Misplaced Pages

Fairweather Range

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Fairweather Range is the unofficial name for a mountain range located in the U.S. state of Alaska and the Canadian province of British Columbia . It is the southernmost range of the Saint Elias Mountains . The northernmost section of the range is situated in Tatshenshini-Alsek Provincial Park while the southernmost section resides in Glacier Bay National Park , in the Hoonah-Angoon Census Area . In between it goes through the southeastern corner of Yakutat Borough . Peaks of this range include Mount Fairweather (the highest point in British Columbia) and Mount Quincy Adams 4,150 m (13,615 ft).

#664335

54-631: The range is home to the Fairweather Fault, an active geologic transform fault of the larger Queen Charlotte Fault along the boundary between the Pacific and North American plates. This article about a location in the Interior of British Columbia , Canada is a stub . You can help Misplaced Pages by expanding it . This article about a location in the Hoonah-Angoon Census Area, Alaska

108-482: A divergent plate boundary . The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin. The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation. The melt rises as magma at the linear weakness between the separating plates, and emerges as lava , creating new oceanic crust and lithosphere upon cooling. The first discovered mid-ocean ridge

162-464: A common feature at oceanic spreading centers. A feature of the elevated ridges is their relatively high heat flow values, of about 1–10 μcal/cm s, or roughly 0.04–0.4 W/m . Most crust in the ocean basins is less than 200 million years old, which is much younger than the 4.54 billion year age of Earth . This fact reflects the process of lithosphere recycling into the Earth's mantle during subduction . As

216-409: A junction with another plate boundary, while transcurrent faults may die out without a junction with another fault. Finally, transform faults form a tectonic plate boundary, while transcurrent faults do not. Faults in general are focused areas of deformation or strain , which are the response of built-up stresses in the form of compression , tension, or shear stress in rock at the surface or deep in

270-469: A location on a mid-ocean ridge above a base-level) is correlated with its age (age of the lithosphere where depth is measured). The depth-age relation can be modeled by the cooling of a lithosphere plate or mantle half-space. A good approximation is that the depth of the seafloor at a location on a spreading mid-ocean ridge is proportional to the square root of the age of the seafloor. The overall shape of ridges results from Pratt isostasy : close to

324-481: A ridge axis cools below Curie points of appropriate iron-titanium oxides, magnetic field directions parallel to the Earth's magnetic field are recorded in those oxides. The orientations of the field preserved in the oceanic crust comprise a record of directions of the Earth's magnetic field with time. Because the field has reversed directions at known intervals throughout its history, the pattern of geomagnetic reversals in

378-546: A ship of the Lamont–Doherty Earth Observatory of Columbia University , traversed the Atlantic Ocean, recording echo sounder data on the depth of the ocean floor. A team led by Marie Tharp and Bruce Heezen concluded that there was an enormous mountain chain with a rift valley at its crest, running up the middle of the Atlantic Ocean. Scientists named it the 'Mid-Atlantic Ridge'. Other research showed that

432-502: A smaller section is also present in the Tasman District in the island's northwest. Other examples include: Mid-oceanic ridge A mid-ocean ridge ( MOR ) is a seafloor mountain system formed by plate tectonics . It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin . This feature is where seafloor spreading takes place along

486-404: A spreading ridge, or a subduction zone . A transform fault is a special case of a strike-slip fault that also forms a plate boundary. Most such faults are found in oceanic crust , where they accommodate the lateral offset between segments of divergent boundaries , forming a zigzag pattern. This results from oblique seafloor spreading where the direction of motion is not perpendicular to

540-408: A subduction zone drags the rest of the plate along behind it. The slab pull mechanism is considered to be contributing more than the ridge push. A process previously proposed to contribute to plate motion and the formation of new oceanic crust at mid-ocean ridges is the "mantle conveyor" due to deep convection (see image). However, some studies have shown that the upper mantle ( asthenosphere )

594-418: A transform fault links a spreading center and the upper block of a subduction zone or where two upper blocks of subduction zones are linked, the transform fault itself will grow in length. [REDACTED] [REDACTED] Constant length: In other cases, transform faults will remain at a constant length. This steadiness can be attributed to many different causes. In the case of ridge-to-ridge transforms,

SECTION 10

#1732844880665

648-448: Is 65,000 km (40,400 mi) long (several times longer than the Andes , the longest continental mountain range), and the total length of the oceanic ridge system is 80,000 km (49,700 mi) long. At the spreading center on a mid-ocean ridge, the depth of the seafloor is approximately 2,600 meters (8,500 ft). On the ridge flanks, the depth of the seafloor (or the height of

702-483: Is a stub . You can help Misplaced Pages by expanding it . This article about a location in the City and Borough of Yakutat, Alaska is a stub . You can help Misplaced Pages by expanding it . Transform fault A transform fault or transform boundary , is a fault along a plate boundary where the motion is predominantly horizontal . It ends abruptly where it connects to another plate boundary, either another transform,

756-420: Is a global scale ion-exchange system. Hydrothermal vents at spreading centers introduce various amounts of iron , sulfur , manganese , silicon , and other elements into the ocean, some of which are recycled into the ocean crust. Helium-3 , an isotope that accompanies volcanism from the mantle, is emitted by hydrothermal vents and can be detected in plumes within the ocean. Fast spreading rates will expand

810-507: Is being created to change that length. [REDACTED] [REDACTED] Decreasing length faults: In rare cases, transform faults can shrink in length. These occur when two descending subduction plates are linked by a transform fault. In time as the plates are subducted, the transform fault will decrease in length until the transform fault disappears completely, leaving only two subduction zones facing in opposite directions. [REDACTED] [REDACTED] The most prominent examples of

864-435: Is constantly created through the upwelling of new basaltic magma . With new seafloor being pushed and pulled out, the older seafloor slowly slides away from the mid-oceanic ridges toward the continents. Although separated only by tens of kilometers, this separation between segments of the ridges causes portions of the seafloor to push past each other in opposing directions. This lateral movement of seafloors past each other

918-443: Is in a constant state of 'renewal' at the mid-ocean ridges by the processes of seafloor spreading and plate tectonics. New magma steadily emerges onto the ocean floor and intrudes into the existing ocean crust at and near rifts along the ridge axes. The rocks making up the crust below the seafloor are youngest along the axis of the ridge and age with increasing distance from that axis. New magma of basalt composition emerges at and near

972-928: Is the San Andreas Fault on the Pacific coast of the United States. The San Andreas Fault links the East Pacific Rise off the West coast of Mexico (Gulf of California) to the Mendocino Triple Junction (Part of the Juan de Fuca plate ) off the coast of the Northwestern United States , making it a ridge-to-transform-style fault. The formation of the San Andreas Fault system occurred fairly recently during

1026-470: Is the result of changes in the volume of the ocean basins which are, in turn, affected by rates of seafloor spreading along the mid-ocean ridges. The 100 to 170 meters higher sea level of the Cretaceous Period (144–65 Ma) is partly attributed to plate tectonics because thermal expansion and the absence of ice sheets only account for some of the extra sea level. Seafloor spreading on mid-ocean ridges

1080-440: Is too plastic (flexible) to generate enough friction to pull the tectonic plate along. Moreover, mantle upwelling that causes magma to form beneath the ocean ridges appears to involve only its upper 400 km (250 mi), as deduced from seismic tomography and observations of the seismic discontinuity in the upper mantle at about 400 km (250 mi). On the other hand, some of the world's largest tectonic plates such as

1134-435: Is where transform faults are currently active. Transform faults move differently from a strike-slip fault at the mid-oceanic ridge. Instead of the ridges moving away from each other, as they do in other strike-slip faults, transform-fault ridges remain in the same, fixed locations, and the new ocean seafloor created at the ridges is pushed away from the ridge. Evidence of this motion can be found in paleomagnetic striping on

SECTION 20

#1732844880665

1188-616: The Gakkel Ridge in the Arctic Ocean and the Southwest Indian Ridge ). The spreading center or axis commonly connects to a transform fault oriented at right angles to the axis. The flanks of mid-ocean ridges are in many places marked by the inactive scars of transform faults called fracture zones . At faster spreading rates the axes often display overlapping spreading centers that lack connecting transform faults. The depth of

1242-569: The North American plate and South American plate are in motion, yet only are being subducted in restricted locations such as the Lesser Antilles Arc and Scotia Arc , pointing to action by the ridge push body force on these plates. Computer modeling of the plates and mantle motions suggest that plate motion and mantle convection are not connected, and the main plate driving force is slab pull. Increased rates of seafloor spreading (i.e.

1296-617: The Oligocene Period between 34 million and 24 million years ago. During this period, the Farallon plate , followed by the Pacific plate, collided into the North American plate . The collision led to the subduction of the Farallon plate underneath the North American plate. Once the spreading center separating the Pacific and the Farallon plates was subducted beneath the North American plate,

1350-420: The Earth's subsurface. Transform faults specifically accommodate lateral strain by transferring displacement between mid-ocean ridges or subduction zones. They also act as the plane of weakness, which may result in splitting in rift zones . Transform faults are commonly found linking segments of divergent boundaries ( mid-oceanic ridges or spreading centres). These mid-oceanic ridges are where new seafloor

1404-661: The San Andreas Continental Transform-Fault system was created. In New Zealand , the South Island 's Alpine Fault is a transform fault for much of its length. This has resulted in the folded land of the Southland Syncline being split into an eastern and western section several hundred kilometres apart. The majority of the syncline is found in Southland and The Catlins in the island's southeast, but

1458-427: The asthenosphere at ocean trenches . Two processes, ridge-push and slab pull , are thought to be responsible for spreading at mid-ocean ridges. Ridge push refers to the gravitational sliding of the ocean plate that is raised above the hotter asthenosphere, thus creating a body force causing sliding of the plate downslope. In slab pull the weight of a tectonic plate being subducted (pulled) below an overlying plate at

1512-478: The axis because of decompression melting in the underlying Earth's mantle . The isentropic upwelling solid mantle material exceeds the solidus temperature and melts. The crystallized magma forms a new crust of basalt known as MORB for mid-ocean ridge basalt, and gabbro below it in the lower oceanic crust . Mid-ocean ridge basalt is a tholeiitic basalt and is low in incompatible elements . Hydrothermal vents fueled by magmatic and volcanic heat are

1566-490: The axis changes in a systematic way with shallower depths between offsets such as transform faults and overlapping spreading centers dividing the axis into segments. One hypothesis for different along-axis depths is variations in magma supply to the spreading center. Ultra-slow spreading ridges form both magmatic and amagmatic (currently lack volcanic activity) ridge segments without transform faults. Mid-ocean ridges exhibit active volcanism and seismicity . The oceanic crust

1620-456: The constancy is caused by the continuous growth by both ridges outward, canceling any change in length. The opposite occurs when a ridge linked to a subducting plate, where all the lithosphere (new seafloor) being created by the ridge is subducted, or swallowed up, by the subduction zone. Finally, when two upper subduction plates are linked there is no change in length. This is due to the plates moving parallel with each other and no new lithosphere

1674-407: The discovery of the worldwide extent of the mid-ocean ridge in the 1950s, geologists faced a new task: explaining how such an enormous geological structure could have formed. In the 1960s, geologists discovered and began to propose mechanisms for seafloor spreading . The discovery of mid-ocean ridges and the process of seafloor spreading allowed for Wegener's theory to be expanded so that it included

Fairweather Range - Misplaced Pages Continue

1728-526: The distance between the ridges it separates; the distance remains constant in earthquakes because the ridges are spreading centers. This hypothesis was confirmed in a study of the fault plane solutions that showed the slip on transform faults points in the opposite direction than classical interpretation would suggest. Transform faults are closely related to transcurrent faults and are commonly confused. Both types of fault are strike-slip or side-to-side in movement; nevertheless, transform faults always end at

1782-442: The fault changes from a normal fault with extensional stress to a strike-slip fault with lateral stress. In the study done by Bonatti and Crane, peridotite and gabbro rocks were discovered in the edges of the transform ridges. These rocks are created deep inside the Earth's mantle and then rapidly exhumed to the surface. This evidence helps to prove that new seafloor is being created at the mid-oceanic ridges and further supports

1836-469: The floor of the Atlantic, as it keeps spreading, is continuously tearing open and making space for fresh, relatively fluid and hot sima [rising] from depth". However, Wegener did not pursue this observation in his later works and his theory was dismissed by geologists because there was no mechanism to explain how continents could plow through ocean crust , and the theory became largely forgotten. Following

1890-532: The mid-ocean ridge causing basalt reactions with seawater to happen more rapidly. The magnesium/calcium ratio will be lower because more magnesium ions are being removed from seawater and consumed by the rock, and more calcium ions are being removed from the rock and released into seawater. Hydrothermal activity at the ridge crest is efficient in removing magnesium. A lower Mg/Ca ratio favors the precipitation of low-Mg calcite polymorphs of calcium carbonate ( calcite seas ). Slow spreading at mid-ocean ridges has

1944-596: The mid-ocean ridge from the South Atlantic into the Indian Ocean early in the twentieth century. Although the first-discovered section of the ridge system runs down the middle of the Atlantic Ocean, it was found that most mid-ocean ridges are located away from the center of other ocean basins. Alfred Wegener proposed the theory of continental drift in 1912. He stated: "the Mid-Atlantic Ridge ... zone in which

1998-813: The mid-oceanic ridge transform zones are in the Atlantic Ocean between South America and Africa . Known as the St. Paul, Romanche , Chain, and Ascension fracture zones, these areas have deep, easily identifiable transform faults and ridges. Other locations include: the East Pacific Ridge located in the South Eastern Pacific Ocean , which meets up with San Andreas Fault to the North. Transform faults are not limited to oceanic crust and spreading centers; many of them are on continental margins . The best example

2052-402: The movement of oceanic crust as well as the continents. Plate tectonics was a suitable explanation for seafloor spreading, and the acceptance of plate tectonics by the majority of geologists resulted in a major paradigm shift in geological thinking. It is estimated that along Earth's mid-ocean ridges every year 2.7 km (1.0 sq mi) of new seafloor is formed by this process. With

2106-631: The ocean crust can be used as an indicator of age; given the crustal age and distance from the ridge axis, spreading rates can be calculated. Spreading rates range from approximately 10–200 mm/yr. Slow-spreading ridges such as the Mid-Atlantic Ridge have spread much less far (showing a steeper profile) than faster ridges such as the East Pacific Rise (gentle profile) for the same amount of time and cooling and consequent bathymetric deepening. Slow-spreading ridges (less than 40 mm/yr) generally have large rift valleys , sometimes as wide as 10–20 km (6.2–12.4 mi), and very rugged terrain at

2160-468: The ocean floor appears similar to the seam of a baseball . The mid-ocean ridge system thus is the longest mountain range on Earth, reaching about 65,000 km (40,000 mi). The mid-ocean ridges of the world are connected and form the Ocean Ridge, a single global mid-oceanic ridge system that is part of every ocean , making it the longest mountain range in the world. The continuous mountain range

2214-403: The oceanic crust and lithosphere moves away from the ridge axis, the peridotite in the underlying mantle lithosphere cools and becomes more rigid. The crust and the relatively rigid peridotite below it make up the oceanic lithosphere , which sits above the less rigid and viscous asthenosphere . The oceanic lithosphere is formed at an oceanic ridge, while the lithosphere is subducted back into

Fairweather Range - Misplaced Pages Continue

2268-479: The offsets of oceanic ridges by faults do not follow the classical pattern of an offset fence or geological marker in Reid's rebound theory of faulting , from which the sense of slip is derived. The new class of faults, called transform faults, produce slip in the opposite direction from what one would surmise from the standard interpretation of an offset geological feature. Slip along transform faults does not increase

2322-451: The opposite effect and will result in a higher Mg/Ca ratio favoring the precipitation of aragonite and high-Mg calcite polymorphs of calcium carbonate ( aragonite seas ). Experiments show that most modern high-Mg calcite organisms would have been low-Mg calcite in past calcite seas, meaning that the Mg/Ca ratio in an organism's skeleton varies with the Mg/Ca ratio of the seawater in which it

2376-505: The other continent. In his work on transform-fault systems, geologist Tuzo Wilson said that transform faults must be connected to other faults or tectonic-plate boundaries on both ends; because of that requirement, transform faults can grow in length, keep a constant length, or decrease in length. These length changes are dependent on which type of fault or tectonic structure connect with the transform fault. Wilson described six types of transform faults: Growing length: In situations where

2430-574: The rate of expansion of the mid-ocean ridge) have caused the global ( eustatic ) sea level to rise over very long timescales (millions of years). Increased seafloor spreading means that the mid-ocean ridge will then expand and form a broader ridge with decreased average depth, taking up more space in the ocean basin. This displaces the overlying ocean and causes sea levels to rise. Sealevel change can be attributed to other factors ( thermal expansion , ice melting, and mantle convection creating dynamic topography ). Over very long timescales, however, it

2484-584: The ridge axis, there is a hot, low-density mantle supporting the oceanic crust. As the oceanic plate cools, away from the ridge axis, the oceanic mantle lithosphere (the colder, denser part of the mantle that, together with the crust, comprises the oceanic plates) thickens, and the density increases. Thus older seafloor is underlain by denser material and is deeper. Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. Rates can be computed by mapping marine magnetic anomalies that span mid-ocean ridges. As crystallized basalt extruded at

2538-682: The ridge crest that can have relief of up to 1,000 m (3,300 ft). By contrast, fast-spreading ridges (greater than 90 mm/yr) such as the East Pacific Rise lack rift valleys. The spreading rate of the North Atlantic Ocean is ~ 25 mm/yr, while in the Pacific region, it is 80–145 mm/yr. The highest known rate is over 200 mm/yr in the Miocene on the East Pacific Rise. Ridges that spread at rates <20 mm/yr are referred to as ultraslow spreading ridges (e.g.,

2592-440: The ridge crest was seismically active and fresh lavas were found in the rift valley. Also, crustal heat flow was higher here than elsewhere in the Atlantic Ocean basin. At first, the ridge was thought to be a feature specific to the Atlantic Ocean. However, as surveys of the ocean floor continued around the world, it was discovered that every ocean contains parts of the mid-ocean ridge system. The German Meteor expedition traced

2646-431: The seafloor were analyzed by oceanographers Matthew Fontaine Maury and Charles Wyville Thomson and revealed a prominent rise in the seafloor that ran down the Atlantic basin from north to south. Sonar echo sounders confirmed this in the early twentieth century. It was not until after World War II , when the ocean floor was surveyed in more detail, that the full extent of mid-ocean ridges became known. The Vema ,

2700-444: The seafloor. A paper written by geophysicist Taras Gerya theorizes that the creation of the transform faults between the ridges of the mid-oceanic ridge is attributed to rotated and stretched sections of the mid-oceanic ridge. This occurs over a long period of time with the spreading center or ridge slowly deforming from a straight line to a curved line. Finally, fracturing along these planes forms transform faults. As this takes place,

2754-408: The theory of plate tectonics. Active transform faults are between two tectonic structures or faults. Fracture zones represent the previously active transform-fault lines, which have since passed the active transform zone and are being pushed toward the continents. These elevated ridges on the ocean floor can be traced for hundreds of miles and in some cases even from one continent across an ocean to

SECTION 50

#1732844880665

2808-419: The trend of the overall divergent boundary. A smaller number of such faults are found on land, although these are generally better-known, such as the San Andreas Fault and North Anatolian Fault . Transform boundaries are also known as conservative plate boundaries because they involve no addition or loss of lithosphere at the Earth's surface. Geophysicist and geologist John Tuzo Wilson recognized that

2862-478: Was grown. The mineralogy of reef-building and sediment-producing organisms is thus regulated by chemical reactions occurring along the mid-ocean ridge, the rate of which is controlled by the rate of sea-floor spreading. The first indications that a ridge bisects the Atlantic Ocean basin came from the results of the British Challenger expedition in the nineteenth century. Soundings from lines dropped to

2916-465: Was the Mid-Atlantic Ridge , which is a spreading center that bisects the North and South Atlantic basins; hence the origin of the name 'mid-ocean ridge'. Most oceanic spreading centers are not in the middle of their hosting ocean basis but regardless, are traditionally called mid-ocean ridges. Mid-ocean ridges around the globe are linked by plate tectonic boundaries and the trace of the ridges across

#664335