The term dubbel (also double ) is a Belgian Trappist beer naming convention. The origin of the dubbel was a strong version of a brown beer brewed in Westmalle Abbey in 1856, which is known to have been on sale to the public by June 1861. In 1926, the recipe was changed by brewer Henrik Verlinden, and it was sold as Dubbel Bruin . Following World War Two, abbey beers became popular in Belgium and the name "dubbel" was used by several breweries for commercial purposes.
28-551: Westmalle's Dubbel was imitated by other breweries around the world, both Trappist and secular, leading to the emergence of a style. Dubbels are now understood to be a fairly strong (6–8% alcohol by volume ) brown ale , with understated bitterness, fairly heavy body, and a pronounced fruitiness and cereal character. Chimay Première (Red), Koningshoeven/ La Trappe Dubbel, and Achel 8 Bruin are notable examples from Trappist breweries. Affligem and Grimbergen are Belgian abbey breweries that produce dubbels. Notable examples from
56-720: A percentage of total mass . The alc/vol value of a beverage is always higher than the ABW. Because ABW measures the proportion of the drink's mass which is alcohol, while alc/vol is the proportion of the drink's volume which is alcohol, the two values are in the same proportion as the drink's density is with the density of alcohol. Therefore, one can use the following equation to convert between ABV and ABW: ABV = ABW × density of beverage density of alcohol {\displaystyle {\text{ABV}}={\text{ABW}}\times {\frac {\text{density of beverage}}{\text{density of alcohol}}}} At relatively low alc/vol,
84-473: A 50% v/v ethanol solution, 50 mL of ethanol and 50 mL of water could be mixed but the resulting volume of solution will measure less than 100 mL due to the change of volume on mixing, and will contain a higher concentration of ethanol. The difference is not large, with the maximum difference being less than 2.5%, and less than 0.5% difference for concentrations under 20%. Some drinks have requirements of alcoholic content in order to be certified as
112-415: A certain alcohol brand or label. Low-alcohol beers (<0.5) are considered in some countries such as Iran as permitted (or "halal" under Muslim vocabulary) despite alcohol being banned. However, the level of alcohol-free beers is typically the lowest commercially sold 0.05. It is near impossible for a healthy person to become intoxicated drinking low-alcohol drinks. The low concentration severely limits
140-457: A halt as the alcohol produced becomes too concentrated for the yeast to tolerate, defining an upper limit of alc/vol for non-distilled alcoholic drinks. The typical tolerance for beer yeasts is at 8–12%, while wine yeasts typically range from 14–18%, with speciality ones reaching 20% alc/vol. Any higher would require distillation, producing liquor . Details about typical amounts of alcohol contained in various beverages can be found in
168-601: A huge portion of the flavors of dubbels. This beer or brewery -related article is a stub . You can help Misplaced Pages by expanding it . Alcohol by volume Alcohol by volume (abbreviated as alc/vol or ABV ) is a standard measure of the volume of alcohol contained in a given volume of an alcoholic beverage , expressed as a volume percent . It is defined as the number of millilitres (mL) of pure ethanol present in 100 mL (3.5 imp fl oz; 3.4 US fl oz) of solution at 20 °C (68 °F). The number of millilitres of pure ethanol
196-413: A slight increase in total volume, whereas the mixing of two solutions above 24% causes a decrease in volume. The phenomenon of volume changes due to mixing dissimilar solutions is called " partial molar volume ". Water and ethanol are both polar solvents. When water is added to ethanol, the smaller water molecules are attracted to the ethanol's hydroxyl group, and each molecule alters the polarity field of
224-441: Is 1.05 times that of water, it has a specific gravity of 1.05. In UK brewing usage, it is customary to regard the reference value for water to be 1000, so the specific gravity of the same example beer would be quoted as 1050. The formulas here assume that the former definition is used for specific gravity. During ethanol fermentation the yeast converts one mole of sugar into two moles of alcohol. A general formula for calculating
252-429: Is defined as the volume of a constituent V i divided by the volume of all constituents of the mixture V prior to mixing: Being dimensionless , its unit is 1; it is expressed as a number, e.g., 0.18. It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where
280-594: Is often referred to as degrees Gay-Lussac (after the French chemist Joseph Louis Gay-Lussac ), although there is a slight difference since the Gay-Lussac convention uses the International Standard Atmosphere value for temperature, 15 °C (59 °F). Mixing two solutions of alcohol of different strengths usually causes a change in volume. Mixing pure water with a solution less than 24% by mass causes
308-411: Is one way of expressing the composition of a mixture with a dimensionless quantity ; mass fraction (percentage by weight, wt%) and mole fraction (percentage by moles , mol%) are others. In the case of a mixture of ethanol and water, which are miscible in all proportions, the designation of solvent and solute is arbitrary. The volume of such a mixture is slightly less than the sum of the volumes of
SECTION 10
#1732855087445336-636: Is sugar by weight and SG is relative density. SG can be measured using an hydrometer and Brix can be calculated from SG. One of the accurate formulas for calculating Brix from SG is: By substituting Brix in the SBV formula above, we get a formula for calculating SBV from SG only: The general calculation steps involves calculation of SBV at the start and the end of fermentation: Advanced formula derived from Carl Balling empirical formulas. The formula compensates for changes in SG with changes in alcohol concentration and for
364-479: Is the concentration of a certain solute , measured by volume, in a solution . It has as a denominator the volume of the mixture itself, as usual for expressions of concentration, rather than the total of all the individual components’ volumes prior to mixing: Volume percent is usually used when the solution is made by mixing two fluids , such as liquids or gases . However, percentages are only additive for ideal gases . The percentage by volume ( vol% )
392-454: Is the mass of the ethanol divided by its density at 20 °C (68 °F), which is 0.78945 g/mL (0.82353 oz/US fl oz; 0.79122 oz/imp fl oz; 0.45633 oz/cu in). The alc/vol standard is used worldwide. The International Organization of Legal Metrology has tables of density of water–ethanol mixtures at different concentrations and temperatures. In some countries, e.g. France , alcohol by volume
420-1225: Is the specific gravity when fermentation ends, Plato start is the sugar by weight when fermentation begins, Plato final is the sugar by weight when fermentation ends. Brix can be used insted of Plato as they are nearly identical. The simplest method for wine has been described by English author Cyril Berry : ABV ≈ 136 × ( Starting SG − Final SG ) {\displaystyle {\text{ABV}}\approx 136\times \left({\text{Starting SG}}-{\text{Final SG}}\right)} One calculation for beer is: ABV ≈ 131 × ( Starting SG − Final SG ) {\displaystyle {\text{ABV}}\approx 131\times \left({\text{Starting SG}}-{\text{Final SG}}\right)} For higher ABV above 6% many brewers use this formula: alc/vol ≈ 105 0.79 × ( Starting SG − Final SG Final SG ) {\displaystyle {\text{alc/vol}}\approx {\frac {105}{0.79}}\times \left({\frac {{\text{Starting SG}}-{\text{Final SG}}}{\text{Final SG}}}\right)} Another way of specifying
448-400: Is used to measure the change in specific gravity (SG) of the solution before and after fermentation. The volume of alcohol in the solution can then be estimated. There are a number of empirical formulae which brewers and winemakers use to estimate the alcohol content of the liquor made. Specific gravity is the density of a liquid relative to that of water, i.e., if the density of the liquid
476-710: The United Kingdom , proof is 1.75 times the number (expressed as a percentage). For example, 40% alc/vol is 80 proof in the US and 70 proof in the UK. However, since 1980, alcohol proof in the UK has been replaced by alc/vol as a measure of alcohol content, avoiding confusion between the UK and US proof standards. In the United States, Arkansas , Kansas , Mississippi , South Carolina , and Tennessee regulate and tax alcoholic beverages according to alcohol by weight ( ABW ), expressed as
504-609: The US include Ommegang 's Dubbel and New Belgium 's Abbey Ale. Abbey 1856 Dubbel is produced in Argentina . Unibroue 's Maudite Dubbel is produced in Quebec . Dubbels are characteristically known for being dark brown in colour with a strong flavor of dark fruit including raisins, prunes, and dates. These flavors and colors are almost entirely resultant from the heavy addition of candi sugar, highly caramelized (or kilned ) beet sugar , which ferments completely into alcohol , lightening
532-409: The alcohol percentage by weight is about 4/5 of the alc/vol (e.g., 3.2% ABW is about 4% alc/vol). However, because of the miscibility of alcohol and water, the conversion factor is not constant but rather depends upon the concentration of alcohol. Volume fraction In chemistry and fluid mechanics , the volume fraction φ i {\displaystyle \varphi _{i}}
560-525: The amount of alcohol content is alcohol proof , which in the United States is twice the alcohol-by-volume (alc/vol) number. This may lead to confusion over similar products bought in varying regions that have different names on country-specific labels. For example, Stroh rum that is 80% ABV is advertised and labeled as Stroh 80 when sold in Europe, but is named Stroh 160 when sold in the United States. In
588-538: The articles about them. (most juices do not have alcohol but orange or grape [the highest here] may have some from early fermentation) Under 2.5% in Finland, and 2.25% in Sweden, however. During the production of wine and beer, yeast is added to a sugary solution. During fermentation, the yeasts consume the sugars and produce alcohol. The density of sugar in water is greater than the density of alcohol in water. A hydrometer
SECTION 20
#1732855087445616-516: The body of the finished beer and contributing to its dry finish. The caramelization of the beet sugar is also the major contributor of maillard flavors including chocolatey, caramel, and nutty tones that give the dubbel its wide gamut of flavour complexity. Because of the special strains of ale yeast used in their production, dubbels often carry a mild spice; coriander and black pepper are notable examples in traditional Belgian dubbels. The yeast also generates fruity esters like banana, which provide
644-414: The components. Thus, by the above definition, the term "40% alcohol by volume" refers to a mixture of 40 volume units of ethanol with enough water to make a final volume of 100 units, rather than a mixture of 40 units of ethanol with 60 units of water. The "enough water" is actually slightly more than 60 volume units, since water-ethanol mixture loses volume due to intermolecular attraction. Volume fraction
672-584: The fact that not all sugar is converted into alcohol. All values are measured at 20 degree C. A B V = − 118772 × SG final × ( Plato start − Plato final ) ( Plato start − 193.765 ) × ( Plato start + 1220 ) {\displaystyle ABV={\frac {-118772\times {\text{SG final}}\times ({\text{Plato start}}-{\text{Plato final}})}{({\text{Plato start}}-193.765)\times ({\text{Plato start}}+1220)}}} where SG final
700-557: The other. The attraction allows closer spacing between molecules than is usually found in non-polar mixtures. Thus, alc/vol is not the same as volume fraction expressed as a percentage. Volume fraction, which is widely used in chemistry (commonly denoted as v/v), is defined as the volume of a particular component divided by the sum of all components in the mixture when they are measured separately. For example, to make 100 mL of 50% alc/vol ethanol solution, water would be added to 50 mL of ethanol to make up exactly 100 mL. Whereas to make
728-438: The rate of intake, which is easily dispatched by human metabolism. Quickly drinking 1.5 L of 0.4% alc/vol beer in an hour resulted in a maximum of 0.0056% BAC in a study of German volunteers. Healthy human kidneys can only excrete 0.8–1.0 L of water per hour, making water intoxication likely to set in before any alcoholic intoxication. The process of ethanol fermentation will slow down and eventually come to
756-423: The resulting alcohol concentration by volume can be written: where SBV fermented is sugar by volume (g/dL) converted to alcohol during fermentation and GECF is the glucose-ethanol conversion factor: where 46.069 is the molar mass of ethanol and 180.156 is the molar mass of glucose and fructose . Sugar by volume is calculated at the beginning (start) and at the end (final) of the fermentation: where Brix
784-451: The volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients). The sum of all volume fractions of a mixture is equal to 1: The volume fraction (percentage by volume, vol%) is one way of expressing the composition of a mixture with a dimensionless quantity ; mass fraction (percentage by weight, wt%) and mole fraction (percentage by moles , mol%) are others. Volume percent
#444555