Geology (from Ancient Greek γῆ ( gê ) 'earth' and λoγία ( -logía ) 'study of, discourse') is a branch of natural science concerned with the Earth and other astronomical objects , the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences , including hydrology . It is integrated with Earth system science and planetary science .
99-779: The Earth Sciences Museum ( Museu de Ciências da Terra ) is a geological museum in Rio de Janeiro , Brazil . The building was part of the National Exposition of Brazil in 1908. Its collection includes minerals, fossils, and geological exhibits. The building was constructed in 1907 for the National Exposition of Brazil and was intended to be permanent. At the exposition, it was the States Pavilion. 22°57′13″S 43°10′14″W / 22.9536°S 43.1706°W / -22.9536; -43.1706 This article related to
198-535: A characteristic fabric . All three types may melt again, and when this happens, new magma is formed, from which an igneous rock may once again solidify. Organic matter, such as coal, bitumen, oil, and natural gas, is linked mainly to organic-rich sedimentary rocks. To study all three types of rock, geologists evaluate the minerals of which they are composed and their other physical properties, such as texture and fabric . Geologists also study unlithified materials (referred to as superficial deposits ) that lie above
297-485: A petrographic microscope , where the minerals can be identified through their different properties in plane-polarized and cross-polarized light, including their birefringence , pleochroism , twinning , and interference properties with a conoscopic lens . In the electron microprobe, individual locations are analyzed for their exact chemical compositions and variation in composition within individual crystals. Stable and radioactive isotope studies provide insight into
396-434: A definite homogeneous chemical composition and an ordered atomic arrangement. Each mineral has distinct physical properties, and there are many tests to determine each of them. Minerals are often identified through these tests. The specimens can be tested for: A rock is any naturally occurring solid mass or aggregate of minerals or mineraloids . Most research in geology is associated with the study of rocks, as they provide
495-588: A dissected limestone pavement . This process is most effective along the joints, widening and deepening them. In unpolluted environments, the pH of rainwater due to dissolved carbon dioxide is around 5.6. Acid rain occurs when gases such as sulfur dioxide and nitrogen oxides are present in the atmosphere. These oxides react in the rain water to produce stronger acids and can lower the pH to 4.5 or even 3.0. Sulfur dioxide , SO 2 , comes from volcanic eruptions or from fossil fuels, and can become sulfuric acid within rainwater, which can cause solution weathering to
594-623: A length of less than a meter. Rocks at the depth to be ductilely stretched are often also metamorphosed. These stretched rocks can also pinch into lenses, known as boudins , after the French word for "sausage" because of their visual similarity. Where rock units slide past one another, strike-slip faults develop in shallow regions, and become shear zones at deeper depths where the rocks deform ductilely. The addition of new rock units, both depositionally and intrusively, often occurs during deformation. Faulting and other deformational processes result in
693-448: A means to provide information about geological history and the timing of geological events. The principle of uniformitarianism states that the geological processes observed in operation that modify the Earth's crust at present have worked in much the same way over geological time. A fundamental principle of geology advanced by the 18th-century Scottish physician and geologist James Hutton
792-691: A mineral crystal exposes ions whose electrical charge attracts water molecules. Some of these molecules break into H+ that bonds to exposed anions (usually oxygen) and OH- that bonds to exposed cations. This further disrupts the surface, making it susceptible to various hydrolysis reactions. Additional protons replace cations exposed on the surface, freeing the cations as solutes. As cations are removed, silicon-oxygen and silicon-aluminium bonds become more susceptible to hydrolysis, freeing silicic acid and aluminium hydroxides to be leached away or to form clay minerals. Laboratory experiments show that weathering of feldspar crystals begins at dislocations or other defects on
891-418: A more humid chemical microenvironment. The attachment of these organisms to the rock surface enhances physical as well as chemical breakdown of the surface microlayer of the rock. Lichens have been observed to pry mineral grains loose from bare shale with their hyphae (rootlike attachment structures), a process described as plucking , and to pull the fragments into their body, where the fragments then undergo
990-646: A museum in Brazil is a stub . You can help Misplaced Pages by expanding it . Geological Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages . By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle
1089-608: A number of fields, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth. In typical geological investigations, geologists use primary information related to petrology (the study of rocks), stratigraphy (the study of sedimentary layers), and structural geology (the study of positions of rock units and their deformation). In many cases, geologists also study modern soils, rivers , landscapes , and glaciers ; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate
SECTION 10
#17328550619391188-403: A process of chemical weathering not unlike digestion. On a larger scale, seedlings sprouting in a crevice and plant roots exert physical pressure as well as providing a pathway for water and chemical infiltration. Most rock forms at elevated temperature and pressure, and the minerals making up the rock are often chemically unstable in the relatively cool, wet, and oxidizing conditions typical of
1287-477: A result, thermal stress weathering is sometimes called insolation weathering , but this is misleading. Thermal stress weathering can be caused by any large change of temperature, and not just intense solar heating. It is likely as important in cold climates as in hot, arid climates. Wildfires can also be a significant cause of rapid thermal stress weathering. The importance of thermal stress weathering has long been discounted by geologists, based on experiments in
1386-451: A sedimentary rock. Sedimentary rocks are mainly divided into four categories: sandstone, shale, carbonate, and evaporite. This group of classifications focuses partly on the size of sedimentary particles (sandstone and shale), and partly on mineralogy and formation processes (carbonation and evaporation). Igneous and sedimentary rocks can then be turned into metamorphic rocks by heat and pressure that change its mineral content, resulting in
1485-493: A single environment and do not necessarily occur in a single order. The Hawaiian Islands , for example, consist almost entirely of layered basaltic lava flows. The sedimentary sequences of the mid-continental United States and the Grand Canyon in the southwestern United States contain almost-undeformed stacks of sedimentary rocks that have remained in place since Cambrian time. Other areas are much more geologically complex. In
1584-407: A slower reaction kinetics , this process is thermodynamically favored at low temperature, because colder water holds more dissolved carbon dioxide gas (due to the retrograde solubility of gases). Carbonate dissolution is therefore an important feature of glacial weathering. Carbonate dissolution involves the following steps: Carbonate dissolution on the surface of well-jointed limestone produces
1683-465: A threat to the environment and occupant safety. Design strategies can moderate the impact of environmental effects, such as using of pressure-moderated rain screening, ensuring that the HVAC system is able to effectively control humidity accumulation and selecting concrete mixes with reduced water content to minimize the impact of freeze-thaw cycles. Granitic rock, the most abundant crystalline rock exposed at
1782-400: A variety of applications. Dating of lava and volcanic ash layers found within a stratigraphic sequence can provide absolute age data for sedimentary rock units that do not contain radioactive isotopes and calibrate relative dating techniques. These methods can also be used to determine ages of pluton emplacement. Thermochemical techniques can be used to determine temperature profiles within
1881-426: Is acid hydrolysis , in which protons (hydrogen ions), which are present in acidic water, attack chemical bonds in mineral crystals. The bonds between different cations and oxygen ions in minerals differ in strength, and the weakest will be attacked first. The result is that minerals in igneous rock weather in roughly the same order in which they were originally formed ( Bowen's Reaction Series ). Relative bond strength
1980-550: Is 14 megapascals (2,000 psi). This is still much greater than the tensile strength of granite, which is about 4 megapascals (580 psi). This makes frost wedging, in which pore water freezes and its volumetric expansion fractures the enclosing rock, appear to be a plausible mechanism for frost weathering. Ice will simply expand out of a straight open fracture before it can generate significant pressure. Thus, frost wedging can only take place in small tortuous fractures. The rock must also be almost completely saturated with water, or
2079-700: Is a crucial part of the rock cycle ; sedimentary rock , the product of weathered rock, covers 66% of the Earth's continents and much of the ocean floor . Physical weathering , also called mechanical weathering or disaggregation , is the class of processes that causes the disintegration of rocks without chemical change. Physical weathering involves the breakdown of rocks into smaller fragments through processes such as expansion and contraction, mainly due to temperature changes. Two types of physical breakdown are freeze-thaw weathering and thermal fracturing. Pressure release can also cause weathering without temperature change. It
SECTION 20
#17328550619392178-403: Is a less well characterized mechanism of physical weathering. It takes place because ice grains always have a surface layer, often just a few molecules thick, that resembles liquid water more than solid ice, even at temperatures well below the freezing point. This premelted liquid layer has unusual properties, including a strong tendency to draw in water by capillary action from warmer parts of
2277-422: Is accomplished in two primary ways: through faulting and folding . In the shallow crust, where brittle deformation can occur, thrust faults form, which causes the deeper rock to move on top of the shallower rock. Because deeper rock is often older, as noted by the principle of superposition , this can result in older rocks moving on top of younger ones. Movement along faults can result in folding, either because
2376-440: Is also important, acting to oxidize many minerals, as is carbon dioxide, whose weathering reactions are described as carbonation . The process of mountain block uplift is important in exposing new rock strata to the atmosphere and moisture, enabling important chemical weathering to occur; significant release occurs of Ca and other ions into surface waters. Dissolution (also called simple solution or congruent dissolution )
2475-715: Is also known as sheeting . As with thermal weathering, pressure release is most effective in buttressed rock. Here the differential stress directed toward the unbuttressed surface can be as high as 35 megapascals (5,100 psi), easily enough to shatter rock. This mechanism is also responsible for spalling in mines and quarries, and for the formation of joints in rock outcrops. Retreat of an overlying glacier can also lead to exfoliation due to pressure release. This can be enhanced by other physical wearing mechanisms. Salt crystallization (also known as salt weathering , salt wedging or haloclasty ) causes disintegration of rocks when saline solutions seep into cracks and joints in
2574-460: Is an intimate coupling between the movement of the plates on the surface and the convection of the mantle (that is, the heat transfer caused by the slow movement of ductile mantle rock). Thus, oceanic parts of plates and the adjoining mantle convection currents always move in the same direction – because the oceanic lithosphere is actually the rigid upper thermal boundary layer of the convecting mantle. This coupling between rigid plates moving on
2673-612: Is chemically weathered to iron(II) sulfate and gypsum , which then crystallize as salt lenses. Salt crystallization can take place wherever salts are concentrated by evaporation. It is thus most common in arid climates where strong heating causes strong evaporation and along coasts. Salt weathering is likely important in the formation of tafoni , a class of cavernous rock weathering structures. Living organisms may contribute to mechanical weathering, as well as chemical weathering (see § Biological weathering below). Lichens and mosses grow on essentially bare rock surfaces and create
2772-442: Is distinct from erosion , which involves the transport of rocks and minerals by agents such as water , ice , snow , wind , waves and gravity . Weathering processes are either physical or chemical. The former involves the breakdown of rocks and soils through such mechanical effects as heat, water, ice and wind. The latter covers reactions to water, atmospheric gases and biologically produced chemicals with rocks and soils. Water
2871-433: Is horizontal). The principle of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. Logically a younger layer cannot slip beneath a layer previously deposited. This principle allows sedimentary layers to be viewed as a form of the vertical timeline, a partial or complete record of the time elapsed from deposition of
2970-616: Is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources , understanding natural hazards , remediating environmental problems, and providing insights into past climate change . Geology is a major academic discipline , and it is central to geological engineering and plays an important role in geotechnical engineering . The majority of geological data comes from research on solid Earth materials. Meteorites and other extraterrestrial natural materials are also studied by geological methods. Minerals are naturally occurring elements and compounds with
3069-569: Is in equilibrium with kaolinite. Soil formation requires between 100 and 1,000 years, a brief interval in geologic time. As a result, some formations show numerous paleosol (fossil soil) beds. For example, the Willwood Formation of Wyoming contains over 1,000 paleosol layers in a 770 meters (2,530 ft) section representing 3.5 million years of geologic time. Paleosols have been identified in formations as old as Archean (over 2.5 billion years in age). They are difficult to recognize in
Earth Sciences Museum - Misplaced Pages Continue
3168-420: Is likely the more important mechanism in nature. Geomorphologists have begun to reemphasize the importance of thermal stress weathering, particularly in cold climates. Pressure release or unloading is a form of physical weathering seen when deeply buried rock is exhumed . Intrusive igneous rocks, such as granite , are formed deep beneath the Earth's surface. They are under tremendous pressure because of
3267-478: Is primarily accomplished through normal faulting and through the ductile stretching and thinning. Normal faults drop rock units that are higher below those that are lower. This typically results in younger units ending up below older units. Stretching of units can result in their thinning. In fact, at one location within the Maria Fold and Thrust Belt , the entire sedimentary sequence of the Grand Canyon appears over
3366-484: Is relatively poor in potassium, the basalt weathers directly to potassium-poor montmorillonite , then to kaolinite . Where leaching is continuous and intense, as in rain forests, the final weathering product is bauxite , the principal ore of aluminium. Where rainfall is intense but seasonal, as in monsoon climates, the final weathering product is iron- and titanium-rich laterite . Conversion of kaolinite to bauxite occurs only with intense leaching, as ordinary river water
3465-449: Is shown in the following table: This table is only a rough guide to order of weathering. Some minerals, such as illite , are unusually stable, while silica is unusually unstable given the strength of the silicon–oxygen bond . Carbon dioxide that dissolves in water to form carbonic acid is the most important source of protons, but organic acids are also important natural sources of acidity. Acid hydrolysis from dissolved carbon dioxide
3564-421: Is sometimes described as carbonation , and can result in weathering of the primary minerals to secondary carbonate minerals. For example, weathering of forsterite can produce magnesite instead of brucite via the reaction: Carbonic acid is consumed by silicate weathering, resulting in more alkaline solutions because of the bicarbonate . This is an important reaction in controlling the amount of CO 2 in
3663-568: Is that "the present is the key to the past." In Hutton's words: "the past history of our globe must be explained by what can be seen to be happening now." The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock , it can be determined that the igneous intrusion is younger than the sedimentary rock. Different types of intrusions include stocks, laccoliths , batholiths , sills and dikes . The principle of cross-cutting relationships pertains to
3762-427: Is the principal agent behind both kinds, though atmospheric oxygen and carbon dioxide and the activities of biological organisms are also important. Biological chemical weathering is also called biological weathering. The materials left after the rock breaks down combine with organic material to create soil . Many of Earth's landforms and landscapes are the result of weathering, erosion and redeposition. Weathering
3861-417: Is the process in which a mineral dissolves completely without producing any new solid substance. Rainwater easily dissolves soluble minerals, such as halite or gypsum , but can also dissolve highly resistant minerals such as quartz , given sufficient time. Water breaks the bonds between atoms in the crystal: [REDACTED] The overall reaction for dissolution of quartz is The dissolved quartz takes
3960-523: Is used for geologically young materials containing organic carbon . The geology of an area changes through time as rock units are deposited and inserted, and deformational processes alter their shapes and locations. Rock units are first emplaced either by deposition onto the surface or intrusion into the overlying rock . Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows blanket
4059-431: Is usually much less important than chemical weathering, but can be significant in subarctic or alpine environments. Furthermore, chemical and physical weathering often go hand in hand. For example, cracks extended by physical weathering will increase the surface area exposed to chemical action, thus amplifying the rate of disintegration. Frost weathering is the most important form of physical weathering. Next in importance
Earth Sciences Museum - Misplaced Pages Continue
4158-426: Is wedging by plant roots, which sometimes enter cracks in rocks and pry them apart. The burrowing of worms or other animals may also help disintegrate rock, as can "plucking" by lichens. Frost weathering is the collective name for those forms of physical weathering that are caused by the formation of ice within rock outcrops. It was long believed that the most important of these is frost wedging , which results from
4257-500: The bedrock . This study is often known as Quaternary geology , after the Quaternary period of geologic history, which is the most recent period of geologic time. Magma is the original unlithified source of all igneous rocks . The active flow of molten rock is closely studied in volcanology , and igneous petrology aims to determine the history of igneous rocks from their original molten source to their final crystallization. In
4356-512: The geochemical evolution of rock units. Petrologists can also use fluid inclusion data and perform high temperature and pressure physical experiments to understand the temperatures and pressures at which different mineral phases appear, and how they change through igneous and metamorphic processes. This research can be extrapolated to the field to understand metamorphic processes and the conditions of crystallization of igneous rocks. This work can also help to explain processes that occur within
4455-402: The mantle below (separated within itself by seismic discontinuities at 410 and 660 kilometers), and the outer core and inner core below that. More recently, seismologists have been able to create detailed images of wave speeds inside the earth in the same way a doctor images a body in a CT scan . These images have led to a much more detailed view of the interior of the Earth, and have replaced
4554-440: The 1960s, it was discovered that the Earth's lithosphere , which includes the crust and rigid uppermost portion of the upper mantle , is separated into tectonic plates that move across the plastically deforming, solid, upper mantle, which is called the asthenosphere . This theory is supported by several types of observations, including seafloor spreading and the global distribution of mountain terrain and seismicity. There
4653-408: The Earth's surface, begins weathering with the destruction of hornblende . Biotite then weathers to vermiculite , and finally oligoclase and microcline are destroyed. All are converted into a mixture of clay minerals and iron oxides. The resulting soil is depleted in calcium, sodium, and ferrous iron compared with the bedrock, and magnesium is reduced by 40% and silicon by 15%. At the same time,
4752-411: The Earth's surface. Chemical weathering takes place when water, oxygen, carbon dioxide, and other chemical substances react with rock to change its composition. These reactions convert some of the original primary minerals in the rock to secondary minerals, remove other substances as solutes, and leave the most stable minerals as a chemically unchanged resistate . In effect, chemical weathering changes
4851-424: The Earth, such as subduction and magma chamber evolution. Structural geologists use microscopic analysis of oriented thin sections of geological samples to observe the fabric within the rocks, which gives information about strain within the crystalline structure of the rocks. They also plot and combine measurements of geological structures to better understand the orientations of faults and folds to reconstruct
4950-478: The Grand Canyon in the southwestern United States being a very visible example, the lower rock units were metamorphosed and deformed, and then deformation ended and the upper, undeformed units were deposited. Although any amount of rock emplacement and rock deformation can occur, and they can occur any number of times, these concepts provide a guide to understanding the geological history of an area. Geologists use
5049-409: The affected rocks a reddish-brown coloration on the surface which crumbles easily and weakens the rock. Many other metallic ores and minerals oxidize and hydrate to produce colored deposits, as does sulfur during the weathering of sulfide minerals such as chalcopyrites or CuFeS 2 oxidizing to copper hydroxide and iron oxides . Mineral hydration is a form of chemical weathering that involves
SECTION 50
#17328550619395148-466: The atmosphere and can affect climate. Aluminosilicates containing highly soluble cations, such as sodium or potassium ions, will release the cations as dissolved bicarbonates during acid hydrolysis: Within the weathering environment, chemical oxidation of a variety of metals occurs. The most commonly observed is the oxidation of Fe ( iron ) by oxygen and water to form Fe oxides and hydroxides such as goethite , limonite , and hematite . This gives
5247-537: The beginning of the 20th century, advancement in geological science was facilitated by the ability to obtain accurate absolute dates to geological events using radioactive isotopes and other methods. This changed the understanding of geological time. Previously, geologists could only use fossils and stratigraphic correlation to date sections of rock relative to one another. With isotopic dates, it became possible to assign absolute ages to rock units, and these absolute dates could be applied to fossil sequences in which there
5346-819: The carbon dioxide level to 30% of all soil gases, aided by adsorption of CO 2 on clay minerals and the very slow diffusion rate of CO 2 out of the soil. The CO 2 and organic acids help break down aluminium - and iron -containing compounds in the soils beneath them. Roots have a negative electrical charge balanced by protons in the soil next to the roots, and these can be exchanged for essential nutrient cations such as potassium. Decaying remains of dead plants in soil may form organic acids which, when dissolved in water, cause chemical weathering. Chelating compounds, mostly low molecular weight organic acids, are capable of removing metal ions from bare rock surfaces, with aluminium and silicon being particularly susceptible. The ability to break down bare rock allows lichens to be among
5445-515: The creation of topographic gradients, causing material on the rock unit that is increasing in elevation to be eroded by hillslopes and channels. These sediments are deposited on the rock unit that is going down. Continual motion along the fault maintains the topographic gradient in spite of the movement of sediment and continues to create accommodation space for the material to deposit. Deformational events are often also associated with volcanism and igneous activity. Volcanic ashes and lavas accumulate on
5544-437: The crust, the uplift of mountain ranges, and paleo-topography. Fractionation of the lanthanide series elements is used to compute ages since rocks were removed from the mantle. Other methods are used for more recent events. Optically stimulated luminescence and cosmogenic radionuclide dating are used to date surfaces and/or erosion rates. Dendrochronology can also be used for the dating of landscapes. Radiocarbon dating
5643-530: The early 20th century that seemed to show that its effects were unimportant. These experiments have since been criticized as unrealistic, since the rock samples were small, were polished (which reduces nucleation of fractures), and were not buttressed. These small samples were thus able to expand freely in all directions when heated in experimental ovens, which failed to produce the kinds of stress likely in natural settings. The experiments were also more sensitive to thermal shock than thermal fatigue, but thermal fatigue
5742-427: The expansion of pore water when it freezes. A growing body of theoretical and experimental work suggests that ice segregation, whereby supercooled water migrates to lenses of ice forming within the rock, is the more important mechanism. When water freezes, its volume increases by 9.2%. This expansion can theoretically generate pressures greater than 200 megapascals (29,000 psi), though a more realistic upper limit
5841-404: The expense of silica, titanium, aluminum, ferrous iron, and calcium. Buildings made of any stone, brick or concrete are susceptible to the same weathering agents as any exposed rock surface. Also statues , monuments and ornamental stonework can be badly damaged by natural weathering processes. This is accelerated in areas severely affected by acid rain . Accelerated building weathering may be
5940-570: The fault is a normal fault or a thrust fault . The principle of inclusions and components states that, with sedimentary rocks, if inclusions (or clasts ) are found in a formation, then the inclusions must be older than the formation that contains them. For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks occurs when xenoliths are found. These foreign bodies are picked up as magma or lava flows, and are incorporated, later to cool in
6039-403: The faults are not planar or because rock layers are dragged along, forming drag folds as slip occurs along the fault. Deeper in the Earth, rocks behave plastically and fold instead of faulting. These folds can either be those where the material in the center of the fold buckles upwards, creating " antiforms ", or where it buckles downwards, creating " synforms ". If the tops of the rock units within
SECTION 60
#17328550619396138-488: The first colonizers of dry land. The accumulation of chelating compounds can easily affect surrounding rocks and soils, and may lead to podsolisation of soils. The symbiotic mycorrhizal fungi associated with tree root systems can release inorganic nutrients from minerals such as apatite or biotite and transfer these nutrients to the trees, thus contributing to tree nutrition. It was also recently evidenced that bacterial communities can impact mineral stability leading to
6237-483: The folds remain pointing upwards, they are called anticlines and synclines , respectively. If some of the units in the fold are facing downward, the structure is called an overturned anticline or syncline, and if all of the rock units are overturned or the correct up-direction is unknown, they are simply called by the most general terms, antiforms, and synforms. Even higher pressures and temperatures during horizontal shortening can cause both folding and metamorphism of
6336-463: The form of silicic acid . A particularly important form of dissolution is carbonate dissolution, in which atmospheric carbon dioxide enhances solution weathering. Carbonate dissolution affects rocks containing calcium carbonate , such as limestone and chalk . It takes place when rainwater combines with carbon dioxide to form carbonic acid , a weak acid , which dissolves calcium carbonate (limestone) and forms soluble calcium bicarbonate . Despite
6435-404: The formation of faults and the age of the sequences through which they cut. Faults are younger than the rocks they cut; accordingly, if a fault is found that penetrates some formations but not those on top of it, then the formations that were cut are older than the fault, and the ones that are not cut must be younger than the fault. Finding the key bed in these situations may help determine whether
6534-669: The geologic record. Indications that a sedimentary bed is a paleosol include a gradational lower boundary and sharp upper boundary, the presence of much clay, poor sorting with few sedimentary structures, rip-up clasts in overlying beds, and desiccation cracks containing material from higher beds. The degree of weathering of soil can be expressed as the chemical index of alteration , defined as 100 Al 2 O 3 /(Al 2 O 3 + CaO + Na 2 O + K 2 O) . This varies from 47 for unweathered upper crust rock to 100 for fully weathered material. Wood can be physically and chemically weathered by hydrolysis and other processes relevant to minerals and
6633-579: The geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth . Geology provides evidence for plate tectonics , the evolutionary history of life , and the Earth's past climates . Geologists broadly study the properties and processes of Earth and other terrestrial planets. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including fieldwork , rock description , geophysical techniques , chemical analysis , physical experiments , and numerical modelling . In practical terms, geology
6732-446: The history of rock deformation in the area. In addition, they perform analog and numerical experiments of rock deformation in large and small settings. Weathering Weathering is the deterioration of rocks , soils and minerals (as well as wood and artificial materials) through contact with water, atmospheric gases , sunlight , and biological organisms. It occurs in situ (on-site, with little or no movement), and so
6831-439: The ice will simply expand into the air spaces in the unsaturated rock without generating much pressure. These conditions are unusual enough that frost wedging is unlikely to be the dominant process of frost weathering. Frost wedging is most effective where there are daily cycles of melting and freezing of water-saturated rock, so it is unlikely to be significant in the tropics, in polar regions or in arid climates. Ice segregation
6930-423: The internal composition and structure of the Earth. Seismologists can use the arrival times of seismic waves to image the interior of the Earth. Early advances in this field showed the existence of a liquid outer core (where shear waves were not able to propagate) and a dense solid inner core . These advances led to the development of a layered model of the Earth, with a lithosphere (including crust) on top,
7029-459: The later end of the scale, it is marked by the present day (in the Holocene epoch ). The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in
7128-454: The lowest layer to deposition of the highest bed. The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist during the same period throughout the world, their presence or (sometimes) absence provides a relative age of the formations where they appear. Based on principles that William Smith laid out almost a hundred years before the publication of Charles Darwin 's theory of evolution ,
7227-493: The mantle and show the crystallographic structures expected in the inner core of the Earth. The geological time scale encompasses the history of the Earth. It is bracketed at the earliest by the dates of the first Solar System material at 4.567 Ga (or 4.567 billion years ago) and the formation of the Earth at 4.54 Ga (4.54 billion years), which is the beginning of the Hadean eon – a division of geological time. At
7326-405: The matrix. As a result, xenoliths are older than the rock that contains them. The principle of original horizontality states that the deposition of sediments occurs as essentially horizontal beds. Observation of modern marine and non-marine sediments in a wide variety of environments supports this generalization (although cross-bedding is inclined, the overall orientation of cross-bedded units
7425-540: The most effective biological agents of chemical weathering. For example, an experimental study on hornblende granite in New Jersey, US, demonstrated a 3x – 4x increase in weathering rate under lichen covered surfaces compared to recently exposed bare rock surfaces. The most common forms of biological weathering result from the release of chelating compounds (such as certain organic acids and siderophores ) and of carbon dioxide and organic acids by plants. Roots can build up
7524-551: The original set of minerals in the rock into a new set of minerals that is in closer equilibrium with surface conditions. True equilibrium is rarely reached, because weathering is a slow process, and leaching carries away solutes produced by weathering reactions before they can accumulate to equilibrium levels. This is particularly true in tropical environments. Water is the principal agent of chemical weathering, converting many primary minerals to clay minerals or hydrated oxides via reactions collectively described as hydrolysis . Oxygen
7623-443: The overlying rock material. When erosion removes the overlying rock material, these intrusive rocks are exposed and the pressure on them is released. The outer parts of the rocks then tend to expand. The expansion sets up stresses which cause fractures parallel to the rock surface to form. Over time, sheets of rock break away from the exposed rocks along the fractures, a process known as exfoliation . Exfoliation due to pressure release
7722-413: The primary record of the majority of the geological history of the Earth. There are three major types of rock: igneous , sedimentary , and metamorphic . The rock cycle illustrates the relationships among them (see diagram). When a rock solidifies or crystallizes from melt ( magma or lava ), it is an igneous rock . This rock can be weathered and eroded , then redeposited and lithified into
7821-569: The principles of succession developed independently of evolutionary thought. The principle becomes quite complex, however, given the uncertainties of fossilization, localization of fossil types due to lateral changes in habitat ( facies change in sedimentary strata), and that not all fossils formed globally at the same time. Geologists also use methods to determine the absolute age of rock samples and geological events. These dates are useful on their own and may also be used in conjunction with relative dating methods or to calibrate relative methods. At
7920-402: The production of weathering agents, such as protons, organic acids and chelating molecules. Weathering of basaltic oceanic crust differs in important respects from weathering in the atmosphere. Weathering is relatively slow, with basalt becoming less dense, at a rate of about 15% per 100 million years. The basalt becomes hydrated, and is enriched in total and ferric iron, magnesium, and sodium at
8019-416: The release of inorganic nutrients. A large range of bacterial strains or communities from diverse genera have been reported to be able to colonize mineral surfaces or to weather minerals, and for some of them a plant growth promoting effect has been demonstrated. The demonstrated or hypothesised mechanisms used by bacteria to weather minerals include several oxidoreduction and dissolution reactions as well as
8118-448: The rigid attachment of water molecules or H+ and OH- ions to the atoms and molecules of a mineral. No significant dissolution takes place. For example, iron oxides are converted to iron hydroxides and the hydration of anhydrite forms gypsum . Bulk hydration of minerals is secondary in importance to dissolution, hydrolysis, and oxidation, but hydration of the crystal surface is the crucial first step in hydrolysis. A fresh surface of
8217-455: The rock surface, which gradually pry the rock apart. Thermal stress weathering results from the expansion and contraction of rock due to temperature changes. Thermal stress weathering is most effective when the heated portion of the rock is buttressed by surrounding rock, so that it is free to expand in only one direction. Thermal stress weathering comprises two main types, thermal shock and thermal fatigue . Thermal shock takes place when
8316-413: The rock. This results in growth of the ice grain that puts considerable pressure on the surrounding rock, up to ten times greater than is likely with frost wedging. This mechanism is most effective in rock whose temperature averages just below the freezing point, −4 to −15 °C (25 to 5 °F). Ice segregation results in growth of ice needles and ice lenses within fractures in the rock and parallel to
8415-408: The rocks and evaporate, leaving salt crystals behind. As with ice segregation, the surfaces of the salt grains draw in additional dissolved salts through capillary action, causing the growth of salt lenses that exert high pressure on the surrounding rock. Sodium and magnesium salts are the most effective at producing salt weathering. Salt weathering can also take place when pyrite in sedimentary rock
8514-425: The rocks on which it falls. Hydrolysis (also called incongruent dissolution ) is a form of chemical weathering in which only part of a mineral is taken into solution. The rest of the mineral is transformed into a new solid material, such as a clay mineral . For example, forsterite (magnesium olivine ) is hydrolyzed into solid brucite and dissolved silicic acid: Most hydrolysis during weathering of minerals
8613-428: The rocks. This metamorphism causes changes in the mineral composition of the rocks; creates a foliation , or planar surface, that is related to mineral growth under stress. This can remove signs of the original textures of the rocks, such as bedding in sedimentary rocks, flow features of lavas , and crystal patterns in crystalline rocks . Extension causes the rock units as a whole to become longer and thinner. This
8712-433: The simplified layered model with a much more dynamic model. Mineralogists have been able to use the pressure and temperature data from the seismic and modeling studies alongside knowledge of the elemental composition of the Earth to reproduce these conditions in experimental settings and measure changes within the crystal structure. These studies explain the chemical changes associated with the major seismic discontinuities in
8811-536: The soil is enriched in aluminium and potassium by at least 50%; by titanium, whose abundance triples, and ferric iron, whose abundance increases by an order of magnitude compared with the bedrock. Basaltic rock is more easily weathered than granitic rock due to its formation at higher temperatures and drier conditions. The fine grain size and presence of volcanic glass also hasten weathering. In tropical settings, it rapidly weathers to clay minerals, aluminium hydroxides, and titanium-enriched iron oxides. Because most basalt
8910-524: The southwestern United States, sedimentary, volcanic, and intrusive rocks have been metamorphosed, faulted, foliated, and folded. Even older rocks, such as the Acasta gneiss of the Slave craton in northwestern Canada , the oldest known rock in the world have been metamorphosed to the point where their origin is indiscernible without laboratory analysis. In addition, these processes can occur in stages. In many places,
9009-419: The stresses are so great that the rock cracks immediately, but this is uncommon. More typical is thermal fatigue, in which the stresses are not great enough to cause immediate rock failure, but repeated cycles of stress and release gradually weaken the rock. Thermal stress weathering is an important mechanism in deserts , where there is a large diurnal temperature range, hot in the day and cold at night. As
9108-550: The subsurface. Sub-specialities of geology may distinguish endogenous and exogenous geology. Geological field work varies depending on the task at hand. Typical fieldwork could consist of: In addition to identifying rocks in the field ( lithology ), petrologists identify rock samples in the laboratory. Two of the primary methods for identifying rocks in the laboratory are through optical microscopy and by using an electron microprobe . In an optical mineralogy analysis, petrologists analyze thin sections of rock samples using
9207-407: The surface of the Earth and the convecting mantle is called plate tectonics . The development of plate tectonics has provided a physical basis for many observations of the solid Earth . Long linear regions of geological features are explained as plate boundaries: Plate tectonics has provided a mechanism for Alfred Wegener 's theory of continental drift , in which the continents move across
9306-488: The surface of the Earth over geological time. They also provided a driving force for crustal deformation, and a new setting for the observations of structural geology. The power of the theory of plate tectonics lies in its ability to combine all of these observations into a single theory of how the lithosphere moves over the convecting mantle. Advances in seismology , computer modeling , and mineralogy and crystallography at high temperatures and pressures give insights into
9405-454: The surface of the crystal, and that the weathering layer is only a few atoms thick. Diffusion within the mineral grain does not appear to be significant. Mineral weathering can also be initiated or accelerated by soil microorganisms. Soil organisms make up about 10 mg/cm of typical soils, and laboratory experiments have demonstrated that albite and muscovite weather twice as fast in live versus sterile soil. Lichens on rocks are among
9504-474: The surface, and igneous intrusions enter from below. Dikes , long, planar igneous intrusions, enter along cracks, and therefore often form in large numbers in areas that are being actively deformed. This can result in the emplacement of dike swarms , such as those that are observable across the Canadian shield, or rings of dikes around the lava tube of a volcano. All of these processes do not necessarily occur in
9603-742: The surface. Igneous intrusions such as batholiths , laccoliths , dikes , and sills , push upwards into the overlying rock, and crystallize as they intrude. After the initial sequence of rocks has been deposited, the rock units can be deformed and/or metamorphosed . Deformation typically occurs as a result of horizontal shortening, horizontal extension , or side-to-side ( strike-slip ) motion. These structural regimes broadly relate to convergent boundaries , divergent boundaries , and transform boundaries, respectively, between tectonic plates. When rock units are placed under horizontal compression , they shorten and become thicker. Because rock units, other than muds, do not significantly change in volume , this
9702-407: The third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) Epochs: Methods for relative dating were developed when geology first emerged as a natural science . Geologists still use the following principles today as
9801-615: Was datable material, converting the old relative ages into new absolute ages. For many geological applications, isotope ratios of radioactive elements are measured in minerals that give the amount of time that has passed since a rock passed through its particular closure temperature , the point at which different radiometric isotopes stop diffusing into and out of the crystal lattice . These are used in geochronologic and thermochronologic studies. Common methods include uranium–lead dating , potassium–argon dating , argon–argon dating and uranium–thorium dating . These methods are used for
#938061