68-637: The Ericales are a large and diverse order of dicotyledons . Species in this order have considerable commercial importance including for tea , persimmon , blueberry , kiwifruit , Brazil nuts , argan , cranberry , sapote , and azalea . The order includes trees , bushes , lianas , and herbaceous plants. Together with ordinary autophytic plants, the Ericales include chlorophyll -deficient mycoheterotrophic plants (e.g., Sarcodes sanguinea ) and carnivorous plants (e.g., genus Sarracenia ). Many species have five petals, often grown together. Fusion of
136-423: A mutation–selection balance . It is predicted that a viral quasispecies at a low but evolutionarily neutral and highly connected (that is, flat) region in the fitness landscape will outcompete a quasispecies located at a higher but narrower fitness peak in which the surrounding mutants are unfit, "the quasispecies effect" or the "survival of the flattest". There is no suggestion that a viral quasispecies resembles
204-405: A ring species . Also, among organisms that reproduce only asexually , the concept of a reproductive species breaks down, and each clone is potentially a microspecies. Although none of these are entirely satisfactory definitions, and while the concept of species may not be a perfect model of life, it is still a useful tool to scientists and conservationists for studying life on Earth, regardless of
272-400: A "classical" method of determining species, such as with Linnaeus, early in evolutionary theory. However, different phenotypes are not necessarily different species (e.g. a four-winged Drosophila born to a two-winged mother is not a different species). Species named in this manner are called morphospecies . In the 1970s, Robert R. Sokal , Theodore J. Crovello and Peter Sneath proposed
340-424: A 'smallest clade' idea" (a phylogenetic species concept). Mishler and Wilkins and others concur with this approach, even though this would raise difficulties in biological nomenclature. Wilkins cited the ichthyologist Charles Tate Regan 's early 20th century remark that "a species is whatever a suitably qualified biologist chooses to call a species". Wilkins noted that the philosopher Philip Kitcher called this
408-428: A connected series of neighbouring populations, each of which can sexually interbreed with adjacent related populations, but for which there exist at least two "end" populations in the series, which are too distantly related to interbreed, though there is a potential gene flow between each "linked" population. Such non-breeding, though genetically connected, "end" populations may co-exist in the same region thus closing
476-582: A cosmopolitan order. Areas of distribution of families vary largely – while some are restricted to tropics, others exist mainly in Arctic or temperate regions. The entire order contains over 8,000 species, of which the Ericaceae account for 2,000–4,000 species (by various estimates). According to molecular studies, the lineage that led to Ericales diverged from other plants about 127 million years or diversified 110 million years ago. The most commercially used plant in
544-432: A different species from its ancestors. Viruses have enormous populations, are doubtfully living since they consist of little more than a string of DNA or RNA in a protein coat, and mutate rapidly. All of these factors make conventional species concepts largely inapplicable. A viral quasispecies is a group of genotypes related by similar mutations, competing within a highly mutagenic environment, and hence governed by
612-508: A genetic boundary suitable for defining a species concept is present. DNA barcoding has been proposed as a way to distinguish species suitable even for non-specialists to use. One of the barcodes is a region of mitochondrial DNA within the gene for cytochrome c oxidase . A database, Barcode of Life Data System , contains DNA barcode sequences from over 190,000 species. However, scientists such as Rob DeSalle have expressed concern that classical taxonomy and DNA barcoding, which they consider
680-422: A group made up of all the descendants of a common ancestor (i.e., they are not a monophyletic group). Rather, a number of lineages, such as the magnoliids and groups now collectively known as the basal angiosperms , diverged earlier than the monocots did; in other words, monocots evolved from within the dicots, as traditionally defined. The traditional dicots are thus a paraphyletic group. The eudicots are
748-492: A misnomer, need to be reconciled, as they delimit species differently. Genetic introgression mediated by endosymbionts and other vectors can further make barcodes ineffective in the identification of species. A phylogenetic or cladistic species is "the smallest aggregation of populations (sexual) or lineages (asexual) diagnosable by a unique combination of character states in comparable individuals (semaphoronts)". The empirical basis – observed character states – provides
SECTION 10
#1732851826043816-449: A particular species, including which genus (and higher taxa) it is placed in, is a hypothesis about the evolutionary relationships and distinguishability of that group of organisms. As further information comes to hand, the hypothesis may be corroborated or refuted. Sometimes, especially in the past when communication was more difficult, taxonomists working in isolation have given two distinct names to individual organisms later identified as
884-400: A short way of saying that something applies to many species within a genus, but not to all. If scientists mean that something applies to all species within a genus, they use the genus name without the specific name or epithet. The names of genera and species are usually printed in italics . However, abbreviations such as "sp." should not be italicised. When a species' identity is not clear,
952-404: A specialist may use "cf." before the epithet to indicate that confirmation is required. The abbreviations "nr." (near) or "aff." (affine) may be used when the identity is unclear but when the species appears to be similar to the species mentioned after. With the rise of online databases, codes have been devised to provide identifiers for species that are already defined, including: The naming of
1020-523: A species as groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups. It has been argued that this definition is a natural consequence of the effect of sexual reproduction on the dynamics of natural selection. Mayr's use of the adjective "potentially" has been a point of debate; some interpretations exclude unusual or artificial matings that occur only in captivity, or that involve animals capable of mating but that do not normally do so in
1088-400: A species as determined by a taxonomist. A typological species is a group of organisms in which individuals conform to certain fixed properties (a type), so that even pre-literate people often recognise the same taxon as do modern taxonomists. The clusters of variations or phenotypes within specimens (such as longer or shorter tails) would differentiate the species. This method was used as
1156-488: A species. All species definitions assume that an organism acquires its genes from one or two parents very like the "daughter" organism, but that is not what happens in HGT. There is strong evidence of HGT between very dissimilar groups of prokaryotes , and at least occasionally between dissimilar groups of eukaryotes , including some crustaceans and echinoderms . The evolutionary biologist James Mallet concludes that there
1224-685: A species. Generally the term includes the unknown element of a distinct act of creation. Many authors have argued that a simple textbook definition, following Mayr's concept, works well for most multi-celled organisms , but breaks down in several situations: Species identification is made difficult by discordance between molecular and morphological investigations; these can be categorised as two types: (i) one morphology, multiple lineages (e.g. morphological convergence , cryptic species ) and (ii) one lineage, multiple morphologies (e.g. phenotypic plasticity , multiple life-cycle stages). In addition, horizontal gene transfer (HGT) makes it difficult to define
1292-519: A taxonomic decision at the discretion of cognizant specialists, is not governed by the Codes of Zoological or Botanical Nomenclature, in contrast to the PhyloCode , and contrary to what is done in several other fields, in which the definitions of technical terms, like geochronological units and geopolitical entities, are explicitly delimited. The nomenclatural codes that guide the naming of species, including
1360-506: A traditional biological species. The International Committee on Taxonomy of Viruses has since 1962 developed a universal taxonomic scheme for viruses; this has stabilised viral taxonomy. Most modern textbooks make use of Ernst Mayr 's 1942 definition, known as the Biological Species Concept as a basis for further discussion on the definition of species. It is also called a reproductive or isolation concept. This defines
1428-447: A variation on the morphological species concept, a phenetic species, defined as a set of organisms with a similar phenotype to each other, but a different phenotype from other sets of organisms. It differs from the morphological species concept in including a numerical measure of distance or similarity to cluster entities based on multivariate comparisons of a reasonably large number of phenotypic traits. A mate-recognition species
SECTION 20
#17328518260431496-515: A variety of reasons. Viruses are a special case, driven by a balance of mutation and selection , and can be treated as quasispecies . Biologists and taxonomists have made many attempts to define species, beginning from morphology and moving towards genetics . Early taxonomists such as Linnaeus had no option but to describe what they saw: this was later formalised as the typological or morphological species concept. Ernst Mayr emphasised reproductive isolation, but this, like other species concepts,
1564-438: Is "an entity composed of organisms which maintains its identity from other such entities through time and over space, and which has its own independent evolutionary fate and historical tendencies". This differs from the biological species concept in embodying persistence over time. Wiley and Mayden stated that they see the evolutionary species concept as "identical" to Willi Hennig 's species-as-lineages concept, and asserted that
1632-400: Is a group of sexually reproducing organisms that recognise one another as potential mates. Expanding on this to allow for post-mating isolation, a cohesion species is the most inclusive population of individuals having the potential for phenotypic cohesion through intrinsic cohesion mechanisms; no matter whether populations can hybridise successfully, they are still distinct cohesion species if
1700-458: Is a set of organisms adapted to a particular set of resources, called a niche, in the environment. According to this concept, populations form the discrete phenetic clusters that we recognise as species because the ecological and evolutionary processes controlling how resources are divided up tend to produce those clusters. A genetic species as defined by Robert Baker and Robert Bradley is a set of genetically isolated interbreeding populations. This
1768-414: Is between 8 and 8.7 million. About 14% of these had been described by 2011. All species (except viruses ) are given a two-part name , called a "binomial". The first part of a binomial is the genus to which the species belongs. The second part is called the specific name or the specific epithet (in botanical nomenclature , also sometimes in zoological nomenclature ). For example, Boa constrictor
1836-414: Is called speciation . Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book The Origin of Species . Speciation depends on a measure of reproductive isolation , a reduced gene flow. This occurs most easily in allopatric speciation, where populations are separated geographically and can diverge gradually as mutations accumulate. Reproductive isolation
1904-403: Is described formally, in a publication that assigns it a unique scientific name. The description typically provides means for identifying the new species, which may not be based solely on morphology (see cryptic species ), differentiating it from other previously described and related or confusable species and provides a validly published name (in botany) or an available name (in zoology) when
1972-671: Is further weakened by the existence of microspecies , groups of organisms, including many plants, with very little genetic variability, usually forming species aggregates . For example, the dandelion Taraxacum officinale and the blackberry Rubus fruticosus are aggregates with many microspecies—perhaps 400 in the case of the blackberry and over 200 in the dandelion, complicated by hybridisation , apomixis and polyploidy , making gene flow between populations difficult to determine, and their taxonomy debatable. Species complexes occur in insects such as Heliconius butterflies, vertebrates such as Hypsiboas treefrogs, and fungi such as
2040-726: Is hard or even impossible to test. Later biologists have tried to refine Mayr's definition with the recognition and cohesion concepts, among others. Many of the concepts are quite similar or overlap, so they are not easy to count: the biologist R. L. Mayden recorded about 24 concepts, and the philosopher of science John Wilkins counted 26. Wilkins further grouped the species concepts into seven basic kinds of concepts: (1) agamospecies for asexual organisms (2) biospecies for reproductively isolated sexual organisms (3) ecospecies based on ecological niches (4) evolutionary species based on lineage (5) genetic species based on gene pool (6) morphospecies based on form or phenotype and (7) taxonomic species,
2108-403: Is no easy way to tell whether related geographic or temporal forms belong to the same or different species. Species gaps can be verified only locally and at a point of time. One is forced to admit that Darwin's insight is correct: any local reality or integrity of species is greatly reduced over large geographic ranges and time periods. The botanist Brent Mishler argued that the species concept
Ericales - Misplaced Pages Continue
2176-468: Is not valid, notably because gene flux decreases gradually rather than in discrete steps, which hampers objective delimitation of species. Indeed, complex and unstable patterns of gene flux have been observed in cichlid teleosts of the East African Great Lakes . Wilkins argued that "if we were being true to evolution and the consequent phylogenetic approach to taxa, we should replace it with
2244-400: Is one of the species of the genus Boa , with constrictor being the species' epithet. While the definitions given above may seem adequate at first glance, when looked at more closely they represent problematic species concepts. For example, the boundaries between closely related species become unclear with hybridisation , in a species complex of hundreds of similar microspecies , and in
2312-586: Is similar to Mayr's Biological Species Concept, but stresses genetic rather than reproductive isolation. In the 21st century, a genetic species could be established by comparing DNA sequences. Earlier, other methods were available, such as comparing karyotypes (sets of chromosomes ) and allozymes ( enzyme variants). An evolutionarily significant unit (ESU) or "wildlife species" is a population of organisms considered distinct for purposes of conservation. In palaeontology , with only comparative anatomy (morphology) and histology from fossils as evidence,
2380-434: Is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity . Other ways of defining species include their karyotype , DNA sequence, morphology , behaviour, or ecological niche . In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The most recent rigorous estimate for the total number of species of eukaryotes
2448-594: Is threatened by hybridisation, but this can be selected against once a pair of populations have incompatible alleles of the same gene, as described in the Bateson–Dobzhansky–Muller model . A different mechanism, phyletic speciation, involves one lineage gradually changing over time into a new and distinct form (a chronospecies ), without increasing the number of resultant species. Horizontal gene transfer between organisms of different species, either through hybridisation , antigenic shift , or reassortment ,
2516-929: The APG III system as members of the Ericales: Likely phylogenetic relationships between the families of the Ericales: Cyrillaceae Ericaceae Clethraceae Roridulaceae Actinidiaceae Sarraceniaceae Styracaceae Diapensiaceae Symplocaceae Theaceae Pentaphylacaceae Primulaceae Ebenaceae Sapotaceae Polemoniaceae Fouquieriaceae Lecythidaceae Mitrastemonaceae Marcgraviaceae Tetrameristaceae Balsaminaceae These families are not recognized in
2584-576: The APG III system but have been in common use in the recent past: These make up an early diverging group of asterids . Under the Cronquist system , the Ericales included a smaller group of plants, which were placed among the Dilleniidae : Dicotyledon The dicotyledons , also known as dicots (or, more rarely, dicotyls ), are one of the two groups into which all the flowering plants (angiosperms) were formerly divided. The name refers to one of
2652-542: The APG IV system shows that the group traditionally treated as the dicots is paraphyletic to the monocots: Amborellales Nymphaeales Austrobaileyales Chloranthales magnoliids Ceratophyllales eudicots monocots Traditionally, the dicots have been called the Dicotyledones (or Dicotyledoneae ), at any rank. If treated as a class, as they are within the Cronquist system , they could be called
2720-523: The ICZN for animals and the ICN for plants, do not make rules for defining the boundaries of the species. Research can change the boundaries, also known as circumscription, based on new evidence. Species may then need to be distinguished by the boundary definitions used, and in such cases the names may be qualified with sensu stricto ("in the narrow sense") to denote usage in the exact meaning given by an author such as
2788-399: The fly agaric . Natural hybridisation presents a challenge to the concept of a reproductively isolated species, as fertile hybrids permit gene flow between two populations. For example, the carrion crow Corvus corone and the hooded crow Corvus cornix appear and are classified as separate species, yet they can hybridise where their geographical ranges overlap. A ring species is
Ericales - Misplaced Pages Continue
2856-498: The jaguar ( Panthera onca ) of Latin America or the leopard ( Panthera pardus ) of Africa and Asia. In contrast, the scientific names of species are chosen to be unique and universal (except for some inter-code homonyms ); they are in two parts used together : the genus as in Puma , and the specific epithet as in concolor . A species is given a taxonomic name when a type specimen
2924-406: The "cynical species concept", and arguing that far from being cynical, it usefully leads to an empirical taxonomy for any given group, based on taxonomists' experience. Other biologists have gone further and argued that we should abandon species entirely, and refer to the "Least Inclusive Taxonomic Units" (LITUs), a view that would be coherent with current evolutionary theory. The species concept
2992-610: The Magnoliopsida after the type genus Magnolia . In some schemes, the eudicots were either treated as a separate class , the Rosopsida (type genus Rosa ), or as several separate classes. The remaining dicots ( palaeodicots or basal angiosperms) may be kept in a single paraphyletic class, called Magnoliopsida , or further divided. Some botanists prefer to retain the dicotyledons as a valid class, arguing its practicality and that it makes evolutionary sense. The following lists show
3060-405: The abbreviation "sp." in the singular or "spp." (standing for species pluralis , Latin for "multiple species") in the plural in place of the specific name or epithet (e.g. Canis sp.). This commonly occurs when authors are confident that some individuals belong to a particular genus but are not sure to which exact species they belong, as is common in paleontology . Authors may also use "spp." as
3128-570: The amount of hybridisation is insufficient to completely mix their respective gene pools . A further development of the recognition concept is provided by the biosemiotic concept of species. In microbiology , genes can move freely even between distantly related bacteria, possibly extending to the whole bacterial domain. As a rule of thumb, microbiologists have assumed that members of Bacteria or Archaea with 16S ribosomal RNA gene sequences more similar than 97% to each other need to be checked by DNA–DNA hybridisation to decide if they belong to
3196-474: The biological species concept, "the several versions" of the phylogenetic species concept, and the idea that species are of the same kind as higher taxa are not suitable for biodiversity studies (with the intention of estimating the number of species accurately). They further suggested that the concept works for both asexual and sexually-reproducing species. A version of the concept is Kevin de Queiroz 's "General Lineage Concept of Species". An ecological species
3264-505: The biological species concept, a cladistic species does not rely on reproductive isolation – its criteria are independent of processes that are integral in other concepts. Therefore, it applies to asexual lineages. However, it does not always provide clear cut and intuitively satisfying boundaries between taxa, and may require multiple sources of evidence, such as more than one polymorphic locus, to give plausible results. An evolutionary species, suggested by George Gaylord Simpson in 1951,
3332-433: The concept of a chronospecies can be applied. During anagenesis (evolution, not necessarily involving branching), some palaeontologists seek to identify a sequence of species, each one derived from the phyletically extinct one before through continuous, slow and more or less uniform change. In such a time sequence, some palaeontologists assess how much change is required for a morphologically distinct form to be considered
3400-435: The evidence to support hypotheses about evolutionarily divergent lineages that have maintained their hereditary integrity through time and space. Molecular markers may be used to determine diagnostic genetic differences in the nuclear or mitochondrial DNA of various species. For example, in a study done on fungi , studying the nucleotide characters using cladistic species produced the most accurate results in recognising
3468-868: The largest monophyletic group within the dicotyledons. They are distinguished from all other flowering plants by the structure of their pollen . Other dicotyledons and the monocotyledons have monosulcate pollen (or derived forms): grains with a single sulcus. Contrastingly, eudicots have tricolpate pollen (or derived forms): grains with three or more pores set in furrows called colpi. Aside from cotyledon number, other broad differences have been noted between monocots and dicots, although these have proven to be differences primarily between monocots and eudicots . Many early-diverging dicot groups have monocot characteristics such as scattered vascular bundles , trimerous flowers, and non-tricolpate pollen . In addition, some monocots have dicot characteristics such as reticulated leaf veins . The consensus phylogenetic tree used in
SECTION 50
#17328518260433536-478: The numerous fungi species of all the concepts studied. Versions of the phylogenetic species concept that emphasise monophyly or diagnosability may lead to splitting of existing species, for example in Bovidae , by recognising old subspecies as species, despite the fact that there are no reproductive barriers, and populations may intergrade morphologically. Others have called this approach taxonomic inflation , diluting
3604-633: The order is tea ( Camellia sinensis ) from the family Theaceae . The order also includes some edible fruits, including kiwifruit (esp. Actinidia deliciosa ), persimmon (genus Diospyros ), blueberry , huckleberry , cranberry , Brazil nut , and Mamey sapote . The order also includes shea ( Vitellaria paradoxa ), which is the major dietary lipid source for millions of sub-Saharan Africans. Many Ericales species are cultivated for their showy flowers: well-known examples are azalea , rhododendron , camellia , heather , polyanthus , cyclamen , phlox , and busy Lizzie . These families are recognized in
3672-610: The orders in the Angiosperm Phylogeny Group APG IV system traditionally called dicots, together with the older Cronquist system . Under the Dahlgren and Thorne systems, the subclass name Magnoliidae was used for the dicotyledons. This is also the case in some of the systems derived from the Cronquist system. These two systems are contrasted in the table below in terms of how each categorises by superorder; note that
3740-585: The paper is accepted for publication. The type material is usually held in a permanent repository, often the research collection of a major museum or university, that allows independent verification and the means to compare specimens. Describers of new species are asked to choose names that, in the words of the International Code of Zoological Nomenclature , are "appropriate, compact, euphonious, memorable, and do not cause offence". Books and articles sometimes intentionally do not identify species fully, using
3808-674: The person who named the species, while the antonym sensu lato ("in the broad sense") denotes a wider usage, for instance including other subspecies. Other abbreviations such as "auct." ("author"), and qualifiers such as "non" ("not") may be used to further clarify the sense in which the specified authors delineated or described the species. Species are subject to change, whether by evolving into new species, exchanging genes with other species, merging with other species or by becoming extinct. The evolutionary process by which biological populations of sexually-reproducing organisms evolve to become distinct or reproductively isolated as species
3876-421: The petals as a trait was traditionally used to place the order in the subclass Sympetalae . Mycorrhizal associations are quite common among the order representatives, and three kinds of mycorrhiza are found exclusively among Ericales (namely, ericoid, arbutoid and monotropoid mycorrhiza). In addition, some families among the order are notable for their exceptional ability to accumulate aluminum . Ericales are
3944-487: The result of misclassification leading to questions on whether there really are any ring species. The commonly used names for kinds of organisms are often ambiguous: "cat" could mean the domestic cat, Felis catus , or the cat family, Felidae . Another problem with common names is that they often vary from place to place, so that puma, cougar, catamount, panther, painter and mountain lion all mean Puma concolor in various parts of America, while "panther" may also mean
4012-573: The ring. Ring species thus present a difficulty for any species concept that relies on reproductive isolation. However, ring species are at best rare. Proposed examples include the herring gull – lesser black-backed gull complex around the North pole, the Ensatina eschscholtzii group of 19 populations of salamanders in America, and the greenish warbler in Asia, but many so-called ring species have turned out to be
4080-508: The same species. This concept was narrowed in 2006 to a similarity of 98.7%. The average nucleotide identity (ANI) method quantifies genetic distance between entire genomes , using regions of about 10,000 base pairs . With enough data from genomes of one genus, algorithms can be used to categorize species, as for Pseudomonas avellanae in 2013, and for all sequenced bacteria and archaea since 2020. Observed ANI values among sequences appear to have an "ANI gap" at 85–95%, suggesting that
4148-529: The same species. When two species names are discovered to apply to the same species, the older species name is given priority and usually retained, and the newer name considered as a junior synonym, a process called synonymy . Dividing a taxon into multiple, often new, taxa is called splitting . Taxonomists are often referred to as "lumpers" or "splitters" by their colleagues, depending on their personal approach to recognising differences or commonalities between organisms. The circumscription of taxa, considered
SECTION 60
#17328518260434216-405: The sequence within each system has been altered in order to pair corresponding taxa The Thorne system (1992) as depicted by Reveal is: Ranunculanae Rafflesianae Plumbaginanae Polygonanae Primulanae Ericanae Celastranae Geranianae Vitanae Aralianae Lamianae There exist variances between the superorders circumscribed from each system. Namely, although
4284-502: The species concept and making taxonomy unstable. Yet others defend this approach, considering "taxonomic inflation" pejorative and labelling the opposing view as "taxonomic conservatism"; claiming it is politically expedient to split species and recognise smaller populations at the species level, because this means they can more easily be included as endangered in the IUCN red list and can attract conservation legislation and funding. Unlike
4352-490: The systems share common names for many of the listed superorders, the specific list orders classified within each varies. For example, Thorne's Theanae corresponds to five distinct superorders under Dahlgren's system, only one of which is called Theanae. Species A species ( pl. : species) is a population of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring , typically by sexual reproduction . It
4420-485: The theoretical difficulties. If species were fixed and clearly distinct from one another, there would be no problem, but evolutionary processes cause species to change. This obliges taxonomists to decide, for example, when enough change has occurred to declare that a lineage should be divided into multiple chronospecies , or when populations have diverged to have enough distinct character states to be described as cladistic species. Species and higher taxa were seen from
4488-873: The time of Aristotle until the 18th century as categories that could be arranged in a hierarchy, the great chain of being . In the 19th century, biologists grasped that species could evolve given sufficient time. Charles Darwin 's 1859 book On the Origin of Species explained how species could arise by natural selection . That understanding was greatly extended in the 20th century through genetics and population ecology . Genetic variability arises from mutations and recombination , while organisms themselves are mobile, leading to geographical isolation and genetic drift with varying selection pressures . Genes can sometimes be exchanged between species by horizontal gene transfer ; new species can arise rapidly through hybridisation and polyploidy ; and species may become extinct for
4556-502: The typical characteristics of the group: namely, that the seed has two embryonic leaves or cotyledons . There are around 200,000 species within this group. The other group of flowering plants were called monocotyledons (or monocots), typically each having one cotyledon. Historically, these two groups formed the two divisions of the flowering plants. Largely from the 1990s onwards, molecular phylogenetic research confirmed what had already been suspected: that dicotyledons are not
4624-537: The wild. It is difficult to define a species in a way that applies to all organisms. The debate about species concepts is called the species problem. The problem was recognised even in 1859, when Darwin wrote in On the Origin of Species : I was much struck how entirely vague and arbitrary is the distinction between species and varieties. He went on to write: No one definition has satisfied all naturalists; yet every naturalist knows vaguely what he means when he speaks of
#42957