollos and European immigrants between 1900 and 1925. In 1971 and 1991, eruptions of

8968-413: The fjord. Bolstadfjorden has a threshold of only 1.5 m (4 ft 11 in) and strong inflow of freshwater from Vosso river creates a brackish surface that blocks circulation of the deep fjord. The deeper, salt layers of Bolstadfjorden are deprived of oxygen and the seabed is covered with organic material. The shallow threshold also creates a strong tidal current. During the summer season, there

9086-489: The formation of sea ice. The study of phytoplankton communities within fjords is an active area of research, supported by groups such as FjordPhyto, a citizen science initiative to study phytoplankton samples collected by local residents, tourists, and boaters of all backgrounds. An epishelf lake forms when meltwater is trapped behind a floating ice shelf and the freshwater floats on the denser saltwater below. Its surface may freeze forming an isolated ecosystem. The word fjord

9204-475: The fracture zone. Crevasses form because of differences in glacier velocity. If two rigid sections of a glacier move at different speeds or directions, shear forces cause them to break apart, opening a crevasse. Crevasses are seldom more than 46 m (150 ft) deep but, in some cases, can be at least 300 m (1,000 ft) deep. Beneath this point, the plasticity of the ice prevents the formation of cracks. Intersecting crevasses can create isolated peaks in

9322-448: The glacial base and facilitate sediment production and transport under the same moving speed and amount of ice. Material that becomes incorporated in a glacier is typically carried as far as the zone of ablation before being deposited. Glacial deposits are of two distinct types: Fjord In physical geography , a fjord (also spelled fiord in New Zealand English ; ( / ˈ f j ɔːr d , f iː ˈ ɔːr d / )

9440-453: The glacier to melt, creating a water source that is especially important for plants, animals and human uses when other sources may be scant. However, within high-altitude and Antarctic environments, the seasonal temperature difference is often not sufficient to release meltwater. Since glacial mass is affected by long-term climatic changes, e.g., precipitation , mean temperature , and cloud cover , glacial mass changes are considered among

9558-428: The glacier will be accommodated by motion in the sediments, or if it'll be able to slide. A soft bed, with high porosity and low pore fluid pressure, allows the glacier to move by sediment sliding: the base of the glacier may even remain frozen to the bed, where the underlying sediment slips underneath it like a tube of toothpaste. A hard bed cannot deform in this way; therefore the only way for hard-based glaciers to move

9676-504: The glacier's surface area, more if the glacier calves icebergs. Ice in the accumulation zone is deep enough to exert a downward force that erodes underlying rock. After a glacier melts, it often leaves behind a bowl- or amphitheater-shaped depression that ranges in size from large basins like the Great Lakes to smaller mountain depressions known as cirques . The accumulation zone can be subdivided based on its melt conditions. The health of

9794-451: The graben form reverse stratigraphy with older units exposed at higher topographic elevations to the south. The graben channeled mountain glaciers which formed terminal moraine helping to modify the present-day shape of the lake. The tectonic activity that formed the depression can be inferred to subduction of the triple joint that has occurred over the past 20 million years, as indicated by ripple marks in volcaniclastic sediments observed along

9912-614: The ice at the bottom of the glacier move more slowly than ice at the top. In alpine glaciers, friction is also generated at the valley's sidewalls, which slows the edges relative to the center. Mean glacial speed varies greatly but is typically around 1 m (3 ft) per day. There may be no motion in stagnant areas; for example, in parts of Alaska, trees can establish themselves on surface sediment deposits. In other cases, glaciers can move as fast as 20–30 m (70–100 ft) per day, such as in Greenland's Jakobshavn Isbræ . Glacial speed

10030-468: The ice cap receded and allowed the ocean to fill valleys and lowlands, and lakes like Mjøsa and Tyrifjorden were part of the ocean while Drammen valley was a narrow fjord. At the time of the Vikings Drammensfjord was still four or five m (13 or 16 ft) higher than today and reached the town of Hokksund , while parts of what is now the city of Drammen was under water. After the ice age

10148-420: The ice sheets of Antarctica and Greenland, has been estimated at 170,000 km . Glacial ice is the largest reservoir of fresh water on Earth, holding with ice sheets about 69 percent of the world's freshwater. Many glaciers from temperate , alpine and seasonal polar climates store water as ice during the colder seasons and release it later in the form of meltwater as warmer summer temperatures cause

10266-544: The ice to act as a lever that loosens the rock by lifting it. Thus, sediments of all sizes become part of the glacier's load. If a retreating glacier gains enough debris, it may become a rock glacier , like the Timpanogos Glacier in Utah. Abrasion occurs when the ice and its load of rock fragments slide over bedrock and function as sandpaper, smoothing and polishing the bedrock below. The pulverized rock this process produces

10384-488: The ice, called seracs . Crevasses can form in several different ways. Transverse crevasses are transverse to flow and form where steeper slopes cause a glacier to accelerate. Longitudinal crevasses form semi-parallel to flow where a glacier expands laterally. Marginal crevasses form near the edge of the glacier, caused by the reduction in speed caused by friction of the valley walls. Marginal crevasses are largely transverse to flow. Moving glacier ice can sometimes separate from

10502-411: The idea that meltwater, refreezing inside glaciers, caused the glacier to dilate and extend its length. As it became clear that glaciers behaved to some degree as if the ice were a viscous fluid, it was argued that "regelation", or the melting and refreezing of ice at a temperature lowered by the pressure on the ice inside the glacier, was what allowed the ice to deform and flow. James Forbes came up with

10620-418: The increased pressure can facilitate melting. Most importantly, τ D is increased. These factors will combine to accelerate the glacier. As friction increases with the square of velocity, faster motion will greatly increase frictional heating, with ensuing melting – which causes a positive feedback, increasing ice speed to a faster flow rate still: west Antarctic glaciers are known to reach velocities of up to

10738-423: The infrared OH stretching mode of the water molecule. (Liquid water appears blue for the same reason. The blue of glacier ice is sometimes misattributed to Rayleigh scattering of bubbles in the ice.) A glacier originates at a location called its glacier head and terminates at its glacier foot, snout, or terminus . Glaciers are broken into zones based on surface snowpack and melt conditions. The ablation zone

10856-632: The last 6,200 years. Glacial A glacier ( US : / ˈ ɡ l eɪ ʃ ər / ; UK : / ˈ ɡ l æ s i ər , ˈ ɡ l eɪ s i ər / ) is a persistent body of dense ice that is constantly moving downhill under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries . It acquires distinguishing features, such as crevasses and seracs , as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques , moraines , or fjords . Although

10974-446: The level of the original sea level. In Eidfjord, Eio has dug through the original delta and left a 110 m (360 ft) terrace while lake is only 19 m (62 ft) above sea level. Such deposits are valuable sources of high-quality building materials (sand and gravel) for houses and infrastructure. Eidfjord village sits on the eid or isthmus between Eidfjordvatnet lake and Eidfjorden branch of Hardangerfjord. Nordfjordeid

11092-471: The main fjord. The mouth of Fjærlandsfjord is about 400 m (1,300 ft) deep while the main fjord is 1,200 m (3,900 ft) nearby. The mouth of Ikjefjord is only 50 m (160 ft) deep while the main fjord is around 1,300 m (4,300 ft) at the same point. During the winter season, there is usually little inflow of freshwater. Surface water and deeper water (down to 100 m or 330 ft or more) are mixed during winter because of

11210-491: The marine limit. Like freshwater fjords, the continuation of fjords on land are in the same way denoted as fjord-valleys . For instance Flåmsdal ( Flåm valley) and Måbødalen . Outside of Norway, the three western arms of New Zealand 's Lake Te Anau are named North Fiord, Middle Fiord and South Fiord. Another freshwater "fjord" in a larger lake is Western Brook Pond , in Newfoundland's Gros Morne National Park ; it

11328-679: The most deformation. Velocity increases inward toward the center line and upward, as the amount of deformation decreases. The highest flow velocities are found at the surface, representing the sum of the velocities of all the layers below. Because ice can flow faster where it is thicker, the rate of glacier-induced erosion is directly proportional to the thickness of overlying ice. Consequently, pre-glacial low hollows will be deepened and pre-existing topography will be amplified by glacial action, while nunataks , which protrude above ice sheets, barely erode at all – erosion has been estimated as 5 m per 1.2 million years. This explains, for example,

11446-405: The most extreme cases, there is a constant barrier of freshwater on the surface and the fjord freezes over such that there is no oxygen below the surface. Drammensfjorden is one example. The mixing in fjords predominantly results from the propagation of an internal tide from the entrance sill or internal seiching. The Gaupnefjorden branch of Sognefjorden is strongly affected by freshwater as

11564-445: The most sensitive indicators of climate change and are a major source of variations in sea level . A large piece of compressed ice, or a glacier, appears blue , as large quantities of water appear blue , because water molecules absorb other colors more efficiently than blue. The other reason for the blue color of glaciers is the lack of air bubbles. Air bubbles, which give a white color to ice, are squeezed out by pressure increasing

11682-565: The mountainous regions, resulting in abundant snowfall to feed the glaciers. Hence coasts having the most pronounced fjords include the west coast of Norway, the west coast of North America from Puget Sound to Alaska, the southwest coast of New Zealand, and the west and to south-western coasts of South America , chiefly in Chile . Other regions have fjords, but many of these are less pronounced due to more limited exposure to westerly winds and less pronounced relief. Areas include: The longest fjords in

11800-462: The mouths and overdeepening of fjords compared to the ocean are the strongest evidence of glacial origin, and these thresholds are mostly rocky. Thresholds are related to sounds and low land where the ice could spread out and therefore have less erosive force. John Walter Gregory argued that fjords are of tectonic origin and that glaciers had a negligible role in their formation. Gregory's views were rejected by subsequent research and publications. In

11918-448: The ocean was about 150 m (490 ft) at Notodden . The ocean stretched like a fjord through Heddalsvatnet all the way to Hjartdal . Post-glacial rebound eventually separated Heddalsvatnet from the ocean and turned it into a freshwater lake. In neolithic times Heddalsvatnet was still a saltwater fjord connected to the ocean, and was cut off from the ocean around 1500 BC. Some freshwater fjords such as Slidrefjord are above

12036-423: The outlet follow the Norwegian naming convention; they are frequently named fjords. Ice front deltas developed when the ice front was relatively stable for long time during the melting of the ice shield. The resulting landform is an isthmus between the lake and the saltwater fjord, in Norwegian called "eid" as in placename Eidfjord or Nordfjordeid . The post-glacial rebound changed these deltas into terraces up to

12154-439: The outlet of fjords where submerged glacially formed valleys perpendicular to the coast join with other cross valleys in a complex array. The island fringe of Norway is such a group of skerries (called a skjærgård ); many of the cross fjords are so arranged that they parallel the coast and provide a protected channel behind an almost unbroken succession of mountainous islands and skerries. By this channel, one can travel through

12272-460: The place name Fiordland . The use of the word fjord in Norwegian, Danish and Swedish is more general than in English and in international scientific terminology. In Scandinavia, fjord is used for a narrow inlet of the sea in Norway, Denmark and western Sweden, but this is not its only application. In Norway and Iceland, the usage is closest to the Old Norse, with fjord used for both a firth and for

12390-721: The pooling of meltwater at the base of the glacier  — perhaps delivered from a supraglacial lake  — or the simple accumulation of mass beyond a critical "tipping point". Temporary rates up to 90 m (300 ft) per day have occurred when increased temperature or overlying pressure caused bottom ice to melt and water to accumulate beneath a glacier. In glaciated areas where the glacier moves faster than one km per year, glacial earthquakes occur. These are large scale earthquakes that have seismic magnitudes as high as 6.1. The number of glacial earthquakes in Greenland peaks every year in July, August, and September and increased rapidly in

12508-410: The pressure of the layers of ice and snow above it, this granular ice fuses into denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice is slightly more dense than ice formed from frozen water because glacier ice contains fewer trapped air bubbles. Glacial ice has a distinctive blue tint because it absorbs some red light due to an overtone of

12626-449: The previous glacier's reduced erosion rate and terminal moraine . In many cases this sill causes extreme currents and large saltwater rapids (see skookumchuck ). Saltstraumen in Norway is often described as the world's strongest tidal current . These characteristics distinguish fjords from rias (such as the Bay of Kotor ), which are drowned valleys flooded by the rising sea. Drammensfjorden

12744-620: The same regions typically are named Sund , in Scandinavian languages as well as in German. The word is related to "to sunder" in the meaning of "to separate". So the use of Sound to name fjords in North America and New Zealand differs from the European meaning of that word. The name of Wexford in Ireland is originally derived from Veisafjǫrðr ("inlet of the mud flats") in Old Norse, as used by

12862-558: The sea, often with an ice tongue , like Mertz Glacier . Tidewater glaciers are glaciers that terminate in the sea, including most glaciers flowing from Greenland, Antarctica, Baffin , Devon , and Ellesmere Islands in Canada, Southeast Alaska , and the Northern and Southern Patagonian Ice Fields . As the ice reaches the sea, pieces break off or calve, forming icebergs . Most tidewater glaciers calve above sea level, which often results in

12980-482: The seaward margins of areas with fjords, the ice-scoured channels are so numerous and varied in direction that the rocky coast is divided into thousands of island blocks, some large and mountainous while others are merely rocky points or rock reefs , menacing navigation. These are called skerries . The term skerry is derived from the Old Norse sker , which means a rock in the sea. Skerries most commonly formed at

13098-508: The southern shoreline. There is some speculation on whether the tectonics and crustal heat flow in the lake area are influenced by the asthenospheric window that exists beneath the crust in this region of Patagonia. The Marble Caves, Marble Chapel, and Marble Cathedral are unusual geological formations located on the shoreline midway along the lake's length. They represent a group of caverns, columns, and tunnels formed in monoliths of marble. The Marble Caves have been formed by wave action over

13216-409: The stagnant ice above, forming a bergschrund . Bergschrunds resemble crevasses but are singular features at a glacier's margins. Crevasses make travel over glaciers hazardous, especially when they are hidden by fragile snow bridges . Below the equilibrium line, glacial meltwater is concentrated in stream channels. Meltwater can pool in proglacial lakes on top of a glacier or descend into the depths of

13334-419: The steady cooling of the surface and wind. In the deep fjords, there is still fresh water from the summer with less density than the saltier water along the coast. Offshore wind, common in the fjord areas during winter, sets up a current on the surface from the inner to the outer parts. This current on the surface in turn pulls dense salt water from the coast across the fjord threshold and into the deepest parts of

13452-423: The stress being applied, ice will act as an elastic solid. Ice needs to be at least 30 m (98 ft) thick to even start flowing, but once its thickness exceeds about 50 m (160 ft) (160 ft), stress on the layer above will exceeds the inter-layer binding strength, and then it'll move faster than the layer below. This means that small amounts of stress can result in a large amount of strain, causing

13570-438: The surface snowpack may experience seasonal melting. A subpolar glacier includes both temperate and polar ice, depending on the depth beneath the surface and position along the length of the glacier. In a similar way, the thermal regime of a glacier is often described by its basal temperature. A cold-based glacier is below freezing at the ice-ground interface and is thus frozen to the underlying substrate. A warm-based glacier

13688-455: The water column, increasing turbidity and reducing light penetration into greater depths of the fjord. This effect can limit the available light for photosynthesis in deeper areas of the water mass, reducing phytoplankton abundance beneath the surface. Overall, phytoplankton abundance and species composition within fjords is highly seasonal, varying as a result of seasonal light availability and water properties that depend on glacial melt and

13806-417: The weight of the ice is supported by the underlying water, and the glacier is afloat. Glaciers may also move by basal sliding , where the base of the glacier is lubricated by the presence of liquid water, reducing basal shear stress and allowing the glacier to slide over the terrain on which it sits. Meltwater may be produced by pressure-induced melting, friction or geothermal heat . The more variable

13924-585: Was adopted in German as Förde , used for the narrow long bays of Schleswig-Holstein , and in English as firth "fjord, river mouth". The English word ford (compare German Furt , Low German Ford or Vörde , in Dutch names voorde such as Vilvoorde, Ancient Greek πόρος , poros , and Latin portus ) is assumed to originate from Germanic * ferþu- and Indo-European root * pertu- meaning "crossing point". Fjord/firth/Förde as well as ford/Furt/Vörde/voorde refer to

#931068