Misplaced Pages

Falkland Islands Radio Service

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Radio is the technology of communicating using radio waves . Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave . They can be received by other antennas connected to a radio receiver ; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar , radio navigation , remote control , remote sensing , and other applications.

#103896

99-545: Falkland Islands Radio Service is an independent radio broadcaster in the Falkland Islands . Although officially called Falkland Islands Radio Service, the station ident is Falklands Radio , and it is often referred to as FIRS . The station broadcasts for 76 hours each week and provides a wide range of programming including all music genres, local news and phone-in shows. The station has five full-time staff members, approximately 15 part-time presenters and volunteers from

198-471: A directional antenna transmits radio waves in a beam in a particular direction, or receives waves from only one direction. Radio waves travel at the speed of light in vacuum and at slightly lower velocity in air. The other types of electromagnetic waves besides radio waves, infrared , visible light , ultraviolet , X-rays and gamma rays , can also carry information and be used for communication. The wide use of radio waves for telecommunication

297-418: A microphone , a video signal representing moving images from a video camera , or a digital signal consisting of a sequence of bits representing binary data from a computer. The modulation signal is applied to a radio transmitter . In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency , called the carrier wave because it serves to generate

396-412: A microphone , a video signal representing moving images from a video camera , or a digital signal representing data from a computer . In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency , called the carrier wave because it creates the radio waves that "carry" the information through the air. The information signal is used to modulate

495-492: A radar screen . Doppler radar can measure a moving object's velocity, by measuring the change in frequency of the return radio waves due to the Doppler effect . Radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. Parabolic (dish) antennas are widely used. In most radars

594-418: A resonator , similarly to a tuning fork . The tuned circuit has a natural resonant frequency at which it oscillates. The resonant frequency is set equal to the frequency of the desired radio station. The oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by

693-552: A space heater or wood fire. The oscillating electric field of the wave causes polar molecules to vibrate back and forth, increasing the temperature; this is how a microwave oven cooks food. Radio waves have been applied to the body for 100 years in the medical therapy of diathermy for deep heating of body tissue, to promote increased blood flow and healing. More recently they have been used to create higher temperatures in hyperthermia therapy and to kill cancer cells. However, unlike infrared waves, which are mainly absorbed at

792-509: A transmitter , which is connected to an antenna , which radiates the waves. They are received by another antenna connected to a radio receiver , which processes the received signal. Radio waves are very widely used in modern technology for fixed and mobile radio communication , broadcasting , radar and radio navigation systems, communications satellites , wireless computer networks and many other applications. Different frequencies of radio waves have different propagation characteristics in

891-474: A " push to talk " button on their radio which switches off the receiver and switches on the transmitter. Or the radio link may be full duplex , a bidirectional link using two radio channels so both people can talk at the same time, as in a cell phone. One way, unidirectional radio transmission is called simplex . This is radio communication between a spacecraft and an Earth-based ground station, or another spacecraft. Communication with spacecraft involves

990-606: A Service Regulation specifying that "Radiotelegrams shall show in the preamble that the service is 'Radio ' ". The switch to radio in place of wireless took place slowly and unevenly in the English-speaking world. Lee de Forest helped popularize the new word in the United States—in early 1907, he founded the DeForest Radio Telephone Company, and his letter in the 22 June 1907 Electrical World about

1089-412: A controller device control the actions of a remote device. The existence of radio waves was first proven by German physicist Heinrich Hertz on 11 November 1886. In the mid-1890s, building on techniques physicists were using to study electromagnetic waves, Italian physicist Guglielmo Marconi developed the first apparatus for long-distance radio communication, sending a wireless Morse Code message to

SECTION 10

#1732852774104

1188-421: A given bandwidth than analog modulation , by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. Other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using

1287-545: A government license, such as the general radiotelephone operator license in the US, obtained by taking a test demonstrating adequate technical and legal knowledge of safe radio operation. Exceptions to the above rules allow the unlicensed operation by the public of low power short-range transmitters in consumer products such as cell phones, cordless phones , wireless devices , walkie-talkies , citizens band radios , wireless microphones , garage door openers , and baby monitors . In

1386-461: A human user. The radio waves from many transmitters pass through the air simultaneously without interfering with each other. They can be separated in the receiver because each transmitter's radio waves oscillate at a different rate, in other words each transmitter has a different frequency , measured in kilohertz (kHz), megahertz (MHz) or gigahertz (GHz). The bandpass filter in the receiver consists of one or more tuned circuits which act like

1485-572: A large economic cost, but it can also be life-threatening (for example, in the case of interference with emergency communications or air traffic control ). To prevent interference between different users, the emission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU), which allocates bands in the radio spectrum for different uses. Radio transmitters must be licensed by governments, under

1584-403: A left-hand sense. Right circularly polarized radio waves consist of photons spinning in a right hand sense. Left circularly polarized radio waves consist of photons spinning in a left hand sense. Plane polarized radio waves consist of photons in a quantum superposition of right and left hand spin states. The electric field consists of a superposition of right and left rotating fields, resulting in

1683-595: A metal conductor called an antenna . As they travel farther from the transmitting antenna, radio waves spread out so their signal strength ( intensity in watts per square meter) decreases (see Inverse-square law ), so radio transmissions can only be received within a limited range of the transmitter, the distance depending on the transmitter power, the antenna radiation pattern , receiver sensitivity, background noise level, and presence of obstructions between transmitter and receiver . An omnidirectional antenna transmits or receives radio waves in all directions, while

1782-427: A more limited information-carrying capacity and so work best with audio signals (speech and music), and the sound quality can be degraded by radio noise from natural and artificial sources. The shortwave bands have a greater potential range but are more subject to interference by distant stations and varying atmospheric conditions that affect reception. In the very high frequency band, greater than 30 megahertz,

1881-605: A plane oscillation. Radio waves are more widely used for communication than other electromagnetic waves mainly because of their desirable propagation properties, stemming from their large wavelength . Radio waves have the ability to pass through the atmosphere in any weather, foliage, and through most building materials. By diffraction , longer wavelengths can bend around obstructions, and unlike other electromagnetic waves they tend to be scattered rather than absorbed by objects larger than their wavelength. The study of radio propagation , how radio waves move in free space and over

1980-402: A plane perpendicular to the direction of motion. In a horizontally polarized radio wave the electric field oscillates in a horizontal direction. In a vertically polarized wave the electric field oscillates in a vertical direction. In a circularly polarized wave the electric field at any point rotates about the direction of travel, once per cycle. A right circularly polarized wave rotates in

2079-470: A primitive spark-gap transmitter . Experiments by Hertz and physicists Jagadish Chandra Bose , Oliver Lodge , Lord Rayleigh , and Augusto Righi , among others, showed that radio waves like light demonstrated reflection, refraction , diffraction , polarization , standing waves , and traveled at the same speed as light, confirming that both light and radio waves were electromagnetic waves, differing only in frequency. In 1895, Guglielmo Marconi developed

SECTION 20

#1732852774104

2178-420: A public audience. Analog audio is the earliest form of radio broadcast. AM broadcasting began around 1920. FM broadcasting was introduced in the late 1930s with improved fidelity . A broadcast radio receiver is called a radio . Most radios can receive both AM and FM. Television broadcasting is the transmission of moving images by radio, which consist of sequences of still images, which are displayed on

2277-459: A radio signal is usually concentrated in narrow frequency bands called sidebands ( SB ) just above and below the carrier frequency. The width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( BW ). For any given signal-to-noise ratio , an amount of bandwidth can carry the same amount of information ( data rate in bits per second) regardless of where in

2376-489: A receiver that is typically colocated with the transmitter. In radio navigation systems such as GPS and VOR , a mobile navigation instrument receives radio signals from multiple navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones , garage door openers , and keyless entry systems , radio signals transmitted from

2475-521: A recipient over a kilometer away in 1895, and the first transatlantic signal on 12 December 1901. The first commercial radio broadcast was transmitted on 2 November 1920, when the live returns of the Harding-Cox presidential election were broadcast by Westinghouse Electric and Manufacturing Company in Pittsburgh, under the call sign KDKA . The emission of radio waves is regulated by law, coordinated by

2574-644: A reference to the radiotelegraph and radiotelegraphy . The use of radio as a standalone word dates back to at least 30 December 1904, when instructions issued by the British Post Office for transmitting telegrams specified that "The word 'Radio'... is sent in the Service Instructions." This practice was universally adopted, and the word "radio" introduced internationally, by the 1906 Berlin Radiotelegraphic Convention, which included

2673-404: A right-hand sense about the direction of travel, while a left circularly polarized wave rotates in the opposite sense. The wave's magnetic field is perpendicular to the electric field, and the electric and magnetic field are oriented in a right-hand sense with respect to the direction of radiation. An antenna emits polarized radio waves, with the polarization determined by the direction of

2772-446: A screen on a television receiver (a "television" or TV) along with a synchronized audio (sound) channel. Television ( video ) signals occupy a wider bandwidth than broadcast radio ( audio ) signals. Analog television , the original television technology, required 6 MHz, so the television frequency bands are divided into 6 MHz channels, now called "RF channels". The current television standard, introduced beginning in 2006,

2871-441: A smaller bandwidth than the old analog channels, saving scarce radio spectrum space. Therefore, each of the 6 MHz analog RF channels now carries up to 7 DTV channels – these are called "virtual channels". Digital television receivers have different behavior in the presence of poor reception or noise than analog television, called the " digital cliff " effect. Unlike analog television, in which increasingly poor reception causes

2970-416: A television (video) signal has a greater data rate than an audio signal . The radio spectrum , the total range of radio frequencies that can be used for communication in a given area, is a limited resource. Each radio transmission occupies a portion of the total bandwidth available. Radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. In some parts of

3069-400: A transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location to

Falkland Islands Radio Service - Misplaced Pages Continue

3168-652: A transmitter to control the actions of a device at a remote location. Remote control systems may also include telemetry channels in the other direction, used to transmit real-time information on the state of the device back to the control station. Uncrewed spacecraft are an example of remote-controlled machines, controlled by commands transmitted by satellite ground stations . Most handheld remote controls used to control consumer electronics products like televisions or DVD players actually operate by infrared light rather than radio waves, so are not examples of radio remote control. A security concern with remote control systems

3267-486: A type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum , typically with frequencies below 300 gigahertz (GHz) and wavelengths greater than 1 millimeter ( 3 ⁄ 64 inch), about the diameter of a grain of rice. Radio waves with frequencies above about 1 GHz and wavelengths shorter than 30 centimeters are called microwaves . Like all electromagnetic waves, radio waves in vacuum travel at

3366-435: A variety of license classes depending on use, and are restricted to certain frequencies and power levels. In some classes, such as radio and television broadcasting stations, the transmitter is given a unique identifier consisting of a string of letters and numbers called a call sign , which must be used in all transmissions. In order to adjust, maintain, or internally repair radiotelephone transmitters, individuals must hold

3465-413: Is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. The radio waves carry the information to the receiver location. At the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna which is a weaker replica of the current in the transmitting antenna. This voltage is applied to the radio receiver , which amplifies

3564-703: Is spoofing , in which an unauthorized person transmits an imitation of the control signal to take control of the device. Examples of radio remote control: Radio jamming is the deliberate radiation of radio signals designed to interfere with the reception of other radio signals. Jamming devices are called "signal suppressors" or "interference generators" or just jammers. During wartime, militaries use jamming to interfere with enemies' tactical radio communication. Since radio waves can pass beyond national borders, some totalitarian countries which practice censorship use jamming to prevent their citizens from listening to broadcasts from radio stations in other countries. Jamming

3663-445: Is a digital format called high-definition television (HDTV), which transmits pictures at higher resolution, typically 1080 pixels high by 1920 pixels wide, at a rate of 25 or 30 frames per second. Digital television (DTV) transmission systems, which replaced older analog television in a transition beginning in 2006, use image compression and high-efficiency digital modulation such as OFDM and 8VSB to transmit HDTV video within

3762-404: Is absorbed within a few meters, so the atmosphere is effectively opaque. In radio communication systems, information is transported across space using radio waves. At the sending end, the information to be sent, in the form of a time-varying electrical signal, is applied to a radio transmitter . The information, called the modulation signal , can be an audio signal representing sound from

3861-433: Is an audio transceiver , a receiver and transmitter in the same device, used for bidirectional person-to-person voice communication with other users with similar radios. An older term for this mode of communication is radiotelephony . The radio link may be half-duplex , as in a walkie-talkie , using a single radio channel in which only one radio can transmit at a time, so different users take turns talking, pressing

3960-410: Is called "tuning". The oscillating radio signal from the desired station causes the tuned circuit to resonate , oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by the tuned circuit and not passed on. A modulated radio wave, carrying an information signal, occupies a range of frequencies . The information ( modulation ) in

4059-427: Is called an uplink , while a link that transmits data from the spacecraft to the ground is called a downlink. Radar is a radiolocation method used to locate and track aircraft, spacecraft, missiles, ships, vehicles, and also to map weather patterns and terrain. A radar set consists of a transmitter and receiver. The transmitter emits a narrow beam of radio waves which is swept around the surrounding space. When

Falkland Islands Radio Service - Misplaced Pages Continue

4158-442: Is extremely small, from 10 to 10   joules . So the antenna of even a very low power transmitter emits an enormous number of photons every second. Therefore, except for certain molecular electron transition processes such as atoms in a maser emitting microwave photons, radio wave emission and absorption is usually regarded as a continuous classical process, governed by Maxwell's equations . Radio waves in vacuum travel at

4257-553: Is in radio clocks and watches, which include an automated receiver that periodically (usually weekly) receives and decodes the time signal and resets the watch's internal quartz clock to the correct time, thus allowing a small watch or desk clock to have the same accuracy as an atomic clock. Government time stations are declining in number because GPS satellites and the Internet Network Time Protocol (NTP) provide equally accurate time standards. A two-way radio

4356-417: Is mainly due to their desirable propagation properties stemming from their longer wavelength. In radio communication systems, information is carried across space using radio waves. At the sending end, the information to be sent is converted by some type of transducer to a time-varying electrical signal called the modulation signal. The modulation signal may be an audio signal representing sound from

4455-524: Is the one-way transmission of information from a transmitter to receivers belonging to a public audience. Since the radio waves become weaker with distance, a broadcasting station can only be received within a limited distance of its transmitter. Systems that broadcast from satellites can generally be received over an entire country or continent. Older terrestrial radio and television are paid for by commercial advertising or governments. In subscription systems like satellite television and satellite radio

4554-426: Is the wavelength of a 1  hertz radio signal. A 1  megahertz radio wave (mid- AM band ) has a wavelength of 299.79 meters (983.6 ft). Like other electromagnetic waves, a radio wave has a property called polarization , which is defined as the direction of the wave's oscillating electric field perpendicular to the direction of motion. A plane-polarized radio wave has an electric field that oscillates in

4653-479: Is usually accomplished by a powerful transmitter which generates noise on the same frequency as the target transmitter. US Federal law prohibits the nonmilitary operation or sale of any type of jamming devices, including ones that interfere with GPS, cellular, Wi-Fi and police radars. ELF 3 Hz/100 Mm 30 Hz/10 Mm SLF 30 Hz/10 Mm 300 Hz/1 Mm ULF 300 Hz/1 Mm 3 kHz/100 km Radio waves Radio waves are

4752-400: Is weak mechanistic evidence of cancer risk via personal exposure to RF-EMF from mobile telephones. Radio waves can be shielded against by a conductive metal sheet or screen, an enclosure of sheet or screen is called a Faraday cage . A metal screen shields against radio waves as well as a solid sheet as long as the holes in the screen are smaller than about 1 ⁄ 20 of wavelength of

4851-591: The International Telecommunication Union (ITU), which allocates frequency bands in the radio spectrum for various uses. The word radio is derived from the Latin word radius , meaning "spoke of a wheel, beam of light, ray". It was first applied to communications in 1881 when, at the suggestion of French scientist Ernest Mercadier  [ fr ] , Alexander Graham Bell adopted radiophone (meaning "radiated sound") as an alternate name for his photophone optical transmission system. Following Hertz's discovery of

4950-497: The ionosphere without refraction , and at microwave frequencies the high-gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. Portions of the UHF , L , C , S , k u and k a band are allocated for space communication. A radio link that transmits data from the Earth's surface to a spacecraft

5049-400: The radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10 ) metres, with corresponding frequency of 3 times a power of ten, and each covering a decade of frequency or wavelength. Each of these bands has a traditional name: It can be seen that the bandwidth , the range of frequencies, contained in each band is not equal but increases exponentially as

SECTION 50

#1732852774104

5148-415: The speed of light c {\displaystyle c} . When passing through a material medium, they are slowed depending on the medium's permeability and permittivity . Air is tenuous enough that in the Earth's atmosphere radio waves travel at very nearly the speed of light. The wavelength λ {\displaystyle \lambda } is the distance from one peak (crest) of

5247-428: The speed of light , and in the Earth's atmosphere at a slightly lower speed. Radio waves are generated by charged particles undergoing acceleration , such as time-varying electric currents . Naturally occurring radio waves are emitted by lightning and astronomical objects , and are part of the blackbody radiation emitted by all warm objects. Radio waves are generated artificially by an electronic device called

5346-482: The "near field" zone, the physical relationships between the electric and magnetic components of the field can be complex, and it is best to use the field strength units discussed above. Power density is measured in terms of power per unit area, for example, with the unit milliwatt per square centimeter (mW/cm ). When speaking of frequencies in the microwave range and higher, power density is usually used to express intensity since exposures that might occur would likely be in

5445-467: The 1909 Nobel Prize in physics for his radio work. Radio communication began to be used commercially around 1900. The modern term " radio wave " replaced the original name " Hertzian wave " around 1912. Radio waves are radiated by charged particles when they are accelerated . Natural sources of radio waves include radio noise produced by lightning and other natural processes in the Earth's atmosphere, and astronomical radio sources in space such as

5544-531: The 1920s with the introduction of broadcasting. Electromagnetic waves were predicted by James Clerk Maxwell in his 1873 theory of electromagnetism , now called Maxwell's equations , who proposed that a coupled oscillating electric field and magnetic field could travel through space as a wave, and proposed that light consisted of electromagnetic waves of short wavelength . On 11 November 1886, German physicist Heinrich Hertz , attempting to confirm Maxwell's theory, first observed radio waves he generated using

5643-474: The Earth's atmosphere has less of an effect on the range of signals, and line-of-sight propagation becomes the principal mode. These higher frequencies permit the great bandwidth required for television broadcasting. Since natural and artificial noise sources are less present at these frequencies, high-quality audio transmission is possible, using frequency modulation . Radio broadcasting means transmission of audio (sound) to radio receivers belonging to

5742-447: The Earth's atmosphere; long waves can diffract around obstacles like mountains and follow the contour of the Earth ( ground waves ), shorter waves can reflect off the ionosphere and return to Earth beyond the horizon ( skywaves ), while much shorter wavelengths bend or diffract very little and travel on a line of sight , so their propagation distances are limited to the visual horizon. To prevent interference between different users,

5841-460: The Sun, galaxies and nebulas. All warm objects radiate high frequency radio waves ( microwaves ) as part of their black body radiation . Radio waves are produced artificially by time-varying electric currents , consisting of electrons flowing back and forth in a specially shaped metal conductor called an antenna . An electronic device called a radio transmitter applies oscillating electric current to

5940-580: The US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Many of these devices use the ISM bands , a series of frequency bands throughout the radio spectrum reserved for unlicensed use. Although they can be operated without a license, like all radio equipment these devices generally must be type-approved before the sale. Below are some of the most important uses of radio, organized by function. Broadcasting

6039-405: The air simultaneously without interfering with each other because each transmitter's radio waves oscillate at a different rate, in other words, each transmitter has a different frequency , measured in hertz (Hz), kilohertz (kHz), megahertz (MHz) or gigahertz (GHz). The receiving antenna typically picks up the radio signals of many transmitters. The receiver uses tuned circuits to select

SECTION 60

#1732852774104

6138-540: The antenna, and the antenna radiates the power as radio waves. Radio waves are received by another antenna attached to a radio receiver . When radio waves strike the receiving antenna they push the electrons in the metal back and forth, creating tiny oscillating currents which are detected by the receiver. From quantum mechanics , like other electromagnetic radiation such as light, radio waves can alternatively be regarded as streams of uncharged elementary particles called photons . In an antenna transmitting radio waves,

6237-563: The artificial generation and use of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunication Union (ITU), which defines radio waves as " electromagnetic waves of frequencies arbitrarily lower than 3000  GHz , propagated in space without artificial guide". The radio spectrum is divided into a number of radio bands on the basis of frequency, allocated to different uses. Higher-frequency, shorter-wavelength radio waves are called microwaves . Radio waves were first predicted by

6336-414: The beam strikes a target object, radio waves are reflected back to the receiver. The direction of the beam reveals the object's location. Since radio waves travel at a constant speed close to the speed of light , by measuring the brief time delay between the outgoing pulse and the received "echo", the range to the target can be calculated. The targets are often displayed graphically on a map display called

6435-410: The carrier, altering some aspect of it, encoding the information on the carrier. The modulated carrier is amplified and applied to an antenna . The oscillating current pushes the electrons in the antenna back and forth, creating oscillating electric and magnetic fields , which radiate the energy away from the antenna as radio waves. The radio waves carry the information to the receiver location. At

6534-753: The community contribute to some programming. The station's main competitors are KTV Radio Nova and KTV Radio Nova Saint FM , as well as BFBS the Forces Station . This article about a radio station in South America is a stub . You can help Misplaced Pages by expanding it . This Falkland Islands -related article is a stub . You can help Misplaced Pages by expanding it . Radio In radio communication , used in radio and television broadcasting , cell phones, two-way radios , wireless networking , and satellite communication , among numerous other uses, radio waves are used to carry information across space from

6633-668: The continuous waves which were needed for audio modulation , so radio was used for person-to-person commercial, diplomatic and military text messaging. Starting around 1908 industrial countries built worldwide networks of powerful transoceanic transmitters to exchange telegram traffic between continents and communicate with their colonies and naval fleets. During World War I the development of continuous wave radio transmitters, rectifying electrolytic, and crystal radio receiver detectors enabled amplitude modulation (AM) radiotelephony to be achieved by Reginald Fessenden and others, allowing audio to be transmitted. On 2 November 1920,

6732-466: The customer pays a monthly fee. In these systems, the radio signal is encrypted and can only be decrypted by the receiver, which is controlled by the company and can be deactivated if the customer does not pay. Broadcasting uses several parts of the radio spectrum, depending on the type of signals transmitted and the desired target audience. Longwave and medium wave signals can give reliable coverage of areas several hundred kilometers across, but have

6831-421: The electrons in the antenna emit the energy in discrete packets called radio photons, while in a receiving antenna the electrons absorb the energy as radio photons. An antenna is a coherent emitter of photons, like a laser , so the radio photons are all in phase . However, from Planck's relation E = h ν {\displaystyle E=h\nu } , the energy of individual radio photons

6930-438: The energy is deposited. For example, the 2.45 GHz radio waves (microwaves) in a microwave oven penetrate most foods approximately 2.5 to 3.8 cm . Looking into a source of radio waves at close range, such as the waveguide of a working radio transmitter, can cause damage to the lens of the eye by heating. A strong enough beam of radio waves can penetrate the eye and heat the lens enough to cause cataracts . Since

7029-570: The existence of radio waves in 1886, the term Hertzian waves was initially used for this radiation. The first practical radio communication systems, developed by Marconi in 1894–1895, transmitted telegraph signals by radio waves, so radio communication was first called wireless telegraphy . Up until about 1910 the term wireless telegraphy also included a variety of other experimental systems for transmitting telegraph signals without wires, including electrostatic induction , electromagnetic induction and aquatic and earth conduction , so there

7128-413: The first commercial radio broadcast was transmitted by Westinghouse Electric and Manufacturing Company in Pittsburgh, under the call sign KDKA featuring live coverage of the Harding-Cox presidential election . Radio waves are radiated by electric charges undergoing acceleration . They are generated artificially by time-varying electric currents , consisting of electrons flowing back and forth in

7227-580: The first radio communication system, using a spark-gap transmitter to send Morse code over long distances. By December 1901, he had transmitted across the Atlantic Ocean. Marconi and Karl Ferdinand Braun shared the 1909 Nobel Prize in Physics "for their contributions to the development of wireless telegraphy". During radio's first two decades, called the radiotelegraphy era, the primitive radio transmitters could only transmit pulses of radio waves, not

7326-615: The frequency increases; each band contains ten times the bandwidth of the preceding band. The term "tremendously low frequency" (TLF) has been used for wavelengths from 1–3 Hz (300,000–100,000 km), though the term has not been defined by the ITU. The airwaves are a resource shared by many users. Two radio transmitters in the same area that attempt to transmit on the same frequency will interfere with each other, causing garbled reception, so neither transmission may be received clearly. Interference with radio transmissions can not only have

7425-518: The heating effect is in principle no different from other sources of heat, most research into possible health hazards of exposure to radio waves has focused on "nonthermal" effects; whether radio waves have any effect on tissues besides that caused by heating. Radiofrequency electromagnetic fields have been classified by the International Agency for Research on Cancer (IARC) as having "limited evidence" for its effects on humans and animals. There

7524-464: The levels of electric and magnetic field strength at a measurement location. Another commonly used unit for characterizing an RF electromagnetic field is power density . Power density is most accurately used when the point of measurement is far enough away from the RF emitter to be located in what is referred to as the far field zone of the radiation pattern. In closer proximity to the transmitter, i.e., in

7623-402: The longest transmission distances of any radio links, up to billions of kilometers for interplanetary spacecraft . In order to receive the weak signals from distant spacecraft, satellite ground stations use large parabolic "dish" antennas up to 25 metres (82 ft) in diameter and extremely sensitive receivers. High frequencies in the microwave band are used, since microwaves pass through

7722-434: The metal antenna elements. For example, a dipole antenna consists of two collinear metal rods. If the rods are horizontal, it radiates horizontally polarized radio waves, while if the rods are vertical, it radiates vertically polarized waves. An antenna receiving the radio waves must have the same polarization as the transmitting antenna, or it will suffer a severe loss of reception. Many natural sources of radio waves, such as

7821-466: The need for legal restrictions warned that "Radio chaos will certainly be the result until such stringent regulation is enforced." The United States Navy would also play a role. Although its translation of the 1906 Berlin Convention used the terms wireless telegraph and wireless telegram , by 1912 it began to promote the use of radio instead. The term started to become preferred by the general public in

7920-430: The other radio signals picked up by the antenna, then amplifies the signal so it is stronger, then finally extracts the information-bearing modulation signal in a demodulator . The recovered signal is sent to a loudspeaker or earphone to produce sound, or a television display screen to produce a visible image, or other devices. A digital data signal is applied to a computer or microprocessor , which interacts with

8019-505: The picture quality to gradually degrade, in digital television picture quality is not affected by poor reception until, at a certain point, the receiver stops working and the screen goes black. Government standard frequency and time signal services operate time radio stations which continuously broadcast extremely accurate time signals produced by atomic clocks , as a reference to synchronize other clocks. Examples are BPC , DCF77 , JJY , MSF , RTZ , TDF , WWV , and YVTO . One use

8118-451: The radio frequency spectrum it is located, so bandwidth is a measure of information-carrying capacity . The bandwidth required by a radio transmission depends on the data rate of the information (modulation signal) being sent, and the spectral efficiency of the modulation method used; how much data it can transmit in each kilohertz of bandwidth. Different types of information signals carried by radio have different data rates. For example,

8217-409: The radio signal desired out of all the signals picked up by the antenna and reject the others. A tuned circuit (also called resonant circuit or tank circuit) acts like a resonator , similar to a tuning fork . It has a natural resonant frequency at which it oscillates. The resonant frequency of the receiver's tuned circuit is adjusted by the user to the frequency of the desired radio station; this

8316-451: The radio spectrum, the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. So there is an incentive to employ technology to minimize the bandwidth used by radio services. A slow transition from analog to digital radio transmission technologies began in the late 1990s. Part of the reason for this is that digital modulation can often transmit more information (a greater data rate) in

8415-456: The radio waves that carry the information through the air. The modulation signal is used to modulate the carrier, varying some aspect of the carrier wave, impressing the information in the modulation signal onto the carrier. Different radio systems use different modulation methods: Many other types of modulation are also used. In some types, a carrier wave is not transmitted but just one or both modulation sidebands . The modulated carrier

8514-401: The range of practical radio communication systems decreases with increasing frequency. Below about 20 GHz atmospheric attenuation is mainly due to water vapor. Above 20 GHz, in the millimeter wave band, other atmospheric gases begin to absorb the waves, limiting practical transmission distances to a kilometer or less. Above 300 GHz, in the terahertz band , virtually all the power

8613-421: The reality of Maxwell's electromagnetic waves by experimentally generating electromagnetic waves lower in frequency than light, radio waves, in his laboratory, showing that they exhibited the same wave properties as light: standing waves , refraction , diffraction , and polarization . Italian inventor Guglielmo Marconi developed the first practical radio transmitters and receivers around 1894–1895. He received

8712-446: The receiver, the oscillating electric and magnetic fields of the incoming radio wave push the electrons in the receiving antenna back and forth, creating a tiny oscillating voltage which is a weaker replica of the current in the transmitting antenna. This voltage is applied to the radio receiver , which extracts the information signal. The receiver first uses a bandpass filter to separate the desired radio station's radio signal from all

8811-481: The same digital modulation. Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems , spread spectrum (ultra-wideband) transmission, frequency reuse , dynamic spectrum management , frequency pooling, and cognitive radio . The ITU arbitrarily divides

8910-416: The sun, stars and blackbody radiation from warm objects, emit unpolarized waves, consisting of incoherent short wave trains in an equal mixture of polarization states. The polarization of radio waves is determined by a quantum mechanical property of the photons called their spin . A photon can have one of two possible values of spin; it can spin in a right-hand sense about its direction of motion, or in

9009-412: The surface of objects and cause surface heating, radio waves are able to penetrate the surface and deposit their energy inside materials and biological tissues. The depth to which radio waves penetrate decreases with their frequency, and also depends on the material's resistivity and permittivity ; it is given by a parameter called the skin depth of the material, which is the depth within which 63% of

9108-588: The surface of the Earth, is vitally important in the design of practical radio systems. Radio waves passing through different environments experience reflection , refraction , polarization , diffraction , and absorption . Different frequencies experience different combinations of these phenomena in the Earth's atmosphere, making certain radio bands more useful for specific purposes than others. Practical radio systems mainly use three different techniques of radio propagation to communicate: At microwave frequencies, atmospheric gases begin absorbing radio waves, so

9207-437: The theory of electromagnetism that was proposed in 1867 by Scottish mathematical physicist James Clerk Maxwell . His mathematical theory, now called Maxwell's equations , predicted that a coupled electric and magnetic field could travel through space as an " electromagnetic wave ". Maxwell proposed that light consisted of electromagnetic waves of very short wavelength. In 1887, German physicist Heinrich Hertz demonstrated

9306-431: The transmitting antenna also serves as the receiving antenna; this is called a monostatic radar . A radar which uses separate transmitting and receiving antennas is called a bistatic radar . Radiolocation is a generic term covering a variety of techniques that use radio waves to find the location of objects, or for navigation. Radio remote control is the use of electronic control signals sent by radio waves from

9405-411: The tuned circuit and not passed on. Radio waves are non-ionizing radiation , which means they do not have enough energy to separate electrons from atoms or molecules , ionizing them, or break chemical bonds , causing chemical reactions or DNA damage . The main effect of absorption of radio waves by materials is to heat them, similarly to the infrared waves radiated by sources of heat such as

9504-420: The wave's electric field to the next, and is inversely proportional to the frequency f {\displaystyle f} of the wave. The relation of frequency and wavelength in a radio wave traveling in vacuum or air is where Equivalently, c {\displaystyle c} , the distance that a radio wave travels in vacuum in one second, is 299,792,458 meters (983,571,056 ft), which

9603-442: The waves. Since radio frequency radiation has both an electric and a magnetic component, it is often convenient to express intensity of radiation field in terms of units specific to each component. The unit volt per meter (V/m) is used for the electric component, and the unit ampere per meter (A/m) is used for the magnetic component. One can speak of an electromagnetic field , and these units are used to provide information about

9702-510: The weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. The modulation signal is converted by a transducer back to a human-usable form: an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display , while a digital signal is applied to a computer or microprocessor, which interacts with human users. The radio waves from many transmitters pass through

9801-585: Was a need for a more precise term referring exclusively to electromagnetic radiation. The French physicist Édouard Branly , who in 1890 developed the radio wave detecting coherer , called it in French a radio-conducteur . The radio- prefix was later used to form additional descriptive compound and hyphenated words, especially in Europe. For example, in early 1898 the British publication The Practical Engineer included

#103896