In physics , mathematics , engineering , and related fields, a wave is a propagating dynamic disturbance (change from equilibrium ) of one or more quantities . Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency . When the entire waveform moves in one direction, it is said to be a travelling wave ; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave . In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.
92-458: Gas Chambers is a fast, hollow and shallow point break type of wave . It is a high performance wave that is well-suited for the average to pro level surfer . Gas Chambers is also a beach located on the North Shore of Oahu about a 1/4 of a mile north of Ehukai Beach Park and 1/2 a mile west of Sunset Beach Park. The easiest way to get there is to start at Ehukai Beach Park and walk north taking
184-446: A n ) {\displaystyle \mathbb {n} =\left(a_{1},\ldots ,a_{n}\right)} is a normal. The definition of a normal to a surface in three-dimensional space can be extended to ( n − 1 ) {\displaystyle (n-1)} -dimensional hypersurfaces in R n . {\displaystyle \mathbb {R} ^{n}.} A hypersurface may be locally defined implicitly as
276-486: A , 0 , 0 ) , {\displaystyle (a,0,0),} where a ≠ 0 , {\displaystyle a\neq 0,} the rows of the Jacobian matrix are ( 0 , 0 , 1 ) {\displaystyle (0,0,1)} and ( 0 , a , 0 ) . {\displaystyle (0,a,0).} Thus the normal affine space is the plane of equation x =
368-417: A . {\displaystyle x=a.} Similarly, if b ≠ 0 , {\displaystyle b\neq 0,} the normal plane at ( 0 , b , 0 ) {\displaystyle (0,b,0)} is the plane of equation y = b . {\displaystyle y=b.} At the point ( 0 , 0 , 0 ) {\displaystyle (0,0,0)}
460-408: A Euclidean space . The normal vector space or normal space of a manifold at point P {\displaystyle P} is the set of vectors which are orthogonal to the tangent space at P . {\displaystyle P.} Normal vectors are of special interest in the case of smooth curves and smooth surfaces . The normal is often used in 3D computer graphics (notice
552-401: A node . Halfway between two nodes there is an antinode , where the two counter-propagating waves enhance each other maximally. There is no net propagation of energy over time. A soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in
644-435: A plane curve at a given point is the line perpendicular to the tangent line to the curve at the point. A normal vector of length one is called a unit normal vector . A curvature vector is a normal vector whose length is the curvature of the object. Multiplying a normal vector by −1 results in the opposite vector , which may be used for indicating sides (e.g., interior or exterior). In three-dimensional space ,
736-470: A standing wave . Standing waves commonly arise when a boundary blocks further propagation of the wave, thus causing wave reflection, and therefore introducing a counter-propagating wave. For example, when a violin string is displaced, transverse waves propagate out to where the string is held in place at the bridge and the nut , where the waves are reflected back. At the bridge and nut, the two opposed waves are in antiphase and cancel each other, producing
828-458: A surface normal , or simply normal , to a surface at point P is a vector perpendicular to the tangent plane of the surface at P . The word normal is also used as an adjective: a line normal to a plane , the normal component of a force , the normal vector , etc. The concept of normality generalizes to orthogonality ( right angles ). The concept has been generalized to differentiable manifolds of arbitrary dimension embedded in
920-428: A transmission medium . The propagation and reflection of plane waves—e.g. Pressure waves ( P wave ) or Shear waves (SH or SV-waves) are phenomena that were first characterized within the field of classical seismology, and are now considered fundamental concepts in modern seismic tomography . The analytical solution to this problem exists and is well known. The frequency domain solution can be obtained by first finding
1012-584: A (possibly non-flat) surface S {\displaystyle S} in 3D space R 3 {\displaystyle \mathbb {R} ^{3}} is parameterized by a system of curvilinear coordinates r ( s , t ) = ( x ( s , t ) , y ( s , t ) , z ( s , t ) ) , {\displaystyle \mathbf {r} (s,t)=(x(s,t),y(s,t),z(s,t)),} with s {\displaystyle s} and t {\displaystyle t} real variables, then
SECTION 10
#17328551163021104-413: A container of gas by a function F ( x , t ) {\displaystyle F(x,t)} that gives the pressure at a point x {\displaystyle x} and time t {\displaystyle t} within that container. If the gas was initially at uniform temperature and composition, the evolution of F {\displaystyle F} is constrained by
1196-618: A family of waves by a function F ( A , B , … ; x , t ) {\displaystyle F(A,B,\ldots ;x,t)} that depends on certain parameters A , B , … {\displaystyle A,B,\ldots } , besides x {\displaystyle x} and t {\displaystyle t} . Then one can obtain different waves – that is, different functions of x {\displaystyle x} and t {\displaystyle t} – by choosing different values for those parameters. For example,
1288-402: A family of waves is to give a mathematical equation that, instead of explicitly giving the value of F ( x , t ) {\displaystyle F(x,t)} , only constrains how those values can change with time. Then the family of waves in question consists of all functions F {\displaystyle F} that satisfy those constraints – that is, all solutions of
1380-537: A homogeneous isotropic non-conducting solid. Note that this equation differs from that of heat flow only in that the left-hand side is ∂ 2 F / ∂ t 2 {\displaystyle \partial ^{2}F/\partial t^{2}} , the second derivative of F {\displaystyle F} with respect to time, rather than the first derivative ∂ F / ∂ t {\displaystyle \partial F/\partial t} . Yet this small change makes
1472-442: A huge difference on the set of solutions F {\displaystyle F} . This differential equation is called "the" wave equation in mathematics, even though it describes only one very special kind of waves. Consider a traveling transverse wave (which may be a pulse ) on a string (the medium). Consider the string to have a single spatial dimension. Consider this wave as traveling This wave can then be described by
1564-518: A mechanical equilibrium. A mechanical wave is a local deformation (strain) in some physical medium that propagates from particle to particle by creating local stresses that cause strain in neighboring particles too. For example, sound waves are variations of the local pressure and particle motion that propagate through the medium. Other examples of mechanical waves are seismic waves , gravity waves , surface waves and string vibrations . In an electromagnetic wave (such as light), coupling between
1656-412: A normal to S is by definition a normal to a tangent plane, given by the cross product of the partial derivatives n = ∂ r ∂ s × ∂ r ∂ t . {\displaystyle \mathbf {n} ={\frac {\partial \mathbf {r} }{\partial s}}\times {\frac {\partial \mathbf {r} }{\partial t}}.} If
1748-406: A point P , {\displaystyle P,} the normal vector space is the vector space generated by the values at P {\displaystyle P} of the gradient vectors of the f i . {\displaystyle f_{i}.} In other words, a variety is defined as the intersection of k {\displaystyle k} hypersurfaces, and
1840-457: A point Q to a curve or to a surface is the Euclidean distance between Q and its foot P . The normal direction to a space curve is: where R = κ − 1 {\displaystyle R=\kappa ^{-1}} is the radius of curvature (reciprocal curvature ); T {\displaystyle \mathbf {T} } is the tangent vector , in terms of
1932-410: A sum of sine waves of various frequencies, relative phases, and magnitudes. A plane wave is a kind of wave whose value varies only in one spatial direction. That is, its value is constant on a plane that is perpendicular to that direction. Plane waves can be specified by a vector of unit length n ^ {\displaystyle {\hat {n}}} indicating the direction that
SECTION 20
#17328551163022024-408: A surface S {\displaystyle S} is given implicitly as the set of points ( x , y , z ) {\displaystyle (x,y,z)} satisfying F ( x , y , z ) = 0 , {\displaystyle F(x,y,z)=0,} then a normal at a point ( x , y , z ) {\displaystyle (x,y,z)} on
2116-415: A surface does not have a tangent plane at a singular point , it has no well-defined normal at that point: for example, the vertex of a cone . In general, it is possible to define a normal almost everywhere for a surface that is Lipschitz continuous . The normal to a (hyper)surface is usually scaled to have unit length , but it does not have a unique direction, since its opposite is also a unit normal. For
2208-417: A surface which is the topological boundary of a set in three dimensions, one can distinguish between two normal orientations , the inward-pointing normal and outer-pointing normal . For an oriented surface , the normal is usually determined by the right-hand rule or its analog in higher dimensions. If the normal is constructed as the cross product of tangent vectors (as described in the text above), it
2300-417: A wave is mainly a movement of energy through a medium. Most often, the group velocity is the velocity at which the energy moves through this medium. Waves exhibit common behaviors under a number of standard situations, for example: Normal (geometry) In geometry , a normal is an object (e.g. a line , ray , or vector ) that is perpendicular to a given object. For example, the normal line to
2392-635: A wave may be constant (in which case the wave is a c.w. or continuous wave ), or may be modulated so as to vary with time and/or position. The outline of the variation in amplitude is called the envelope of the wave. Mathematically, the modulated wave can be written in the form: u ( x , t ) = A ( x , t ) sin ( k x − ω t + ϕ ) , {\displaystyle u(x,t)=A(x,t)\sin \left(kx-\omega t+\phi \right),} where A ( x , t ) {\displaystyle A(x,\ t)}
2484-435: A wave's phase and speed concerning energy (and information) propagation. The phase velocity is given as: v p = ω k , {\displaystyle v_{\rm {p}}={\frac {\omega }{k}},} where: The phase speed gives you the speed at which a point of constant phase of the wave will travel for a discrete frequency. The angular frequency ω cannot be chosen independently from
2576-460: Is a pseudovector . When applying a transform to a surface it is often useful to derive normals for the resulting surface from the original normals. Specifically, given a 3×3 transformation matrix M , {\displaystyle \mathbf {M} ,} we can determine the matrix W {\displaystyle \mathbf {W} } that transforms a vector n {\displaystyle \mathbf {n} } perpendicular to
2668-945: Is a given scalar function . If F {\displaystyle F} is continuously differentiable then the hypersurface is a differentiable manifold in the neighbourhood of the points where the gradient is not zero. At these points a normal vector is given by the gradient: n = ∇ F ( x 1 , x 2 , … , x n ) = ( ∂ F ∂ x 1 , ∂ F ∂ x 2 , … , ∂ F ∂ x n ) . {\displaystyle \mathbb {n} =\nabla F\left(x_{1},x_{2},\ldots ,x_{n}\right)=\left({\tfrac {\partial F}{\partial x_{1}}},{\tfrac {\partial F}{\partial x_{2}}},\ldots ,{\tfrac {\partial F}{\partial x_{n}}}\right)\,.} The normal line
2760-572: Is a point of space, specifically in the region where the wave is defined. In mathematical terms, it is usually a vector in the Cartesian three-dimensional space R 3 {\displaystyle \mathbb {R} ^{3}} . However, in many cases one can ignore one dimension, and let x {\displaystyle x} be a point of the Cartesian plane R 2 {\displaystyle \mathbb {R} ^{2}} . This
2852-399: Is a point on the hyperplane and p i {\displaystyle \mathbf {p} _{i}} for i = 1 , … , n − 1 {\displaystyle i=1,\ldots ,n-1} are linearly independent vectors pointing along the hyperplane, a normal to the hyperplane is any vector n {\displaystyle \mathbf {n} } in
Gas Chambers - Misplaced Pages Continue
2944-529: Is a point on the plane and p , q {\displaystyle \mathbf {p} ,\mathbf {q} } are non-parallel vectors pointing along the plane, a normal to the plane is a vector normal to both p {\displaystyle \mathbf {p} } and q , {\displaystyle \mathbf {q} ,} which can be found as the cross product n = p × q . {\displaystyle \mathbf {n} =\mathbf {p} \times \mathbf {q} .} If
3036-440: Is almost always confined to some finite region of space, called its domain . For example, the seismic waves generated by earthquakes are significant only in the interior and surface of the planet, so they can be ignored outside it. However, waves with infinite domain, that extend over the whole space, are commonly studied in mathematics, and are very valuable tools for understanding physical waves in finite domains. A plane wave
3128-494: Is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency. In linear media, complicated waves can generally be decomposed as the sum of many sinusoidal plane waves having different directions of propagation and/or different frequencies . A plane wave
3220-396: Is by definition a surface normal. Alternatively, if the hyperplane is defined as the solution set of a single linear equation a 1 x 1 + ⋯ + a n x n = c , {\displaystyle a_{1}x_{1}+\cdots +a_{n}x_{n}=c,} then the vector n = ( a 1 , … ,
3312-538: Is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal wave if those vectors are aligned with the propagation direction. Mechanical waves include both transverse and longitudinal waves; on the other hand electromagnetic plane waves are strictly transverse while sound waves in fluids (such as air) can only be longitudinal. That physical direction of an oscillating field relative to
3404-448: Is meant to signify that, in the derivative with respect to some variable, all other variables must be considered fixed.) This equation can be derived from the laws of physics that govern the diffusion of heat in solid media. For that reason, it is called the heat equation in mathematics, even though it applies to many other physical quantities besides temperatures. For another example, we can describe all possible sounds echoing within
3496-789: Is perpendicular to }}M\mathbb {t} \quad \,&{\text{ if and only if }}\quad 0=(W\mathbb {n} )\cdot (M\mathbb {t} )\\&{\text{ if and only if }}\quad 0=(W\mathbb {n} )^{\mathrm {T} }(M\mathbb {t} )\\&{\text{ if and only if }}\quad 0=\left(\mathbb {n} ^{\mathrm {T} }W^{\mathrm {T} }\right)(M\mathbb {t} )\\&{\text{ if and only if }}\quad 0=\mathbb {n} ^{\mathrm {T} }\left(W^{\mathrm {T} }M\right)\mathbb {t} \\\end{alignedat}}} Choosing W {\displaystyle \mathbf {W} } such that W T M = I , {\displaystyle W^{\mathrm {T} }M=I,} or W = ( M − 1 ) T , {\displaystyle W=(M^{-1})^{\mathrm {T} },} will satisfy
3588-458: Is the wavelength of the emitted note, and f = c / λ {\displaystyle f=c/\lambda } is its frequency .) Many general properties of these waves can be inferred from this general equation, without choosing specific values for the parameters. As another example, it may be that the vibrations of a drum skin after a single strike depend only on the distance r {\displaystyle r} from
3680-520: Is the (first) derivative of F {\displaystyle F} with respect to t {\displaystyle t} ; and ∂ 2 F / ∂ x i 2 {\displaystyle \partial ^{2}F/\partial x_{i}^{2}} is the second derivative of F {\displaystyle F} relative to x i {\displaystyle x_{i}} . (The symbol " ∂ {\displaystyle \partial } "
3772-648: Is the amplitude envelope of the wave, k {\displaystyle k} is the wavenumber and ϕ {\displaystyle \phi } is the phase . If the group velocity v g {\displaystyle v_{g}} (see below) is wavelength-independent, this equation can be simplified as: u ( x , t ) = A ( x − v g t ) sin ( k x − ω t + ϕ ) , {\displaystyle u(x,t)=A(x-v_{g}t)\sin \left(kx-\omega t+\phi \right),} showing that
Gas Chambers - Misplaced Pages Continue
3864-417: Is the case, for example, when studying vibrations of a drum skin. One may even restrict x {\displaystyle x} to a point of the Cartesian line R {\displaystyle \mathbb {R} } – that is, the set of real numbers . This is the case, for example, when studying vibrations in a violin string or recorder . The time t {\displaystyle t} , on
3956-549: Is the heat that is being generated per unit of volume and time in the neighborhood of x {\displaystyle x} at time t {\displaystyle t} (for example, by chemical reactions happening there); x 1 , x 2 , x 3 {\displaystyle x_{1},x_{2},x_{3}} are the Cartesian coordinates of the point x {\displaystyle x} ; ∂ F / ∂ t {\displaystyle \partial F/\partial t}
4048-536: Is the length of the bore; and n {\displaystyle n} is a positive integer (1,2,3,...) that specifies the number of nodes in the standing wave. (The position x {\displaystyle x} should be measured from the mouthpiece , and the time t {\displaystyle t} from any moment at which the pressure at the mouthpiece is maximum. The quantity λ = 4 L / ( 2 n − 1 ) {\displaystyle \lambda =4L/(2n-1)}
4140-831: Is the one-dimensional subspace with basis { n } . {\displaystyle \{\mathbf {n} \}.} A differential variety defined by implicit equations in the n {\displaystyle n} -dimensional space R n {\displaystyle \mathbb {R} ^{n}} is the set of the common zeros of a finite set of differentiable functions in n {\displaystyle n} variables f 1 ( x 1 , … , x n ) , … , f k ( x 1 , … , x n ) . {\displaystyle f_{1}\left(x_{1},\ldots ,x_{n}\right),\ldots ,f_{k}\left(x_{1},\ldots ,x_{n}\right).} The Jacobian matrix of
4232-495: The Belousov–Zhabotinsky reaction ; and many more. Mechanical and electromagnetic waves transfer energy , momentum , and information , but they do not transfer particles in the medium. In mathematics and electronics waves are studied as signals . On the other hand, some waves have envelopes which do not move at all such as standing waves (which are fundamental to music) and hydraulic jumps . A physical wave field
4324-458: The Helmholtz decomposition of the displacement field, which is then substituted into the wave equation . From here, the plane wave eigenmodes can be calculated. The analytical solution of SV-wave in a half-space indicates that the plane SV wave reflects back to the domain as a P and SV waves, leaving out special cases. The angle of the reflected SV wave is identical to the incidence wave, while
4416-449: The electric field vector E {\displaystyle E} , or the magnetic field vector H {\displaystyle H} , or any related quantity, such as the Poynting vector E × H {\displaystyle E\times H} . In fluid dynamics , the value of F ( x , t ) {\displaystyle F(x,t)} could be
4508-446: The null space of the matrix P = [ p 1 ⋯ p n − 1 ] , {\displaystyle P={\begin{bmatrix}\mathbf {p} _{1}&\cdots &\mathbf {p} _{n-1}\end{bmatrix}},} meaning P n = 0 . {\displaystyle P\mathbf {n} =\mathbf {0} .} That is, any vector orthogonal to all in-plane vectors
4600-486: The 2nd public right of way to the beach. There is a Gas Chambers beach in Aguadilla, Puerto Rico with surfable waves in the winter. This hydrology article is a stub . You can help Misplaced Pages by expanding it . Wave There are two types of waves that are most commonly studied in classical physics : mechanical waves and electromagnetic waves . In a mechanical wave, stress and strain fields oscillate about
4692-439: The above equation, giving a W n {\displaystyle W\mathbb {n} } perpendicular to M t , {\displaystyle M\mathbb {t} ,} or an n ′ {\displaystyle \mathbf {n} ^{\prime }} perpendicular to t ′ , {\displaystyle \mathbf {t} ^{\prime },} as required. Therefore, one should use
SECTION 50
#17328551163024784-469: The angle of the reflected P wave is greater than the SV wave. For the same wave frequency, the SV wavelength is smaller than the P wavelength. This fact has been depicted in this animated picture. Similar to the SV wave, the P incidence, in general, reflects as the P and SV wave. There are some special cases where the regime is different. Wave velocity is a general concept, of various kinds of wave velocities, for
4876-468: The argument x − vt . Constant values of this argument correspond to constant values of F , and these constant values occur if x increases at the same rate that vt increases. That is, the wave shaped like the function F will move in the positive x -direction at velocity v (and G will propagate at the same speed in the negative x -direction). In the case of a periodic function F with period λ , that is, F ( x + λ − vt ) = F ( x − vt ),
4968-400: The bar. Then the temperatures at later times can be expressed by a function F {\displaystyle F} that depends on the function h {\displaystyle h} (that is, a functional operator ), so that the temperature at a later time is F ( h ; x , t ) {\displaystyle F(h;x,t)} Another way to describe and study
5060-430: The center of the skin to the strike point, and on the strength s {\displaystyle s} of the strike. Then the vibration for all possible strikes can be described by a function F ( r , s ; x , t ) {\displaystyle F(r,s;x,t)} . Sometimes the family of waves of interest has infinitely many parameters. For example, one may want to describe what happens to
5152-435: The combination n ^ ⋅ x → {\displaystyle {\hat {n}}\cdot {\vec {x}}} , any displacement in directions perpendicular to n ^ {\displaystyle {\hat {n}}} cannot affect the value of the field. Plane waves are often used to model electromagnetic waves far from a source. For electromagnetic plane waves,
5244-470: The curve position r {\displaystyle \mathbf {r} } and arc-length s {\displaystyle s} : For a convex polygon (such as a triangle ), a surface normal can be calculated as the vector cross product of two (non-parallel) edges of the polygon. For a plane given by the general form plane equation a x + b y + c z + d = 0 , {\displaystyle ax+by+cz+d=0,}
5336-611: The dispersion relation, we have dispersive waves. The dispersion relationship depends on the medium through which the waves propagate and on the type of waves (for instance electromagnetic , sound or water waves). The speed at which a resultant wave packet from a narrow range of frequencies will travel is called the group velocity and is determined from the gradient of the dispersion relation : v g = ∂ ω ∂ k {\displaystyle v_{\rm {g}}={\frac {\partial \omega }{\partial k}}} In almost all cases,
5428-797: The electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations . Electromagnetic waves can travel through a vacuum and through some dielectric media (at wavelengths where they are considered transparent ). Electromagnetic waves, as determined by their frequencies (or wavelengths ), have more specific designations including radio waves , infrared radiation , terahertz waves , visible light , ultraviolet radiation , X-rays and gamma rays . Other types of waves include gravitational waves , which are disturbances in spacetime that propagate according to general relativity ; heat diffusion waves ; plasma waves that combine mechanical deformations and electromagnetic fields; reaction–diffusion waves , such as in
5520-435: The electric and magnetic fields themselves are transverse to the direction of propagation, and also perpendicular to each other. A standing wave, also known as a stationary wave , is a wave whose envelope remains in a constant position. This phenomenon arises as a result of interference between two waves traveling in opposite directions. The sum of two counter-propagating waves (of equal amplitude and frequency) creates
5612-428: The envelope moves with the group velocity and retains its shape. Otherwise, in cases where the group velocity varies with wavelength, the pulse shape changes in a manner often described using an envelope equation . There are two velocities that are associated with waves, the phase velocity and the group velocity . Phase velocity is the rate at which the phase of the wave propagates in space : any given phase of
SECTION 60
#17328551163025704-495: The equation. This approach is extremely important in physics, because the constraints usually are a consequence of the physical processes that cause the wave to evolve. For example, if F ( x , t ) {\displaystyle F(x,t)} is the temperature inside a block of some homogeneous and isotropic solid material, its evolution is constrained by the partial differential equation where Q ( p , f ) {\displaystyle Q(p,f)}
5796-445: The formula Here P ( x , t ) {\displaystyle P(x,t)} is some extra compression force that is being applied to the gas near x {\displaystyle x} by some external process, such as a loudspeaker or piston right next to p {\displaystyle p} . This same differential equation describes the behavior of mechanical vibrations and electromagnetic fields in
5888-1857: The graph of a function z = f ( x , y ) , {\displaystyle z=f(x,y),} an upward-pointing normal can be found either from the parametrization r ( x , y ) = ( x , y , f ( x , y ) ) , {\displaystyle \mathbf {r} (x,y)=(x,y,f(x,y)),} giving n = ∂ r ∂ x × ∂ r ∂ y = ( 1 , 0 , ∂ f ∂ x ) × ( 0 , 1 , ∂ f ∂ y ) = ( − ∂ f ∂ x , − ∂ f ∂ y , 1 ) ; {\displaystyle \mathbf {n} ={\frac {\partial \mathbf {r} }{\partial x}}\times {\frac {\partial \mathbf {r} }{\partial y}}=\left(1,0,{\tfrac {\partial f}{\partial x}}\right)\times \left(0,1,{\tfrac {\partial f}{\partial y}}\right)=\left(-{\tfrac {\partial f}{\partial x}},-{\tfrac {\partial f}{\partial y}},1\right);} or more simply from its implicit form F ( x , y , z ) = z − f ( x , y ) = 0 , {\displaystyle F(x,y,z)=z-f(x,y)=0,} giving n = ∇ F ( x , y , z ) = ( − ∂ f ∂ x , − ∂ f ∂ y , 1 ) . {\displaystyle \mathbf {n} =\nabla F(x,y,z)=\left(-{\tfrac {\partial f}{\partial x}},-{\tfrac {\partial f}{\partial y}},1\right).} Since
5980-1038: The inverse transpose of the linear transformation when transforming surface normals. The inverse transpose is equal to the original matrix if the matrix is orthonormal, that is, purely rotational with no scaling or shearing. For an ( n − 1 ) {\displaystyle (n-1)} -dimensional hyperplane in n {\displaystyle n} -dimensional space R n {\displaystyle \mathbb {R} ^{n}} given by its parametric representation r ( t 1 , … , t n − 1 ) = p 0 + t 1 p 1 + ⋯ + t n − 1 p n − 1 , {\displaystyle \mathbf {r} \left(t_{1},\ldots ,t_{n-1}\right)=\mathbf {p} _{0}+t_{1}\mathbf {p} _{1}+\cdots +t_{n-1}\mathbf {p} _{n-1},} where p 0 {\displaystyle \mathbf {p} _{0}}
6072-589: The medium in opposite directions. A generalized representation of this wave can be obtained as the partial differential equation 1 v 2 ∂ 2 u ∂ t 2 = ∂ 2 u ∂ x 2 . {\displaystyle {\frac {1}{v^{2}}}{\frac {\partial ^{2}u}{\partial t^{2}}}={\frac {\partial ^{2}u}{\partial x^{2}}}.} General solutions are based upon Duhamel's principle . The form or shape of F in d'Alembert's formula involves
6164-624: The medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. Wave propagation is any of the ways in which waves travel. With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves . Electromagnetic waves propagate in vacuum as well as in material media. Propagation of other wave types such as sound may occur only in
6256-419: The motion of a drum skin , one can consider D {\displaystyle D} to be a disk (circle) on the plane R 2 {\displaystyle \mathbb {R} ^{2}} with center at the origin ( 0 , 0 ) {\displaystyle (0,0)} , and let F ( x , t ) {\displaystyle F(x,t)} be the vertical displacement of
6348-458: The normal vector space at a point is the vector space generated by the normal vectors of the hypersurfaces at the point. The normal (affine) space at a point P {\displaystyle P} of the variety is the affine subspace passing through P {\displaystyle P} and generated by the normal vector space at P . {\displaystyle P.} These definitions may be extended verbatim to
6440-413: The other hand, is always assumed to be a scalar ; that is, a real number. The value of F ( x , t ) {\displaystyle F(x,t)} can be any physical quantity of interest assigned to the point x {\displaystyle x} that may vary with time. For example, if F {\displaystyle F} represents the vibrations inside an elastic solid,
6532-609: The overall shape of the waves' amplitudes—modulation or envelope of the wave. A sine wave , sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function . In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion . Sine waves occur often in physics , including wind waves , sound waves, and light waves, such as monochromatic radiation . In engineering , signal processing , and mathematics , Fourier analysis decomposes general functions into
6624-476: The periodicity of F in space means that a snapshot of the wave at a given time t finds the wave varying periodically in space with period λ (the wavelength of the wave). In a similar fashion, this periodicity of F implies a periodicity in time as well: F ( x − v ( t + T )) = F ( x − vt ) provided vT = λ , so an observation of the wave at a fixed location x finds the wave undulating periodically in time with period T = λ / v . The amplitude of
6716-396: The points where the variety is not a manifold. Let V be the variety defined in the 3-dimensional space by the equations x y = 0 , z = 0. {\displaystyle x\,y=0,\quad z=0.} This variety is the union of the x {\displaystyle x} -axis and the y {\displaystyle y} -axis. At a point (
6808-438: The propagation direction is also referred to as the wave's polarization , which can be an important attribute. A wave can be described just like a field, namely as a function F ( x , t ) {\displaystyle F(x,t)} where x {\displaystyle x} is a position and t {\displaystyle t} is a time. The value of x {\displaystyle x}
6900-440: The rows of the Jacobian matrix are ( 0 , 0 , 1 ) {\displaystyle (0,0,1)} and ( 0 , 0 , 0 ) . {\displaystyle (0,0,0).} Thus the normal vector space and the normal affine space have dimension 1 and the normal affine space is the z {\displaystyle z} -axis. The normal ray is the outward-pointing ray perpendicular to
6992-441: The same, so the wave form will change over time and space. Sometimes one is interested in a single specific wave. More often, however, one needs to understand large set of possible waves; like all the ways that a drum skin can vibrate after being struck once with a drum stick , or all the possible radar echoes one could get from an airplane that may be approaching an airport . In some of those situations, one may describe such
7084-426: The set of points ( x 1 , x 2 , … , x n ) {\displaystyle (x_{1},x_{2},\ldots ,x_{n})} satisfying an equation F ( x 1 , x 2 , … , x n ) = 0 , {\displaystyle F(x_{1},x_{2},\ldots ,x_{n})=0,} where F {\displaystyle F}
7176-453: The singular, as only one normal will be defined) to determine a surface's orientation toward a light source for flat shading , or the orientation of each of the surface's corners ( vertices ) to mimic a curved surface with Phong shading . The foot of a normal at a point of interest Q (analogous to the foot of a perpendicular ) can be defined at the point P on the surface where the normal vector contains Q . The normal distance of
7268-420: The skin at the point x {\displaystyle x} of D {\displaystyle D} and at time t {\displaystyle t} . Waves of the same type are often superposed and encountered simultaneously at a given point in space and time. The properties at that point are the sum of the properties of each component wave at that point. In general, the velocities are not
7360-423: The sound pressure inside a recorder that is playing a "pure" note is typically a standing wave , that can be written as The parameter A {\displaystyle A} defines the amplitude of the wave (that is, the maximum sound pressure in the bore, which is related to the loudness of the note); c {\displaystyle c} is the speed of sound; L {\displaystyle L}
7452-450: The surface is given by the gradient n = ∇ F ( x , y , z ) . {\displaystyle \mathbf {n} =\nabla F(x,y,z).} since the gradient at any point is perpendicular to the level set S . {\displaystyle S.} For a surface S {\displaystyle S} in R 3 {\displaystyle \mathbb {R} ^{3}} given as
7544-1175: The tangent plane t {\displaystyle \mathbf {t} } into a vector n ′ {\displaystyle \mathbf {n} ^{\prime }} perpendicular to the transformed tangent plane M t , {\displaystyle \mathbf {Mt} ,} by the following logic: Write n′ as W n . {\displaystyle \mathbf {Wn} .} We must find W . {\displaystyle \mathbf {W} .} W n is perpendicular to M t if and only if 0 = ( W n ) ⋅ ( M t ) if and only if 0 = ( W n ) T ( M t ) if and only if 0 = ( n T W T ) ( M t ) if and only if 0 = n T ( W T M ) t {\displaystyle {\begin{alignedat}{5}W\mathbb {n} {\text{
7636-463: The temperature in a metal bar when it is initially heated at various temperatures at different points along its length, and then allowed to cool by itself in vacuum. In that case, instead of a scalar or vector, the parameter would have to be a function h {\displaystyle h} such that h ( x ) {\displaystyle h(x)} is the initial temperature at each point x {\displaystyle x} of
7728-415: The two-dimensional functions or, more generally, by d'Alembert's formula : u ( x , t ) = F ( x − v t ) + G ( x + v t ) . {\displaystyle u(x,t)=F(x-vt)+G(x+vt).} representing two component waveforms F {\displaystyle F} and G {\displaystyle G} traveling through
7820-418: The value of F ( x , t ) {\displaystyle F(x,t)} is usually a vector that gives the current displacement from x {\displaystyle x} of the material particles that would be at the point x {\displaystyle x} in the absence of vibration. For an electromagnetic wave, the value of F {\displaystyle F} can be
7912-434: The variety is the k × n {\displaystyle k\times n} matrix whose i {\displaystyle i} -th row is the gradient of f i . {\displaystyle f_{i}.} By the implicit function theorem , the variety is a manifold in the neighborhood of a point where the Jacobian matrix has rank k . {\displaystyle k.} At such
8004-472: The vector n = ( a , b , c ) {\displaystyle \mathbf {n} =(a,b,c)} is a normal. For a plane whose equation is given in parametric form r ( s , t ) = r 0 + s p + t q , {\displaystyle \mathbf {r} (s,t)=\mathbf {r} _{0}+s\mathbf {p} +t\mathbf {q} ,} where r 0 {\displaystyle \mathbf {r} _{0}}
8096-485: The velocity vector of the fluid at the point x {\displaystyle x} , or any scalar property like pressure , temperature , or density . In a chemical reaction, F ( x , t ) {\displaystyle F(x,t)} could be the concentration of some substance in the neighborhood of point x {\displaystyle x} of the reaction medium. For any dimension d {\displaystyle d} (1, 2, or 3),
8188-441: The wave (for example, the crest ) will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and period T as v p = λ T . {\displaystyle v_{\mathrm {p} }={\frac {\lambda }{T}}.} Group velocity is a property of waves that have a defined envelope, measuring propagation through space (that is, phase velocity) of
8280-458: The wave varies in, and a wave profile describing how the wave varies as a function of the displacement along that direction ( n ^ ⋅ x → {\displaystyle {\hat {n}}\cdot {\vec {x}}} ) and time ( t {\displaystyle t} ). Since the wave profile only depends on the position x → {\displaystyle {\vec {x}}} in
8372-419: The wave's domain is then a subset D {\displaystyle D} of R d {\displaystyle \mathbb {R} ^{d}} , such that the function value F ( x , t ) {\displaystyle F(x,t)} is defined for any point x {\displaystyle x} in D {\displaystyle D} . For example, when describing
8464-438: The wavenumber k , but both are related through the dispersion relationship : ω = Ω ( k ) . {\displaystyle \omega =\Omega (k).} In the special case Ω( k ) = ck , with c a constant, the waves are called non-dispersive, since all frequencies travel at the same phase speed c . For instance electromagnetic waves in vacuum are non-dispersive. In case of other forms of
#301698