The Eucla Basin is an artesian depression located in Western Australia and South Australia . The onshore-offshore depression covers approximately 1,141,000 km and slopes southward to an open bay known as the Great Australian Bight .
99-441: It extends more than 500 km offshore and about 350 km inland from the coastline. The Eucla Basin is a Cenozoic basin consisting mostly of carbonate sediments and sedimentary rocks . The basin contains a sandstone aquifer at its base (confined), and an unconfined limestone aquifer. The surface area of the basin (and Nullarbor Plain ) consists mostly of grazing and rangeland, but nickel and gold are mined at
198-707: A divergent to convergent plate boundary. The Alpine Orogeny developed in response to the collision between the African and Eurasian plates during the closing of the Neotethys Ocean and the opening of the Central Atlantic Ocean. The result was a series of arcuate mountain ranges, from the Tell - Rif - Betic cordillera in the western Mediterranean through the Alps , Carpathians , Apennines , Dinarides and Hellenides to
297-589: A mass extinction that began roughly 10,000 years ago, though the species becoming extinct have only been recorded since the Industrial Revolution . This is sometimes referred to as the " Sixth Extinction ". It is often cited that over 322 recorded species have become extinct due to human activity since the Industrial Revolution, but the rate may be as high as 500 vertebrate species alone, the majority of which have occurred after 1900. Geologically ,
396-535: A proliferation of aquatic ferns from the genus Azolla , resulting in the sequestering of large amounts of CO 2 from the atmosphere by the plants. From this time until about 34 Ma, there was a slow cooling trend known as the Middle-Late Eocene Cooling. As temperatures dropped at high latitudes the presence of cold water diatoms suggests sea ice was able to form in winter in the Arctic Ocean, and by
495-531: A rapid surge of diversification in the early Paleogene, as survivors of the Cretaceous–Paleogene extinction event took advantage of empty ecological niches left behind by the extinction of the non-avian dinosaurs, pterosaurs, marine reptiles, and primitive fish groups. Mammals continued to diversify from relatively small, simple forms into a highly diverse group ranging from small-bodied forms to very large ones, radiating into multiple orders and colonizing
594-872: A result, rather than a cause, of the plate tectonic forces that led to the propagation of rifting from the Central to the North Atlantic. Mountain building continued along the North America Cordillera in response to subduction of the Farallon plate beneath the North American Plate. Along the central section of the North American margin, crustal shortening of the Cretaceous to Paleocene Sevier Orogen lessened and deformation moved eastward. The decreasing dip of
693-483: A study published in 2018, from about 56 to 48 Ma, annual air temperatures over land and at mid-latitude averaged about 23–29 °C (± 4.7 °C). For comparison, this was 10 to 15 °C higher than the current annual mean temperatures in these areas. This rapid rise in global temperatures and intense greenhouse conditions were due to a sudden increase in levels of atmospheric carbon dioxide (CO 2 ) and other greenhouse gases . An accompanying rise in humidity
792-571: A trend of desiccation which resulted in the creation of the Sahara , Namib , and Kalahari deserts. Many animals evolved including mammoths , giant ground sloths , dire wolves , sabre-toothed cats, and Homo sapiens . 100,000 years ago marked the end of one of the worst droughts in Africa, and led to the expansion of primitive humans. As the Pleistocene drew to a close, a major extinction wiped out much of
891-454: A very important role in this era, shaping the evolution of the birds and mammals that fed on them. One group that diversified significantly in the Cenozoic as well were the snakes . Evolving in the Cenozoic, the variety of snakes increased tremendously, resulting in many colubrids , following the evolution of their current primary prey source, the rodents . In the earlier part of the Cenozoic,
990-533: Is Earth's current geological era , representing the last 66 million years of Earth's history. It is characterized by the dominance of mammals , birds , conifers , and angiosperms (flowering plants). It is the latest of three geological eras of the Phanerozoic Eon , preceded by the Mesozoic and Paleozoic . The Cenozoic started with the Cretaceous–Paleogene extinction event , when many species, including
1089-688: Is a geologic period and system that spans 43 million years from the end of the Cretaceous Period 66 Ma (million years ago) to the beginning of the Neogene Period 23.03 Ma. It is the first period of the Cenozoic Era , the tenth period of the Phanerozoic and is divided into the Paleocene , Eocene , and Oligocene epochs. The earlier term Tertiary Period was used to define the time now covered by
SECTION 10
#17328524689551188-483: Is a period in which grasses spread further, dominating a large portion of the world, at the expense of forests. Kelp forests evolved, encouraging the evolution of new species, such as sea otters . During this time, perissodactyla thrived, and evolved into many different varieties. Apes evolved into 30 species. The Tethys Sea finally closed with the creation of the Arabian Peninsula , leaving only remnants as
1287-502: Is associated with the Cretaceous–Paleogene extinction event. The boundary is defined as the rusty colored base of a 50 cm thick clay , which would have been deposited over only a few days. Similar layers are seen in marine and continental deposits worldwide. These layers include the iridium anomaly, microtektites , nickel -rich spinel crystals and shocked quartz , all indicators of a major extraterrestrial impact. The remains of
1386-522: Is one of the distinct physiographic provinces of the larger West Australian Shield . It includes the smaller Eyre Coastal Plain and Eucla Shelf physiographic sections. The physiographic units within the basin are: 32°25′09.12″S 127°52′12.78″E / 32.4192000°S 127.8702167°E / -32.4192000; 127.8702167 Cenozoic The Cenozoic ( / ˌ s iː n ə ˈ z oʊ . ɪ k , ˌ s ɛ n -/ SEE -nə- ZOH -ik, SEN -ə- ; lit. ' new life ' )
1485-454: Is reflected in an increase in kaolinite in sediments, which forms by chemical weathering in hot, humid conditions. Tropical and subtropical forests flourished and extended into polar regions. Water vapour (a greenhouse gas) associated with these forests also contributed to the greenhouse conditions. The initial rise in global temperatures was related to the intrusion of magmatic sills into organic-rich sediments during volcanic activity in
1584-576: The Bering Straits between North America and Eurasia allowing the movement of land animals between the two continents. The PETM was followed by the less severe Eocene Thermal Maximum 2 (c. 53.69 Ma), and the Eocene Thermal Maximum 3 (c. 53 Ma). The early Eocene warm conditions were brought to an end by the Azolla event . This change of climate at about 48.5 Ma, is believed to have been caused by
1683-526: The Black , Red , Mediterranean and Caspian Seas . This increased aridity. Many new plants evolved: 95% of modern seed plants families were present by the end of the Miocene. The Pliocene Epoch lasted from 5.333 to 2.58 million years ago. The Pliocene featured dramatic climatic changes, which ultimately led to modern species of flora and fauna. The Mediterranean Sea dried up for several million years (because
1782-826: The Canadian Arctic Archipelago , Svalbard and northern Greenland resulting in the Eureka Orogeny . From c. 47 Ma, the eastern margin of Greenland was cut by the Reykjanes Ridge (the northeastern branch of the Mid-Atlantic Ridge) propagating northwards and splitting off the Jan Mayen microcontinent . After c. 33 Ma seafloor spreading in Labrador Sea and Baffin Bay gradually ceased and seafloor spreading focused along
1881-681: The Isthmus of Panama around 2.8 million years ago , the Arctic region cooled due to the strengthening of the Humboldt and Gulf Stream currents, eventually leading to the glaciations of the Quaternary ice age , the current interglacial of which is the Holocene Epoch. Recent analysis of the geomagnetic reversal frequency, oxygen isotope record, and tectonic plate subduction rate, which are indicators of
1980-858: The Izu-Bonin-Mariana and Tonga-Kermadec arcs. Subduction of the Farallon Plate beneath the American plates continued from the Late Cretaceous. The Kula-Farallon spreading ridge lay to its north until the Eocene (c. 55 Ma), when the northern section of the plate split forming the Vancouver/Juan de Fuca Plate . In the Oligocene (c. 28 Ma), the first segment of the Pacific–Farallon spreading ridge entered
2079-843: The K-Pg event , the planet was dominated by relatively small fauna, including small mammals, birds, reptiles, and amphibians. From a geological perspective, it did not take long for mammals to greatly diversify in the absence of the dinosaurs that had dominated during the Mesozoic. Birds also diversified rapidly; some flightless birds grew larger than humans. These species are sometimes referred to as " terror birds ", and were formidable predators. Mammals came to occupy almost every available niche (both marine and terrestrial ), and some also grew very large, attaining sizes not seen in most of today's terrestrial mammals. The ranges of many Cenozoic bird clades were governed by latitude and temperature and have contracted over
SECTION 20
#17328524689552178-561: The K–Pg extinction event included the extinction of large herbivores , which permitted the spread of dense but usually species-poor forests. The Early Paleocene saw the recovery of Earth. The continents began to take their modern shape, but all the continents and the subcontinent of India were separated from each other. Afro-Eurasia was separated by the Tethys Sea , and the Americas were separated by
2277-575: The Quaternary glaciation dried and cooled Earth. Cenozoic derives from the Greek words kainós ( καινός 'new') and zōḗ ( ζωή 'life'). The name was proposed in 1840 by the British geologist John Phillips (1800–1874), who originally spelled it Kainozoic . The era is also known as the Cænozoic , Caenozoic , or Cainozoic ( / ˌ k aɪ . n ə ˈ z oʊ . ɪ k , ˌ k eɪ -/ ). In name,
2376-740: The Tasmanian Passage in the Eocene and deep ocean routes opening from the mid Oligocene. Rifting between the Antarctic Peninsula and the southern tip of South America formed the Drake Passage and opened the Southern Ocean also during this time, completing the breakup of Gondwana. The opening of these passages and the creation of the Southern Ocean established the Antarctic Circumpolar Current . Glaciers began to build across
2475-612: The Taurides in the east. From the Late Cretaceous into the early Paleocene, Africa began to converge with Eurasia. The irregular outlines of the continental margins, including the Adriatic promontory (Adria) that extended north from the African Plate, led to the development of several short subduction zones, rather than one long system. In the western Mediterranean, the European Plate
2574-471: The air and marine ecosystems by the Eocene . Birds , the only surviving group of dinosaurs, quickly diversified from the very few neognath and paleognath clades that survived the extinction event, also radiating into multiple orders, colonizing different ecosystems and achieving an extreme level of morphological diversity. Percomorph fish, the most diverse group of vertebrates today, first appeared near
2673-608: The ice ages reduced sea levels, disconnecting the Atlantic from the Mediterranean, and evaporation rates exceeded inflow from rivers). Australopithecus evolved in Africa , beginning the human branch. The isthmus of Panama formed, and animals migrated between North and South America during the great American interchange , wreaking havoc on local ecologies. Climatic changes brought: savannas that are still continuing to spread across
2772-733: The isthmus of Panama . India collided with Asia 55 to 45 million years ago creating the Himalayas; Arabia collided with Eurasia, closing the Tethys Ocean and creating the Zagros Mountains , around 35 million years ago . The break-up of Gondwana in Late Cretaceous and Cenozoic times led to a shift in the river courses of various large African rivers including the Congo , Niger , Nile , Orange , Limpopo and Zambezi . In
2871-629: The trench leading to the development of the Dinarides, Hellenides and Tauride mountain chains as the passive margin sediments of Adria were scrapped off onto the Eurasia crust during subduction. The Zagros mountain belt stretches for c. 2000 km from the eastern border of Iraq to the Makran coast in southern Iran . It formed as a result of the convergence and collision of the Arabian and Eurasian plates as
2970-499: The Antarctica continent that now lay isolated in the south polar region and surrounded by cold ocean waters. These changes contributed to the fall in global temperatures and the beginning of icehouse conditions. Extensional stresses from the subduction zone along the northern Neotethys resulted in rifting between Africa and Arabia, forming the Gulf of Aden in the late Eocene. To the west, in
3069-522: The Cenozoic ( lit. ' new life ' ) is comparable to the preceding Mesozoic ('middle life') and Paleozoic ('old life') Eras, as well as to the Proterozoic ('earlier life') Eon. The Cenozoic is divided into three periods: the Paleogene , Neogene , and Quaternary ; and seven epochs : the Paleocene , Eocene , Oligocene , Miocene , Pliocene , Pleistocene , and Holocene . The Quaternary Period
Eucla Basin - Misplaced Pages Continue
3168-539: The Cenozoic is the era when the continents moved into their current positions. Australia-New Guinea , having split from Pangea during the early Cretaceous , drifted north and, eventually, collided with Southeast Asia ; Antarctica moved into its current position over the South Pole ; the Atlantic Ocean widened and, later in the era (2.8 million years ago), South America became attached to North America with
3267-688: The Central Andes were dominated by the subduction of oceanic crust and the Southern Andes were impacted by the subduction of the Farallon-East Antarctic ocean ridge. The Caribbean Plate is largely composed of oceanic crust of the Caribbean Large Igneous Province that formed during the Late Cretaceous. During the Late Cretaceous to Paleocene, subduction of Atlantic crust was established along its northern margin, whilst to
3366-536: The Cretaceous, the climate was hot and humid with lush forests at the poles, there was no permanent ice and sea levels were around 300 metres higher than today. This continued for the first 10 million years of the Paleocene, culminating in the Paleocene–Eocene Thermal Maximum about 55.5 million years ago . Around 50 million years ago Earth entered a period of long term cooling. This
3465-477: The Early-Eocene, species living in dense forest were unable to evolve into larger forms, as in the Paleocene. Among them were early primates, whales and horses along with many other early forms of mammals. At the top of the food chains were huge birds, such as Paracrax . Carbon dioxide levels were approximately 1,400 ppm . The temperature was 30 degrees Celsius with little temperature gradient from pole to pole. In
3564-686: The Eocene and Neogene. Diatoms , in contrast, experienced major diversification over the Eocene, especially at high latitudes, as the world's oceans cooled. Diatom diversification was particularly concentrated at the Eocene-Oligocene boundary. A second major pulse of diatom diversification occurred over the course of the Middle and Late Miocene. Paleogene The Paleogene Period ( IPA : / ˈ p eɪ l i . ə dʒ iː n , - l i . oʊ -, ˈ p æ l i -/ PAY -lee-ə-jeen, -lee-oh-, PAL -ee- ; also spelled Palaeogene or Palæogene )
3663-431: The Eocene-Oligocene boundary and the present day Late Cenozoic ice age began. The Paleogene began with the brief but intense " impact winter " caused by the Chicxulub impact , which was followed by an abrupt period of warming. After temperatures stabilised, the steady cooling and drying of the Late Cretaceous-Early Paleogene Cool Interval that had spanned the last two ages of the Late Cretaceous continued, with only
3762-439: The Farallon Plate beneath the western edge of South America continued from the Mesozoic. Over the Paleogene, changes in plate motion and episodes of regional slab shallowing and steepening resulted in variations in the magnitude of crustal shortening and amounts of magmatism along the length of the Andes . In the Northern Andes, an oceanic plateau with volcanic arc was accreted during the latest Cretaceous and Paleocene, whilst
3861-415: The Greenland and northwest European margins and is associated with the proto-Icelandic mantle plume , which rose beneath the Greenland lithosphere at c. 65 Ma. There were two main phases of volcanic activity with peaks at c. 60 Ma and c. 55 Ma. Magmatism in the British and Northwest Atlantic volcanic provinces occurred mainly in the early Palaeocene, the latter associated with an increased spreading rate in
3960-416: The Himalayas in India through Myanmar ( West Burma block ) Sumatra , Java to West Sulawesi . During the Late Cretaceous to Paleogene, the northward movement of the Indian Plate led to the highly oblique subduction of the Neotethys along the edge of the West Burma block and the development of a major north-south transform fault along the margin of Southeast Asia to the south. Between c. 60 and 50 Ma,
4059-419: The India-Eurasia collision continued, movement of material away from the collision zone was accommodated along, and extended, the already existing major strike slip systems of the region. During the Paleocene, seafloor spreading along the Mid-Atlantic Ridge propagated from the Central Atlantic northwards between North America and Greenland in the Labrador Sea (c. 62 Ma) and Baffin Bay (c. 57 Ma), and, by
Eucla Basin - Misplaced Pages Continue
4158-427: The Labrador Sea, whilst northeast Atlantic magmatism occurred mainly during the early Eocene and is associated with a change in the spreading direction in the Labrador Sea and the northward drift of Greenland. The locations of the magmatism coincide with the intersection of propagating the rifts and large-scale, pre-existing lithospheric structures, which acted as channels to the surface for the magma . The arrival of
4257-411: The Mid-Eocene, the Antarctic Circumpolar Current between Australia and Antarctica formed. This disrupted ocean currents worldwide and as a result caused a global cooling effect, shrinking the jungles. This allowed mammals to grow to mammoth proportions, such as whales which, by that time, had become almost fully aquatic. Mammals like Andrewsarchus were at the top of the food-chain. The Late Eocene saw
4356-403: The Neotethys Ocean closed and is composed sediments scrapped from the descending Arabian Plate. From the Late Cretaceous, a volcanic arc developed on the Eurasia margin as the Neotethys crust was subducted beneath it. A separate intra-oceanic subduction zone in the Neotethys resulted in the obuction of ocean crust onto the Arabian margin in the Late Cretaceous to Paleocene, with break-off of
4455-498: The Neotethys Ocean lying between it and southern Eurasia. Debate about the amount of deformation seen in the geological record in the India–Eurasia collision zone versus the size of Greater India, the timing and nature of the collision relative to the decrease in plate velocity, and explanations for the unusually high velocity of the Indian plate have led to several models for Greater India: 1) A Late Cretaceous to early Paleocene subduction zone may have lain between India and Eurasia in
4554-467: The Neotethys, dividing the region into two plates, subduction was followed by collision of India with Eurasia in the middle Eocene. In this model Greater India would have been less than 900 km wide; 2) Greater India may have formed a single plate, several thousand kilometres wide, with the Tethyan Himalaya microcontinent separated from the Indian continent by an oceanic basin . The microcontinent collided with southern Eurasia c. 58 Ma (late Paleocene), whilst
4653-418: The North American subduction zone near Baja California leading to major strike-slip movements and the formation of the San Andreas Fault . At the Paleogene-Neogene boundary, spreading ceased between the Pacific and Farallon plates and the Farallon Plate split again forming the present date Nazca and Cocos plates. The Kula Plate lay between Pacific Plate and North America. To the north and northwest it
4752-417: The North Atlantic Igneous Province, between about 56 and 54 Ma, which rapidly released large amounts of greenhouse gases into the atmosphere. This warming led to melting of frozen methane hydrates on continental slopes adding further greenhouses gases. It also reduced the rate of burial of organic matter as higher temperatures accelerated the rate of bacterial decomposition which released CO 2 back into
4851-409: The Oligocene. The Paleogene is divided into three series / epochs : the Paleocene, Eocene, and Oligocene. These stratigraphic units can be defined globally or regionally. For global stratigraphic correlation, the International Commission on Stratigraphy (ICS) ratify global stages based on a Global Boundary Stratotype Section and Point (GSSP) from a single formation (a stratotype ) identifying
4950-524: The Pacific Plate moved north. At c. 47 Ma, movement of the hotspot ceased and the Pacific Plate motion changed from northward to northwestward in response to the onset of subduction along its western margin. This resulted in a 60 degree bend in the seamount chain. Other seamount chains related to hotspots in the South Pacific show a similar change in orientation at this time. Slow seafloor spreading continued between Australia and East Antarctica. Shallow water channels probably developed south of Tasmania opening
5049-441: The Pacific, Farallon, Kula and Izanagi plates. The central Pacific Plate grew by seafloor spreading as the other three plates were subducted and broken up. In the southern Pacific, seafloor spreading continued from the Late Cretaceous across the Pacific–Antarctic, Pacific-Farallon and Farallon–Antarctic mid ocean ridges. The Izanagi-Pacific spreading ridge lay nearly parallel to the East Asian subduction zone and between 60–50 Ma
SECTION 50
#17328524689555148-403: The Paleogene Period and subsequent Neogene Period; despite no longer being recognized as a formal stratigraphic term , "Tertiary" still sometimes remains in informal use. Paleogene is often abbreviated "Pg", although the United States Geological Survey uses the abbreviation " Pe " for the Paleogene on the Survey's geologic maps. Much of the world's modern vertebrate diversity originated in
5247-459: The Paleogene, and lasted from 33.9 Ma to 23.03 Ma. It is divided into two stages: the Rupelian 33.9 Ma to 27.82 Ma; and, Chattian 27.82 - 23.03 Ma. The GSSP for the base of the Oligocene is at Massignano , near Ancona , Italy . The extinction the hantkeninid planktonic foraminifera is the key marker for the Eocene-Oligocene boundary, which was a time of climate cooling that led to widespread changes in fauna and flora. The final stages of
5346-423: The base of the Eocene is at Dababiya, near Luxor , Egypt and is marked by the start of a significant variation in global carbon isotope ratios, produced by a major period of global warming. The change in climate was due to a rapid release of frozen methane clathrates from seafloor sediments at the beginning of the Paleocene-Eocene thermal maximum (PETM). The Oligocene is the third and youngest series/epoch of
5445-425: The breakup of Pangaea occurred during the Paleogene as Atlantic Ocean rifting and seafloor spreading extended northwards, separating the North America and Eurasian plates, and Australia and South America rifted from Antarctica , opening the Southern Ocean . Africa and India collided with Eurasia forming the Alpine-Himalayan mountain chains and the western margin of the Pacific Plate changed from
5544-430: The brief interruption of the Latest Danian Event (c. 62.2 Ma) when global temperatures rose. There is no evidence for ice sheets at the poles during the Paleocene. The relatively cool conditions were brought to an end by the Thanetian Thermal Event, and the beginning of the PETM. This was one of the warmest times of the Phanerozoic eon, during which global mean surface temperatures increased to 31.6 °C. According to
5643-399: The changes in the heat flux at the core mantle boundary, climate and plate tectonic activity, shows that all these changes indicate similar rhythms on million years' timescale in the Cenozoic Era occurring with the common fundamental periodicity of ~13 Myr during most of the time. The levels of carbonate ions in the ocean fell over the course of the Cenozoic. Early in the Cenozoic, following
5742-410: The climate. It is divided into two epochs: the Pleistocene and the Holocene. The Pleistocene lasted from 2.58 million to 11,700 years ago. This epoch was marked by ice ages as a result of the cooling trend that started in the Mid-Eocene. There were at least four separate glaciation periods marked by the advance of ice caps as far south as 40° N in mountainous areas. Meanwhile, Africa experienced
5841-406: The cold circumpolar current. Dense polar waters sank into the deep oceans and moved northwards, reducing global ocean temperatures. This cooling may have occurred over less than 100,000 years and resulted in a widespread extinction in marine life. By the Eocene-Oligocene boundary, sediments deposited in the ocean from glaciers indicate the presence of an ice sheet in western Antarctica that extended to
5940-418: The collision of the Tethyan (Tibetan) Himalayas , the leading edge of Greater India, with the Lhasa Terrane of Tibet (southern Eurasian margin), along the Indus-Yarling-Zangbo suture zone . To the south of this zone, the Himalaya are composed of metasedimentary rocks scraped off the now subducted Indian continental crust and mantle lithosphere as the collision progressed. Palaeomagnetic data place
6039-430: The cooler oceans also reduced moisture in the atmosphere and increased aridity. By the early Oligocene, the North American and Eurasian tropical and subtropical forests were replaced by dry woodlands and widespread grasslands. The Early Oligocene Glacial Maximum lasted for about 200,000 years, and the global mean surface temperature continued to decrease gradually during the Rupelian . A drop in global sea levels during
SECTION 60
#17328524689556138-420: The course of this era as the world cooled. During the Cenozoic, mammals proliferated from a few small, simple, generalised forms into a diverse collection of terrestrial , marine , and flying animals, giving this period its other name, the Age of Mammals. The Cenozoic is just as much the age of savannas , the age of co-dependent flowering plants and insects , and the age of birds. Grasses also played
6237-528: The crater are found at Chicxulub on the Yucatan Peninsula in Mexico . The extinction of the non-avian dinosaurs , ammonites and dramatic changes in marine plankton and many other groups of organisms, are also used for correlation purposes. The Eocene is the second series/epoch of the Paleogene, and lasted from 56.0 Ma to 33.9 Ma. It is divided into four stages: the Ypresian 56.0 Ma to 47.8 Ma; Lutetian 47.8 Ma to 41.2 Ma; Bartonian 41.2 Ma to 37.71 Ma; and, Priabonian 37.71 Ma to 33.9 Ma. The GSSP for
6336-457: The disruption of the Chicxulub impact settled, a period of cool and dry conditions continued from the Late Cretaceous. At the Paleocene-Eocene boundary global temperatures rose rapidly with the onset of the Paleocene-Eocene Thermal Maximum (PETM). By the middle Eocene, temperatures began to drop again and by the late Eocene (c. 37 Ma) had decreased sufficiently for ice sheets to form in Antarctica. The global climate entered icehouse conditions at
6435-497: The early Eocene (c. 54 Ma), into the northeastern Atlantic between Greenland and Eurasia. Extension between North America and Eurasia, also in the early Eocene, led to the opening of the Eurasian Basin across the Arctic, which was linked to the Baffin Bay Ridge and Mid-Atlantic Ridge to the south via major strike slip faults. From the Eocene and into the early Oligocene, Greenland acted as an independent plate moving northwards and rotating anticlockwise. This led to compression across
6534-415: The early Oligocene, flood basalts erupted across Ethiopia , northeast Sudan and southwest Yemen as the Afar mantle plume began to impact the base of the African lithosphere. Rifting across the southern Red Sea began in the mid Oligocene, and across the central and northern Red Sea regions in the late Oligocene and early Miocene. Climatic conditions varied considerably during the Paleogene. After
6633-406: The end of the Cretaceous but saw a very rapid radiation into their modern order and family-level diversity during the Paleogene, achieving a diverse array of morphologies. The Paleogene is marked by considerable changes in climate from the Paleocene–Eocene Thermal Maximum , through global cooling during the Eocene to the first appearance of permanent ice sheets in the Antarctic at the beginning of
6732-467: The first elephants, cats, dogs, marsupials and many other species still prevalent today. Many other species of plants evolved in this period too. A cooling period featuring seasonal rains was still in effect. Mammals still continued to grow larger and larger. The Neogene spans from 23.03 million to 2.58 million years ago. It features 2 epochs: the Miocene, and the Pliocene. The Miocene Epoch spans from 23.03 to 5.333 million years ago and
6831-404: The late Eocene (c. 37 Ma) there is evidence of glaciation in Antarctica. Changes in deep ocean currents, as Australia and South America moved away from Antarctica opening the Drake and Tasmanian passages, were responsible for the drop in global temperatures. The warm waters of the South Atlantic, Indian and South Pacific oceans extended southward into the opening Southern Ocean and became part of
6930-409: The leading northeastern edge of Greater India collided with the West Burma block resulting in deformation and metamorphism . During the middle Eocene, north-dipping subduction resumed along the southern edge of Southeast Asia, from west Sumatra to West Sulawesi, as the Australian Plate drifted slowly northwards. Collision between India and the West Burma block was complete by the late Oligocene. As
7029-440: The lower boundary of the stage. The Paleocene is the first series/epoch of the Paleogene and lasted from 66.0 Ma to 56.0 Ma. It is divided into three stages: the Danian 66.0 - 61.6 Ma; Selandian 61.6 - 59.2 Ma; and, Thanetian 59.2 - 56.0 Ma. The GSSP for the base of the Cenozoic, Paleogene and Paleocene is at Oued Djerfane, west of El Kef , Tunisia . It is marked by an iridium anomaly produced by an asteroid impact, and
7128-578: The non-avian dinosaurs , became extinct in an event attributed by most experts to the impact of a large asteroid or other celestial body, the Chicxulub impactor . The Cenozoic is also known as the Age of Mammals because the terrestrial animals that dominated both hemispheres were mammals – the eutherians (placentals) in the northern hemisphere and the metatherians (marsupials, now mainly restricted to Australia and to some extent South America ) in
7227-579: The northeast Atlantic. By the late Oligocene, the plate boundary between North America and Eurasia was established along the Mid-Atlantic Ridge, with Greenland attached to the North American plate again, and the Jan Mayen microcontinent part of the Eurasian Plate, where its remains now lie to the east and possibly beneath the southeast of Iceland. The North Atlantic Igneous Province stretches across
7326-619: The ocean. The development of the circumpolar current led to changes in the oceans, which in turn reduced atmospheric CO 2 further. Increasing upwellings of cold water stimulated the productivity of phytoplankton , and the cooler waters reduced the rate of bacterial decay of organic matter and promoted the growth of methane hydrates in marine sediments. This created a positive feedback cycle where global cooling reduced atmospheric CO 2 and this reduction in CO 2 lead to changes which further lowered global temperatures. The decrease in evaporation from
7425-470: The oceans. The (relatively) sudden climatic changes associated with the PETM resulted in the extinction of some groups of fauna and flora and the rise of others. For example, with the warming of the Arctic Ocean, around 70% of deep sea foraminifera species went extinct, whilst on land many modern mammals, including primates , appeared. Fluctuating sea levels meant, during low stands, a land bridge formed across
7524-506: The present day Indian continent further south at the time of collision and decrease in plate velocity, indicating the presence of a large region to the north of India that has now been subducted beneath the Eurasian Plate or incorporated into the mountain belt. This region, known as Greater India, formed by extension along the northern margin of India during the opening of the Neotethys. The Tethyan Himalaya block lay along its northern edge, with
7623-399: The proto-Iceland plume has been considered the driving mechanism for rifting in the North Atlantic. However, that rifting and initial seafloor spreading occurred prior to the arrival of the plume, large scale magmatism occurred at a distance to rifting, and that rifting propagated towards, rather than away from the plume, has led to the suggestion the plume and associated magmatism may have been
7722-614: The rebirth of seasons, which caused the expansion of savanna-like areas, along with the evolution of grasses . The end of the Eocene was marked by the Eocene–Oligocene extinction event , the European face of which is known as the Grande Coupure . The Oligocene Epoch spans from 33.9 million to 23.03 million years ago. The Oligocene featured the expansion of grasslands which had led to many new species to evolve, including
7821-482: The relatively young, well-preserved rocks associated with it. The Paleogene spans from the extinction of non-avian dinosaurs, 66 million years ago, to the dawn of the Neogene, 23.03 million years ago. It features three epochs : the Paleocene , Eocene and Oligocene . The Paleocene Epoch lasted from 66 million to 56 million years ago. Modern placental mammals originated during this time. The devastation of
7920-504: The rhinoceros-like brontotheres , various bizarre groups of mammals from South America, such as the vaguely elephant-like pyrotheres and the dog-like marsupial relatives called borhyaenids and the monotremes and marsupials of Australia. Mammal evolution in the Cenozoic was predominantly shaped by climatic and geological processes. Cenozoic calcareous nannoplankton experienced rapid rates of speciation and reduced species longevity, while suffering prolonged declines in diversity during
8019-405: The southern hemisphere. The extinction of many groups allowed mammals and birds to greatly diversify so that large mammals and birds dominated life on Earth. The continents also moved into their current positions during this era. The climate during the early Cenozoic was warmer than today, particularly during the Paleocene–Eocene Thermal Maximum . However, the Eocene to Oligocene transition and
8118-659: The southwest, an island arc collided with the northern Andes forming an east dipping subduction zone where Caribbean lithosphere was subducted beneath the South American margin. During the Eocene (c. 45 Ma), subduction of the Farallon Plate along the Central American subduction zone was (re)established. Subduction along the northern section of the Caribbean volcanic arc ceased as the Bahamas carbonate platform collided with Cuba and
8217-520: The spreading ridge began to be subducted. By c. 50 Ma, the Pacific Plate was no longer surrounded by spreading ridges, but had a subduction zone along its western edge. This changed the forces acting on the Pacific Plate and led to a major reorganisation of plate motions across the entire Pacific region. The resulting changes in stress between the Pacific and Philippine Sea plates initiated subduction along
8316-442: The strait of Panama, as the isthmus had not yet formed. This epoch featured a general warming trend, with jungles eventually reaching the poles. The oceans were dominated by sharks as the large reptiles that had once predominated were extinct. Archaic mammals filled the world such as creodonts (extinct carnivores, unrelated to existing Carnivora ). The Eocene Epoch ranged from 56 million years to 33.9 million years ago. In
8415-524: The subducted oceanic plate close to the Arabian margin occurring during the Eocene. Continental collision began during the Eocene c. 35 Ma and continued into the Oligocene to c. 26 Ma. The Indian continent rifted from Madagascar at c. 83 Ma and drifted rapidly (c. 18 cm/yr in the Paleocene) northwards towards the southern margin of Eurasia. A rapid decrease in velocity to c. 5 cm/yr in the early Eocene records
8514-527: The subducting Farallon Plate led to a flat-slab segment that increased friction between this and the base of the North American Plate. The resulting Laramide Orogeny , which began the development of the Rocky Mountains , was a broad zone of thick-skinned deformation , with faults extending to mid-crustal depths and the uplift of basement rocks that lay to the east of the Sevier belt, and more than 700km from
8613-649: The trench. With the Laramide uplift the Western Interior Seaway was divided and then retreated. During the mid to late Eocene (50–35 Ma), plate convergence rates decreased and the dip of the Farallon slab began to steepen. Uplift ceased and the region largely levelled by erosion . By the Oligocene, convergence gave way to extension, rifting and widespread volcanism across the Laramide belt. Ocean-continent convergence accommodated by east dipping subduction zone of
8712-478: The velocity of the plate did not decrease until c. 50 Ma when subduction rates dropped as young, oceanic crust entered the subduction zone; 3) This model assigns older dates to parts of Greater India, which changes its paleogeographic position relative to Eurasia and creates a Greater India formed of extended continental crust 2000 - 3000 km wide. The Alpine-Himalayan Orogenic Belt in Southeast Asia extends from
8811-513: The western Mediterranean arc of the Tell, Rif, Betic and Apennine mountain chains. The rate of convergence was less than the subduction rate of the dense lithosphere of the western Mediterranean and roll-back of the subducting slab led to the arcuate structure of these mountain ranges. In the eastern Mediterranean, c. 35 Ma, the Anatolide-Tauride platform (northern part of Adria) began to enter
8910-485: The western end. Very few people live in this part of the country, with most of the region having fewer than one inhabitant per km. In normal years, the area receives less than 250 mm of precipitation . Due to a shortage of regional seals and source rocks , the basin has poor petroleum prospects, but it is forming as a major zircon producing area, and includes the Cyclone Zircon Project . The Eucla Basin
9009-581: The world was dominated by the gastornithid birds, terrestrial crocodylians like Pristichampsus , large sharks such as Otodus , and a handful of primitive large mammal groups like uintatheres , mesonychians , and pantodonts . But as the forests began to recede and the climate began to cool, other mammals took over. The Cenozoic is full of mammals both strange and familiar, including chalicotheres , creodonts , whales , primates , entelodonts , sabre-toothed cats , mastodons and mammoths , three-toed horses , giant rhinoceros like Paraceratherium ,
9108-505: The world's megafauna, including some of the hominid species, such as Neanderthals . All the continents were affected, but Africa to a lesser extent. It still retains many large animals, such as hippos. The Holocene began 11,700 years ago and lasts to the present day. All recorded history and "the Human history " lies within the boundaries of the Holocene Epoch. Human activity is blamed for
9207-684: The world; Indian monsoons ; deserts in central Asia ; and the beginnings of the Sahara desert. The world map has not changed much since, save for changes brought about by the glaciations of the Quaternary, such as the Great Lakes , Hudson Bay , and the Baltic Sea . The Quaternary spans from 2.58 million years ago to present day, and is the shortest geological period in the Phanerozoic Eon . It features modern animals, and dramatic changes in
9306-607: Was being subducted beneath the Aleutian trench . Spreading between the Kula and Pacific and Farallon plates ceased c. 40 Ma and the Kula Plate became part of the Pacific Plate. The Hawaiian-Emperor seamount chain formed above the Hawaiian hotspot . Originally thought to be stationary within the mantle, the hotspot is now considered to have drifted south during the Paleocene to early Eocene, as
9405-535: Was followed by a c.10 million year pause in the convergence of Africa and Eurasia, connected with the onset of the opening of the North Atlantic Ocean as Greenland rifted from the Eurasian Plate in the Palaeocene. Convergence rates between Africa and Eurasia increased again in the early Eocene and the remaining oceanic basins between Adria and Europe closed. Between about 40 and 30 Ma, subduction began along
9504-579: Was mainly due to the collision of India with Eurasia, which caused the rise of the Himalayas : the upraised rocks eroded and reacted with CO 2 in the air, causing a long-term reduction in the proportion of this greenhouse gas in the atmosphere. Around 35 million years ago permanent ice began to build up on Antarctica. The cooling trend continued in the Miocene , with relatively short warmer periods. When South America became attached to North America creating
9603-662: Was officially recognised by the International Commission on Stratigraphy in June 2009. In 2004, the Tertiary Period was officially replaced by the Paleogene and Neogene Periods. The common use of epochs during the Cenozoic helps palaeontologists better organise and group the many significant events that occurred during this comparatively short interval of time. Knowledge of this era is more detailed than any other era because of
9702-542: Was replaced by strike-slip movements as a transform fault, extending from the Mid-Atlantic Ridge, connected with the northern boundary of the Caribbean Plate. Subduction now focused along the southern Caribbean arc ( Lesser Antilles ). By the Oligocene, the intra-oceanic Central American volcanic arc began to collide with northwestern South American. At the beginning of the Paleogene, the Pacific Ocean consisted of
9801-555: Was subducted southwards beneath the African Plate, whilst in the eastern Mediterranean, Africa was subducted beneath Eurasia along a northward dipping subduction zone. Convergence between the Iberian and European plates led to the Pyrenean Orogeny and, as Adria pushed northwards the Alps and Carpathian orogens began to develop. The collision of Adria with Eurasia in the early Palaeocene
#954045