Cygnus OB2 is an OB association that is home to some of the most massive and most luminous stars known, including suspected Luminous blue variable Cyg OB2 #12 . It also includes one of the largest known stars , NML Cygni . The region is embedded within a wider one of star formation known as Cygnus X , which is one of the most luminous objects in the sky at radio wavelengths. The region is approximately 1,570 parsecs from Earth in the constellation of Cygnus .
142-527: The young cluster is one of the largest known and the largest in the northern hemisphere with some authors formerly classifying it as a young globular cluster similar to those in the Large Magellanic Cloud . Today, however, it is considered a massive, low-density stellar association. Although it is over ten times more massive than the Orion Nebula , which is easily seen with the naked eye, Cygnus OB2
284-511: A Plummer model . The simulation becomes more difficult when the effects of binaries and the interaction with external gravitation forces (such as from the Milky Way galaxy) must also be included. In 2010 a low-density globular cluster's lifetime evolution was able to be directly computed, star-by-star. Completed N-body simulations have shown that stars can follow unusual paths through the cluster, often forming loops and falling more directly toward
426-485: A conjunction of Jupiter and Mars in 1106 or 1107 as evidence. The Persian astronomer Nasir al-Din al-Tusi (1201–1274) in his Tadhkira wrote: "The Milky Way, i.e. the Galaxy, is made up of a very large number of small, tightly clustered stars, which, on account of their concentration and smallness, seem to be cloudy patches. Because of this, it was likened to milk in color." Ibn Qayyim al-Jawziyya (1292–1350) proposed that
568-654: A radius of about 39.5 kpc (130,000 ly), over twice as much as was determined in earlier studies, suggesting that about 90% of the mass of the galaxy is dark matter . In September 2023, astronomers reported that the virial mass of the Milky Way Galaxy is only 2.06 10 solar masses , only a 10th of the mass of previous studies. The mass was determined from data of the Gaia spacecraft . The Milky Way contains between 100 and 400 billion stars and at least that many planets. An exact figure would depend on counting
710-551: A 2016 study. Such Earth-sized planets may be more numerous than gas giants, though harder to detect at great distances given their small size. Besides exoplanets, " exocomets ", comets beyond the Solar System, have also been detected and may be common in the Milky Way. More recently, in November 2020, over 300 million habitable exoplanets are estimated to exist in the Milky Way Galaxy. When compared to other more distant galaxies in
852-457: A bimodal population, for example. During their youth, these LMC clusters may have encountered giant molecular clouds that triggered a second round of star formation. This star-forming period is relatively brief, compared with the age of many globular clusters. It has been proposed that this multiplicity in stellar populations could have a dynamical origin. In the Antennae Galaxy , for example,
994-492: A cluster from being visually separated until Charles Messier observed M 4 in 1764. When William Herschel began his comprehensive survey of the sky using large telescopes in 1782, there were 34 known globular clusters. Herschel discovered another 36 and was the first to resolve virtually all of them into stars. He coined the term globular cluster in his Catalogue of a Second Thousand New Nebulae and Clusters of Stars (1789). In 1914, Harlow Shapley began
1136-514: A cluster of thousands of stars can be enormous. A more efficient method of simulating the N-body dynamics of a globular cluster is done by subdivision into small volumes and velocity ranges, and using probabilities to describe the locations of the stars. Their motions are described by means of the Fokker–Planck equation , often using a model describing the mass density as a function of radius, such as
1278-441: A cluster's adolescence, core collapse begins with stars nearest the core. Interactions between binary star systems prevents further collapse as the cluster approaches middle age. The central binaries are either disrupted or ejected, resulting in a tighter concentration at the core. The interaction of stars in the collapsed core region causes tight binary systems to form. As other stars interact with these tight binaries they increase
1420-459: A globular cluster and a dwarf spheroidal galaxy . The formation of these extended clusters is likely related to accretion. It is unclear why the Milky Way lacks such clusters; Andromeda is unlikely to be the sole galaxy with them, but their presence in other galaxies remains unknown. Milky Way The Milky Way is the galaxy that includes the Solar System , with the name describing
1562-411: A globular cluster are similar to those in the bulge of a spiral galaxy but confined to a spheroid in which half the light is emitted within a radius of only a few to a few tens of parsecs . They are free of gas and dust, and it is presumed that all the gas and dust was long ago either turned into stars or blown out of the cluster by the massive first-generation stars. Globular clusters can contain
SECTION 10
#17328592043821704-440: A globular cluster must be either to accrete stars at its core, causing its steady contraction, or gradual shedding of stars from its outer layers. Binary stars form a significant portion of stellar systems, with up to half of all field stars and open cluster stars occurring in binary systems. The present-day binary fraction in globular clusters is difficult to measure, and any information about their initial binary fraction
1846-456: A great deal of detail at +6.1. This makes the Milky Way difficult to see from brightly lit urban or suburban areas, but very prominent when viewed from rural areas when the Moon is below the horizon. Maps of artificial night sky brightness show that more than one-third of Earth's population cannot see the Milky Way from their homes due to light pollution. As viewed from Earth, the visible region of
1988-420: A half-mass radius of only 1.12 arc minutes. The tidal radius, or Hill sphere , is the distance from the center of the globular cluster at which the external gravitation of the galaxy has more influence over the stars in the cluster than does the cluster itself. This is the distance at which the individual stars belonging to a cluster can be separated away by the galaxy. The tidal radius of M3, for example,
2130-487: A high density of stars; on average about 0.4 stars per cubic parsec, increasing to 100 or 1000 stars/pc in the core of the cluster. In comparison, the stellar density around the Sun is roughly 0.1 stars/pc . The typical distance between stars in a globular cluster is about one light year, but at its core the separation between stars averages about a third of a light year – thirteen times closer than
2272-781: A lower metallicity. The Dutch astronomer Pieter Oosterhoff observed two special populations of globular clusters, which became known as Oosterhoff groups . The second group has a slightly longer period of RR Lyrae variable stars. While both groups have a low proportion of metallic elements as measured by spectroscopy , the metal spectral lines in the stars of Oosterhoff type I (Oo I) cluster are not quite as weak as those in type II (Oo II), and so type I stars are referred to as metal-rich (e.g. Terzan 7 ), while type II stars are metal-poor (e.g. ESO 280-SC06 ). These two distinct populations have been observed in many galaxies, especially massive elliptical galaxies. Both groups are nearly as old as
2414-448: A lower proportion of heavier elements. Astronomers refer to these heavier elements as metals (distinct from the material concept) and to the proportions of these elements as the metallicity. Produced by stellar nucleosynthesis , the metals are recycled into the interstellar medium and enter a new generation of stars. The proportion of metals can thus be an indication of the age of a star in simple models, with older stars typically having
2556-466: A measurement of the radial velocity of halo stars found that the mass enclosed within 80 kilo parsecs is 7 × 10 M ☉ . In a 2014 study, the mass of the entire Milky Way is estimated to be 8.5 × 10 M ☉ , but this is only half the mass of the Andromeda Galaxy. A recent 2019 mass estimate for the Milky Way is 1.29 × 10 M ☉ . Much of the mass of
2698-500: A more compact volume. When this gravothermal instability occurs, the central region of the cluster becomes densely crowded with stars, and the surface brightness of the cluster forms a power-law cusp. A massive black hole at the core could also result in a luminosity cusp. Over a long time, this leads to a concentration of massive stars near the core, a phenomenon called mass segregation . The dynamical heating effect of binary star systems works to prevent an initial core collapse of
2840-893: A plane in the outer part of the galaxy's halo. This observation supports the view that type II clusters were captured from a satellite galaxy, rather than being the oldest members of the Milky Way's globular cluster system as was previously thought. The difference between the two cluster types would then be explained by a time delay between when the two galaxies formed their cluster systems. Close interactions and near-collisions of stars occur relatively often in globular clusters because of their high star density. These chance encounters give rise to some exotic classes of stars – such as blue stragglers , millisecond pulsars , and low-mass X-ray binaries – which are much more common in globular clusters. How blue stragglers form remains unclear, but most models attribute them to interactions between stars, such as stellar mergers ,
2982-410: A range in mass, as large as 4.5 × 10 M ☉ and as small as 8 × 10 M ☉ . By comparison, the total mass of all the stars in the Milky Way is estimated to be between 4.6 × 10 M ☉ and 6.43 × 10 M ☉ . In addition to the stars, there is also interstellar gas, comprising 90% hydrogen and 10% helium by mass, with two thirds of
SECTION 20
#17328592043823124-457: A roughly diagonal line sloping from hot, luminous stars in the upper left to cool, faint stars in the lower right. This line is known as the main sequence and represents the primary stage of stellar evolution . The diagram also includes stars in later evolutionary stages such as the cool but luminous red giants . Constructing an H–R diagram requires knowing the distance to the observed stars to convert apparent into absolute magnitude. Because all
3266-399: A series of studies of globular clusters, published across about forty scientific papers. He examined the clusters' RR Lyrae variables (stars which he assumed were Cepheid variables ) and used their luminosity and period of variability to estimate the distances to the clusters. RR Lyrae variables were later found to be fainter than Cepheid variables, causing Shapley to overestimate
3408-531: A star needs to cross the cluster and the number of stellar masses. The relaxation time varies by cluster, but a typical value is on the order of one billion years. Although globular clusters are generally spherical in form, ellipticity can form via tidal interactions. Clusters within the Milky Way and the Andromeda Galaxy are typically oblate spheroids in shape, while those in the Large Magellanic Cloud are more elliptical. Astronomers characterize
3550-415: A treatise in 1755, Immanuel Kant , drawing on earlier work by Thomas Wright , speculated (correctly) that the Milky Way might be a rotating body of a huge number of stars, held together by gravitational forces akin to the Solar System but on much larger scales. The resulting disk of stars would be seen as a band on the sky from our perspective inside the disk. Wright and Kant also conjectured that some of
3692-405: Is a spheroidal conglomeration of stars that is bound together by gravity , with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies , and though globular clusters were long held to be the more luminous of
3834-428: Is a disk of gas and dust called the interstellar medium . This disk has at least a comparable extent in radius to the stars, whereas the thickness of the gas layer ranges from hundreds of light-years for the colder gas to thousands of light-years for warmer gas. The disk of stars in the Milky Way does not have a sharp edge beyond which there are no stars. Rather, the concentration of stars decreases with distance from
3976-437: Is a graph of a large sample of stars plotting their absolute magnitude (their luminosity , or brightness measured from a standard distance), as a function of their color index . The color index, roughly speaking, measures the color of the star; positive color indices indicate a reddish star with a cool surface temperature, while negative values indicate a bluer star with a hotter surface. Stars on an H–R diagram mostly lie along
4118-405: Is a ring-like filament of stars called Triangulum–Andromeda Ring (TriAnd Ring) rippling above and below the relatively flat galactic plane , which alongside Monoceros Ring were both suggested to be primarily the result of disk oscillations and wrapping around the Milky Way, at a diameter of at least 50 kpc (160,000 ly), which may be part of the Milky Way's outer disk itself, hence making
4260-399: Is about forty arc minutes, or about 113 pc. In most Milky Way clusters, the surface brightness of a globular cluster as a function of decreasing distance to the core first increases, then levels off at a distance typically 1–2 parsecs from the core. About 20% of the globular clusters have undergone a process termed "core collapse". The luminosity in such a cluster increases steadily all
4402-582: Is also the root of "galaxy", the name for our, and later all such, collections of stars. The Milky Way, or "milk circle", was just one of 11 "circles" the Greeks identified in the sky, others being the zodiac , the meridian , the horizon , the equator , the tropics of Cancer and Capricorn , the Arctic Circle and the Antarctic Circle , and two colure circles passing through both poles. The Milky Way
Cygnus OB2 - Misplaced Pages Continue
4544-537: Is approximately 890 billion to 1.54 trillion times the mass of the Sun in total (8.9 × 10 to 1.54 × 10 solar masses), although stars and planets make up only a small part of this. Estimates of the mass of the Milky Way vary, depending upon the method and data used. The low end of the estimate range is 5.8 × 10 solar masses ( M ☉ ), somewhat less than that of the Andromeda Galaxy . Measurements using
4686-449: Is called the Zone of Avoidance . The Milky Way has a relatively low surface brightness . Its visibility can be greatly reduced by background light, such as light pollution or moonlight. The sky needs to be darker than about 20.2 magnitude per square arcsecond in order for the Milky Way to be visible. It should be visible if the limiting magnitude is approximately +5.1 or better and shows
4828-522: Is celestial. This idea would be influential later in the Muslim world . The Persian astronomer Al-Biruni (973–1048) proposed that the Milky Way is "a collection of countless fragments of the nature of nebulous stars". The Andalusian astronomer Avempace ( d 1138) proposed that the Milky Way was made up of many stars but appeared to be a continuous image in the Earth's atmosphere, citing his observation of
4970-469: Is directly a function of the cluster's age; an age scale can be plotted on an axis parallel to the magnitude. The morphology and luminosity of globular cluster stars in H–R diagrams are influenced by numerous parameters, many of which are still actively researched. Recent observations have overturned the historical paradigm that all globular clusters consist of stars born at exactly the same time, or sharing exactly
5112-527: Is hidden behind a massive dust cloud known as the Cygnus Rift , which obscures many of the stars in it. This means that despite its large size, it is hard to determine its actual properties. The estimated number of massive stars range from 50 to 100 of spectral type O and its total mass having been calculated as (4–10) × 10 or 3 × 10 solar masses according to other investigations. Despite this, recent surveys ranging from radio to X-ray wavelengths have observed
5254-472: Is inclined by about 60° to the ecliptic (the plane of Earth's orbit ). Relative to the celestial equator , it passes as far north as the constellation of Cassiopeia and as far south as the constellation of Crux , indicating the high inclination of Earth's equatorial plane and the plane of the ecliptic, relative to the galactic plane. The north galactic pole is situated at right ascension 12 49 , declination +27.4° ( B1950 ) near β Comae Berenices , and
5396-570: Is located at a radius of about 27,000 light-years (8.3 kpc) from the Galactic Center , on the inner edge of the Orion Arm , one of the spiral-shaped concentrations of gas and dust. The stars in the innermost 10,000 light-years form a bulge and one or more bars that radiate from the bulge. The Galactic Center is an intense radio source known as Sagittarius A* , a supermassive black hole of 4.100 (± 0.034) million solar masses . The oldest stars in
5538-414: Is lost by subsequent dynamical evolution. Numerical simulations of globular clusters have demonstrated that binaries can hinder and even reverse the process of core collapse in globular clusters. When a star in a cluster has a gravitational encounter with a binary system, a possible result is that the binary becomes more tightly bound and kinetic energy is added to the solitary star. When the massive stars in
5680-480: Is now thought to be purely an invention of Babylonian propagandists with the intention to show Marduk as superior to the Sumerian deities. In Greek mythology , Zeus places his son born by a mortal woman, the infant Heracles , on Hera 's breast while she is asleep so the baby will drink her divine milk and become immortal. Hera wakes up while breastfeeding and then realizes she is nursing an unknown baby: she pushes
5822-411: Is poorly understood. Globular clusters have traditionally been described as a simple star population formed from a single giant molecular cloud , and thus with roughly uniform age and metallicity (proportion of heavy elements in their composition). Modern observations show that nearly all globular clusters contain multiple populations; the globular clusters in the Large Magellanic Cloud (LMC) exhibit
Cygnus OB2 - Misplaced Pages Continue
5964-434: Is significantly smaller than the Andromeda Galaxy's isophotal diameter, and slightly below the mean isophotal sizes of the galaxies being at 28.3 kpc (92,000 ly). The paper concludes that the Milky Way and Andromeda Galaxy were not overly large spiral galaxies, nor were among the largest known (if the former not being the largest) as previously widely believed, but rather average ordinary spiral galaxies. To compare
6106-637: Is the Large Sagittarius Star Cloud , a portion of the central bulge of the galaxy. Dark regions within the band, such as the Great Rift and the Coalsack , are areas where interstellar dust blocks light from distant stars. Peoples of the southern hemisphere, including the Inca and Australian aborigines , identified these regions as dark cloud constellations . The area of sky that the Milky Way obscures
6248-540: Is the distance at which the apparent surface luminosity has dropped by half. A comparable quantity is the half-light radius, or the distance from the core containing half the total luminosity of the cluster; the half-light radius is typically larger than the core radius. Most globular clusters have a half-light radius of less than ten parsecs (pc), although some globular clusters have very large radii, like NGC 2419 (r h = 18 pc) and Palomar 14 (r h = 25 pc). The half-light radius includes stars in
6390-737: Is the traditional Welsh name for the Milky Way, and Caer Arianrhod ("The Fortress of Arianrhod ") being the constellation of Corona Borealis . In Western culture, the name "Milky Way" is derived from its appearance as a dim un-resolved "milky" glowing band arching across the night sky. The term is a translation of the Classical Latin via lactea , in turn derived from the Hellenistic Greek γαλαξίας , short for γαλαξίας κύκλος ( galaxías kýklos ), meaning "milky circle". The Ancient Greek γαλαξίας ( galaxias ) – from root γαλακτ -, γάλα ("milk") + -ίας (forming adjectives) –
6532-486: Is visible as a hazy band of white light, some 30° wide, arching the night sky . Although all the individual naked-eye stars in the entire sky are part of the Milky Way Galaxy, the term "Milky Way" is limited to this band of light. The light originates from the accumulation of unresolved stars and other material located in the direction of the galactic plane . Brighter regions around the band appear as soft visual patches known as star clouds . The most conspicuous of these
6674-468: The Galactic Center . He correctly concluded that the Milky Way's center is in the Sagittarius constellation and not near the Earth. He overestimated the distance, finding typical globular cluster distances of 10–30 kiloparsecs (33,000–98,000 ly); the modern distance to the Galactic Center is roughly 8.5 kiloparsecs (28,000 ly). Shapley's measurements indicated the Sun is relatively far from
6816-476: The Local Group has an associated system of globular clusters, as does almost every large galaxy surveyed. Some giant elliptical galaxies (particularly those at the centers of galaxy clusters ), such as M 87 , have as many as 13,000 globular clusters. Shapley was later assisted in his studies of clusters by Henrietta Swope and Helen Sawyer Hogg . In 1927–1929, Shapley and Sawyer categorized clusters by
6958-480: The Mayall ;II cluster of the Andromeda Galaxy. Both X-ray and radio emissions from Mayall II appear consistent with an intermediate-mass black hole; however, these claimed detections are controversial. The heaviest objects in globular clusters are expected to migrate to the cluster center due to mass segregation . One research group pointed out that the mass-to-light ratio should rise sharply towards
7100-489: The Very Long Baseline Array in 2009 found velocities as large as 254 km/s (570,000 mph) for stars at the outer edge of the Milky Way. Because the orbital velocity depends on the total mass inside the orbital radius, this suggests that the Milky Way is more massive, roughly equaling the mass of Andromeda Galaxy at 7 × 10 M ☉ within 160,000 ly (49 kpc) of its center. In 2010,
7242-403: The disks of spiral galaxies. The Milky Way has more than 150 known globulars , and there may be many more. Both the origin of globular clusters and their role in galactic evolution are unclear. Some are among the oldest objects in their galaxies and even the universe , constraining estimates of the universe's age . Star clusters were formerly thought to consist of stars that all formed at
SECTION 50
#17328592043827384-507: The galactic bulge or hidden by the gas and dust of the Milky Way. For example, most of the Palomar Globular Clusters have only been discovered in the 1950s, with some located relatively close-by yet obscured by dust, while others reside in the very far reaches of the Milky Way halo. The Andromeda Galaxy , which is comparable in size to the Milky Way, may have as many as five hundred globulars. Every galaxy of sufficient mass in
7526-403: The giant star stage. As the cluster ages, stars of successively lower masses will do the same. Therefore, the age of a single-population cluster can be measured by looking for those stars just beginning to enter the giant star stage, which form a "knee" in the H–R diagram called the main-sequence turnoff , bending to the upper right from the main-sequence line. The absolute magnitude at this bend
7668-476: The light-gathering power of this new telescope, he was able to produce astronomical photographs that resolved the outer parts of some spiral nebulae as collections of individual stars. He was also able to identify some Cepheid variables that he could use as a benchmark to estimate the distance to the nebulae. He found that the Andromeda Nebula is 275,000 parsecs from the Sun, far too distant to be part of
7810-597: The magnetic fields of the Milky Way were reported. The Sun is near the inner rim of the Orion Arm , within the Local Fluff of the Local Bubble , between the Radcliffe wave and Split linear structures (formerly Gould Belt ). Based upon studies of stellar orbits around Sgr A* by Gillessen et al. (2016), the Sun lies at an estimated distance of 27.14 ± 0.46 kly (8.32 ± 0.14 kpc) from
7952-440: The nebulae visible in the night sky might be separate "galaxies" themselves, similar to our own. Kant referred to both the Milky Way and the "extragalactic nebulae" as "island universes", a term still current up to the 1930s. The first attempt to describe the shape of the Milky Way and the position of the Sun within it was carried out by William Herschel in 1785 by carefully counting the number of stars in different regions of
8094-460: The solar apex , is the direction that the Sun travels through space in the Milky Way. The general direction of the Sun's Galactic motion is towards the star Vega near the constellation of Hercules , at an angle of roughly 60 sky degrees to the direction of the Galactic Center. The Sun's orbit about the Milky Way is expected to be roughly elliptical with the addition of perturbations due to
8236-442: The supermassive black holes at their centers. The mass of these supposed intermediate-mass black holes is proportional to the mass of their surrounding clusters, following a pattern previously discovered between supermassive black holes and their surrounding galaxies. Hertzsprung–Russell diagrams (H–R diagrams) of globular clusters allow astronomers to determine many of the properties of their populations of stars. An H–R diagram
8378-587: The 1953 discovery paper where 11 "blue giants" were numbered. A 12th star ( Cyg OB2 #12 ) was added in 1954, and eight more shortly after. Schulte himself maintained the already-published numbers and added many more when studying the association which he called VI Cygni. Cygnus OB2 contains embedded star clusters as well as two open clusters located in the center of Cygnus OB2. The open clusters are called Bica 1 and Bica 2 . Both Bica 1 and Bica 2 contain several OB-stars, such as Cygnus OB2 #8A and Cygnus OB2 #22 . Globular cluster A globular cluster
8520-468: The 1970s. The required resolution for this task is exacting; it is only with the Hubble Space Telescope (HST) that the first claimed discoveries were made, in 2002 and 2003. Based on HST observations, other researchers suggested the existence of a 4,000 M ☉ (solar masses) intermediate-mass black hole in the globular cluster M15 and a 20,000 M ☉ black hole in
8662-600: The 20th century the distribution of globular clusters in the sky was some of the first evidence that the Sun is far from the center of the Milky Way . Globular clusters are found in nearly all galaxies . In spiral galaxies like the Milky Way, they are mostly found in the outer spheroidal part of the galaxy – the galactic halo . They are the largest and most massive type of star cluster , tending to be older, denser, and composed of lower abundances of heavy elements than open clusters , which are generally found in
SECTION 60
#17328592043828804-465: The Andromeda Galaxy's halo, similar to the globular cluster. The three new-found clusters have a similar star count to globular clusters and share other characteristics, such as stellar populations and metallicity, but are distinguished by their larger size – several hundred light years across – and some hundred times lower density. Their stars are separated by larger distances; parametrically, these clusters lie somewhere between
8946-563: The Galactic Center is about 180,000 ly (55 kpc). At this distance or beyond, the orbits of most halo objects would be disrupted by the Magellanic Clouds. Hence, such objects would probably be ejected from the vicinity of the Milky Way. The integrated absolute visual magnitude of the Milky Way is estimated to be around −20.9. Both gravitational microlensing and planetary transit observations indicate that there may be at least as many planets bound to stars as there are stars in
9088-519: The Galactic Center. Boehle et al. (2016) found a smaller value of 25.64 ± 0.46 kly (7.86 ± 0.14 kpc), also using a star orbit analysis. The Sun is currently 5–30 parsecs (16–98 ly) above, or north of, the central plane of the Galactic disk. The distance between the local arm and the next arm out, the Perseus Arm , is about 2,000 parsecs (6,500 ly). The Sun, and thus
9230-399: The Galactic spiral arms and non-uniform mass distributions. In addition, the Sun passes through the Galactic plane approximately 2.7 times per orbit. This is very similar to how a simple harmonic oscillator works with no drag force (damping) term. These oscillations were until recently thought to coincide with mass lifeform extinction periods on Earth. A reanalysis of the effects of
9372-539: The Hubble Space Telescope has observed clusters of clusters – regions in the galaxy that span hundreds of parsecs, in which many of the clusters will eventually collide and merge. Their overall range of ages and (possibly) metallicities could lead to clusters with a bimodal, or even multiple, distribution of populations. Observations of globular clusters show that their stars primarily come from regions of more efficient star formation, and from where
9514-739: The Milky Way are nearly as old as the Universe itself and thus probably formed shortly after the Dark Ages of the Big Bang . Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe . Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Doust Curtis , observations by Edwin Hubble showed that
9656-405: The Milky Way is "a myriad of tiny stars packed together in the sphere of the fixed stars". Proof of the Milky Way consisting of many stars came in 1610 when Galileo Galilei used a telescope to study the Milky Way and discovered that it is composed of a huge number of faint stars. Galileo also concluded that the appearance of the Milky Way was due to refraction of the Earth's atmosphere. In
9798-446: The Milky Way is approximately 220 km/s (490,000 mph) or 0.073% of the speed of light . The Sun moves through the heliosphere at 84,000 km/h (52,000 mph). At this speed, it takes around 1,400 years for the Solar System to travel a distance of 1 light-year, or 8 days to travel 1 AU ( astronomical unit ). The Solar System is headed in the direction of the zodiacal constellation Scorpius , which follows
9940-513: The Milky Way is just one of many galaxies. In the Babylonian epic poem Enūma Eliš , the Milky Way is created from the severed tail of the primeval salt water dragoness Tiamat , set in the sky by Marduk , the Babylonian national god , after slaying her. This story was once thought to have been based on an older Sumerian version in which Tiamat is instead slain by Enlil of Nippur , but
10082-449: The Milky Way is the glow of stars not directly visible due to Earth's shadow, while other stars receive their light from the Sun, but have their glow obscured by solar rays. Aristotle himself believed that the Milky Way was part of the Earth's upper atmosphere, along with the stars, and that it was a byproduct of stars burning that did not dissipate because of its outermost location in the atmosphere, composing its great circle . He said that
10224-428: The Milky Way seems to be dark matter , an unknown and invisible form of matter that interacts gravitationally with ordinary matter. A dark matter halo is conjectured to spread out relatively uniformly to a distance beyond one hundred kiloparsecs (kpc) from the Galactic Center. Mathematical models of the Milky Way suggest that the mass of dark matter is 1–1.5 × 10 M ☉ . 2013 and 2014 studies indicate
10366-404: The Milky Way". Viewing from the north galactic pole with 0° (zero degrees) as the ray that runs starting from the Sun and through the Galactic Center, the quadrants are: with the galactic longitude (ℓ) increasing in the counter-clockwise direction ( positive rotation ) as viewed from north of the Galactic Center (a view-point several hundred thousand light-years distant from Earth in
10508-510: The Milky Way's galactic plane occupies an area of the sky that includes 30 constellations . The Galactic Center lies in the direction of Sagittarius , where the Milky Way is brightest. From Sagittarius, the hazy band of white light appears to pass around to the galactic anticenter in Auriga . The band then continues the rest of the way around the sky, back to Sagittarius, dividing the sky into two roughly equal hemispheres . The galactic plane
10650-526: The Milky Way, and microlensing measurements indicate that there are more rogue planets not bound to host stars than there are stars. The Milky Way contains an average of at least one planet per star, resulting in 100–400 billion planets, according to a January 2013 study of the five-planet star system Kepler-32 by the Kepler space observatory. A different January 2013 analysis of Kepler data estimated that at least 17 billion Earth-sized exoplanets reside in
10792-487: The Milky Way, may be the precursors of globular clusters. Many of the Milky Way's globular clusters have a retrograde orbit (meaning that they revolve around the galaxy in the reverse of the direction the galaxy is rotating), including the most massive, Omega Centauri. Its retrograde orbit suggests it may be a remnant of a dwarf galaxy captured by the Milky Way. Globular clusters are generally composed of hundreds of thousands of low-metal , old stars. The stars found in
10934-438: The Milky Way. The ESA spacecraft Gaia provides distance estimates by determining the parallax of a billion stars and is mapping the Milky Way with four planned releases of maps in 2016, 2018, 2021 and 2024. Data from Gaia has been described as "transformational". It has been estimated that Gaia has expanded the number of observations of stars from about 2 million stars as of the 1990s to 2 billion. It has expanded
11076-437: The Milky Way. In November 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs within the Milky Way. 11 billion of these estimated planets may be orbiting Sun-like stars. The nearest exoplanet may be 4.2 light-years away, orbiting the red dwarf Proxima Centauri , according to
11218-501: The Solar System, is located in the Milky Way's galactic habitable zone . There are about 208 stars brighter than absolute magnitude 8.5 within a sphere with a radius of 15 parsecs (49 ly) from the Sun, giving a density of one star per 69 cubic parsecs, or one star per 2,360 cubic light-years (from List of nearest bright stars ). On the other hand, there are 64 known stars (of any magnitude, not counting 4 brown dwarfs ) within 5 parsecs (16 ly) of
11360-429: The Sun is to its nearest neighbor, Proxima Centauri . Globular clusters are thought to be unfavorable locations for planetary systems. Planetary orbits are dynamically unstable within the cores of dense clusters because of the gravitational perturbations of passing stars. A planet orbiting at one astronomical unit around a star that is within the core of a dense cluster, such as 47 Tucanae , would survive only on
11502-411: The Sun's transit through the spiral structure based on CO data has failed to find a correlation. It takes the Solar System about 240 million years to complete one orbit of the Milky Way (a galactic year ), so the Sun is thought to have completed 18–20 orbits during its lifetime and 1/1250 of a revolution since the origin of humans . The orbital speed of the Solar System about the center of
11644-412: The Sun, giving a density of about one star per 8.2 cubic parsecs, or one per 284 cubic light-years (from List of nearest stars ). This illustrates the fact that there are far more faint stars than bright stars: in the entire sky, there are about 500 stars brighter than apparent magnitude 4 but 15.5 million stars brighter than apparent magnitude 14. The apex of the Sun's way, or
11786-409: The advent of telescopes in the 17th century. In early telescopic observations, globular clusters appeared as fuzzy blobs, leading French astronomer Charles Messier to include many of them in his catalog of astronomical objects that he thought could be mistaken for comets . Using larger telescopes, 18th-century astronomers recognized that globular clusters are groups of many individual stars. Early in
11928-487: The baby away, some of her milk spills, and it produces the band of light known as the Milky Way. In another Greek story, the abandoned Heracles is given by Athena to Hera for feeding, but Heracles' forcefulness causes Hera to rip him from her breast in pain. Llys Dôn (literally "The Court of Dôn ") is the traditional Welsh name for the constellation Cassiopeia . At least three of Dôn's children also have astronomical associations: Caer Gwydion ("The fortress of Gwydion ")
12070-500: The biggest stars formed and cleared the ambient material from the region. The progenitor of BD+43°3654 might have been a member of Cygnus OB2. Two stars from two binaries would have collided and merged forming BD+43°3654, which would have then been ejected from the stellar association along with the two remaining stars. Prominent members of the association are often referred to by their Schulte numbers: for example Schulte 12, VI Cygni 12, or Cygnus OB2 #12. The numbers were first used in
12212-608: The bulge). Recent simulations suggest that a dark matter area, also containing some visible stars, may extend up to a diameter of almost 2 million light-years (613 kpc). The Milky Way has several satellite galaxies and is part of the Local Group of galaxies, which form part of the Virgo Supercluster , which is itself a component of the Laniakea Supercluster . It is estimated to contain 100–400 billion stars and at least that number of planets . The Solar System
12354-478: The center of the Milky Way. Beyond a radius of roughly 40,000 light years (13 kpc) from the center, the number of stars per cubic parsec drops much faster with radius. Surrounding the galactic disk is a spherical galactic halo of stars and globular clusters that extends farther outward, but is limited in size by the orbits of two Milky Way satellites, the Large and Small Magellanic Clouds , whose closest approach to
12496-510: The center of the cluster, even without a black hole, in both M15 and Mayall II. Observations from 2018 find no evidence for an intermediate-mass black hole in any globular cluster, including M15, but cannot definitively rule out one with a mass of 500–1000 M ☉ . Finally, in 2023, an analysis of HST and the Gaia spacecraft data from the closest globular cluster, Messier 4 , revealed an excess mass of roughly 800 M ☉ in
12638-532: The center of the galaxy, contrary to what had been inferred from the observed uniform distribution of ordinary stars. In reality most ordinary stars lie within the galaxy's disk and are thus obscured by gas and dust in the disk, whereas globular clusters lie outside the disk and can be seen at much greater distances. The count of known globular clusters in the Milky Way has continued to increase, reaching 83 in 1915, 93 in 1930, 97 by 1947, and 157 in 2010. Additional, undiscovered globular clusters are believed to be in
12780-482: The center of this cluster, which appears to not be extended. This could thus be considered as kinematic evidence for an intermediate-mass black hole (even if an unusually compact cluster of compact objects like white dwarfs , neutron stars or stellar-mass black holes cannot be completely discounted). The confirmation of intermediate-mass black holes in globular clusters would have important ramifications for theories of galaxy development as being possible sources for
12922-421: The cluster are sped up by this process, it reduces the contraction at the core and limits core collapse. Cluster classification is not always definitive; objects have been found that can be classified in more than one category. For example, BH 176 in the southern part of the Milky Way has properties of both an open and a globular cluster. In 2005 astronomers discovered a new, "extended" type of star cluster in
13064-484: The cluster's core, while lighter stars pick up speed and tend to spend more time at the cluster's periphery. The cluster 47 Tucanae , made up of about one million stars, is one of the densest globular clusters in the Southern Hemisphere. This cluster was subjected to an intensive photographic survey that obtained precise velocities for nearly fifteen thousand stars in this cluster. The overall luminosities of
13206-440: The cluster. When a star passes near a binary system, the orbit of the latter pair tends to contract, releasing energy. Only after this primordial supply of energy is exhausted can a deeper core collapse proceed. In contrast, the effect of tidal shocks as a globular cluster repeatedly passes through the plane of a spiral galaxy tends to significantly accelerate core collapse. Core collapse may be divided into three phases. During
13348-480: The composition of the formational gas and dust affects stellar evolution; the stars' evolutionary tracks vary depending on the abundance of heavy elements. Data obtained from these studies are then used to study the evolution of the Milky Way as a whole. In contrast to open clusters, most globular clusters remain gravitationally bound together for time periods comparable to the lifespans of most of their stars. Strong tidal interactions with other large masses result in
13490-593: The coolest white dwarfs, often giving results as old as 12.7 billion years. In comparison, open clusters are rarely older than about half a billion years. The ages of globular clusters place a lower bound on the age of the entire universe, presenting a significant constraint in cosmology . Astronomers were historically faced with age estimates of clusters older than their cosmological models would allow, but better measurements of cosmological parameters, through deep sky surveys and satellites, appear to have resolved this issue. Studying globular clusters sheds light on how
13632-424: The core than would a single star orbiting a central mass. Additionally, some stars gain sufficient energy to escape the cluster due to gravitational interactions that result in a sufficient increase in velocity. Over long periods of time this process leads to the dissipation of the cluster, a process termed evaporation. The typical time scale for the evaporation of a globular cluster is 10 years. The ultimate fate of
13774-441: The cores of dwarf galaxies that have been consumed by larger galaxies. About a quarter of the globular cluster population in the Milky Way may have been accreted this way, as with more than 60% of the globular clusters in the outer halo of Andromeda. Globular clusters normally consist of Population II stars which, compared with Population I stars such as the Sun , have a higher proportion of hydrogen and helium and
13916-417: The cores of globular clusters are so dense that observations see multiple stars as a single target. The brightness measured for that seemingly single star is thus incorrect – too bright, given that multiple stars contributed. In turn, the computed distance is incorrect, so the blending effect can introduce a systematic uncertainty into the cosmic distance ladder and may bias the estimated age of
14058-585: The degree of concentration of stars toward each core. Their system, known as the Shapley–Sawyer Concentration Class , identifies the most concentrated clusters as Class I and ranges to the most diffuse Class XII. Astronomers from the Pontifical Catholic University of Chile proposed a new type of globular cluster on the basis of observational data in 2015: Dark globular clusters . The formation of globular clusters
14200-412: The direction of the constellation Coma Berenices ); if viewed from south of the Galactic Center (a view-point similarly distant in the constellation Sculptor ), ℓ would increase in the clockwise direction ( negative rotation ). The Milky Way is one of the two largest galaxies in the Local Group (the other being the Andromeda Galaxy ), although the size for its galactic disc and how much it defines
14342-419: The dispersal of some stars, leaving behind "tidal tails" of stars removed from the cluster. After formation, the stars in the globular cluster begin to interact gravitationally with each other. The velocities of the stars steadily change, and the stars lose any history of their original velocity. The characteristic interval for this to occur is the relaxation time , related to the characteristic length of time
14484-484: The distance to other galaxies, under the assumption that globular clusters in remote galaxies behave similarly to those in the Milky Way. Computing the gravitational interactions between stars within a globular cluster requires solving the N-body problem . The naive computational cost for a dynamic simulation increases in proportion to N (where N is the number of objects), so the computing requirements to accurately simulate
14626-410: The distances. A large majority of the Milky Way's globular clusters are found in the halo around the galactic core. In 1918, Shapley used this strongly asymmetrical distribution to determine the overall dimensions of the galaxy. Assuming a roughly spherical distribution of globular clusters around the galaxy's center, he used the positions of the clusters to estimate the position of the Sun relative to
14768-469: The ecliptic. A galactic quadrant, or quadrant of the Milky Way, refers to one of four circular sectors in the division of the Milky Way. In astronomical practice, the delineation of the galactic quadrants is based upon the galactic coordinate system , which places the Sun as the origin of the mapping system . Quadrants are described using ordinals – for example, "1st galactic quadrant", "second galactic quadrant", or "third quadrant of
14910-399: The energy at the core, causing the cluster to re-expand. As the average time for a core collapse is typically less than the age of the galaxy, many of a galaxy's globular clusters may have passed through a core collapse stage, then re-expanded. The HST has provided convincing observational evidence of this stellar mass-sorting process in globular clusters. Heavier stars slow down and crowd at
15052-520: The extent of their globular cluster systems. The mass of the SMBH in such a galaxy is often close to the combined mass of the galaxy's globular clusters. No known globular clusters display active star formation, consistent with the hypothesis that globular clusters are typically the oldest objects in their galaxy and were among the first collections of stars to form. Very large regions of star formation known as super star clusters , such as Westerlund 1 in
15194-400: The galaxy's appearance from Earth : a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye . The Milky Way is a barred spiral galaxy with a D 25 isophotal diameter estimated at 26.8 ± 1.1 kiloparsecs (87,400 ± 3,600 light-years ), but only about 1,000 light-years thick at the spiral arms (more at
15336-486: The globular clusters within the Milky Way and the Andromeda Galaxy each have a roughly Gaussian distribution , with an average magnitude M v and a variance σ . This distribution of globular cluster luminosities is called the Globular Cluster Luminosity Function (GCLF). For the Milky Way, M v = −7.29 ± 0.13 , σ = 1.1 ± 0.1 . The GCLF has been used as a " standard candle " for measuring
15478-409: The hydrogen found in the atomic form and the remaining one-third as molecular hydrogen . The mass of the Milky Way's interstellar gas is equal to between 10% and 15% of the total mass of its stars. Interstellar dust accounts for an additional 1% of the total mass of the gas. In March 2019, astronomers reported that the virial mass of the Milky Way Galaxy is 1.54 trillion solar masses within
15620-439: The interstellar medium is at a higher density, as compared to normal star-forming regions. Globular cluster formation is prevalent in starburst regions and in interacting galaxies . Some globular clusters likely formed in dwarf galaxies and were removed by tidal forces to join the Milky Way. In elliptical and lenticular galaxies there is a correlation between the mass of the supermassive black holes (SMBHs) at their centers and
15762-436: The isophotal diameter is not well understood. It is estimated that the significant bulk of stars in the galaxy lies within the 26 kiloparsecs (80,000 light-years) diameter, and that the number of stars beyond the outermost disc dramatically reduces to a very low number, with respect to an extrapolation of the exponential disk with the scale length of the inner disc. There are several methods being used in astronomy in defining
15904-402: The main sequence) of the cluster's color–magnitude diagram to corresponding features in an H–R diagram of another set of stars, a method known as spectroscopic parallax or main-sequence fitting. Since globular clusters form at once from a single giant molecular cloud, a cluster's stars have roughly the same age and composition. A star's evolution is primarily determined by its initial mass, so
16046-526: The measurable volume of space by a factor of 100 in radius and a factor of 1,000 in precision. A study in 2020 concluded that Gaia detected a wobbling motion of the galaxy, which might be caused by " torques from a misalignment of the disc's rotation axis with respect to the principal axis of a non-spherical halo, or from accreted matter in the halo acquired during late infall, or from nearby, interacting satellite galaxies and their consequent tides". In April 2024, initial studies (and related maps) involving
16188-518: The milky appearance of the Milky Way Galaxy is due to the refraction of the Earth's atmosphere. The Neoplatonist philosopher Olympiodorus the Younger ( c. 495 –570 AD) criticized this view, arguing that if the Milky Way were sublunary , it should appear different at different times and places on Earth, and that it should have parallax , which it does not. In his view, the Milky Way
16330-402: The morphology (shape) of a globular cluster by means of standard radii: the core radius ( r c ), the half-light radius ( r h ), and the tidal or Jacobi radius ( r t ). The radius can be expressed as a physical distance or as a subtended angle in the sky. Considering a radius around the core, the surface luminosity of the cluster steadily decreases with distance, and the core radius
16472-573: The nature of the Milky Way, spiral nebulae, and the dimensions of the Universe. To support his claim that the Great Andromeda Nebula is an external galaxy, Curtis noted the appearance of dark lanes resembling the dust clouds in the Milky Way, as well as the significant Doppler shift . The controversy was conclusively settled by Edwin Hubble in the early 1920s using the Mount Wilson observatory 2.5 m (100 in) Hooker telescope . With
16614-405: The number of very-low-mass stars, which are difficult to detect, especially at distances of more than 300 ly (90 pc) from the Sun. As a comparison, the neighboring Andromeda Galaxy contains an estimated one trillion (10 ) stars. The Milky Way may contain ten billion white dwarfs , a billion neutron stars , and a hundred million stellar black holes . Filling the space between the stars
16756-433: The old population of the galactic halo. A 2020 study predicted the edge of the Milky Way's dark matter halo being around 292 ± 61 kpc (952,000 ± 199,000 ly ), which translates to a diameter of 584 ± 122 kpc (1.905 ± 0.3979 Mly ). The Milky Way's stellar disk is also estimated to be approximately up to 1.35 kpc (4,000 ly) thick. The Milky Way
16898-499: The ones in the Milky Way, and modelling the relationship to their surface brightnesses. This gave an isophotal diameter for the Milky Way at 26.8 ± 1.1 kiloparsecs (87,400 ± 3,600 light-years), by assuming that the galactic disc is well represented by an exponential disc and adopting a central surface brightness of the galaxy (μ 0 ) of 22.1 ± 0.3 B -mag/arcsec and a disk scale length ( h ) of 5.0 ± 0.5 kpc (16,300 ± 1,600 ly). This
17040-533: The order of a hundred million years. There is a planetary system orbiting a pulsar ( PSR B1620−26 ) that belongs to the globular cluster M4 , but these planets likely formed after the event that created the pulsar. Some globular clusters, like Omega Centauri in the Milky Way and Mayall II in the Andromeda Galaxy, are extraordinarily massive, measuring several million solar masses ( M ☉ ) and having multiple stellar populations. Both are evidence that supermassive globular clusters formed from
17182-401: The outer part of the cluster that happen to lie along the line of sight, so theorists also use the half-mass radius ( r m ) – the radius from the core that contains half the total mass of the cluster. A small half-mass radius, relative to the overall size, indicates a dense core. Messier 3 (M3), for example, has an overall visible dimension of about 18 arc minutes , but
17324-522: The photographic record, he found 11 more novae . Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred within the Milky Way. As a result, he was able to come up with a distance estimate of 150,000 parsecs. He became a proponent of the "island universes" hypothesis, which held that the spiral nebulae were independent galaxies. In 1920 the Great Debate took place between Harlow Shapley and Heber Curtis, concerning
17466-453: The positions of stars in a cluster's H–R or color–magnitude diagram mostly reflect their initial masses. A cluster's H–R diagram, therefore, appears quite different from H–R diagrams containing stars of a wide variety of ages. Almost all stars fall on a well-defined curve in globular cluster H–R diagrams, and that curve's shape indicates the age of the cluster. A more detailed H–R diagram often reveals multiple stellar populations as indicated by
17608-466: The presence of closely separated curves, each corresponding to a distinct population of stars with a slightly different age or composition. Observations with the Wide Field Camera 3 , installed in 2009 on the Hubble Space Telescope, made it possible to distinguish these slightly different curves. The most massive main-sequence stars have the highest luminosity and will be the first to evolve into
17750-606: The region to great depths to gain a better understanding of how the processes of star and planet formation occur on such a large scale. These studies include observations with the Chandra X-ray Observatory , Spitzer Space Telescope , the Herschel Space Observatory and the Gran Telescopio Canarias . As for recent observations, the final stages of the process of photoablation is taking place, where
17892-400: The relative physical scale of the Milky Way, if the Solar System out to Neptune were the size of a US quarter (24.3 mm (0.955 in)), the Milky Way would be approximately at least the greatest north–south line of the contiguous United States . An even older study from 1978 gave a lower diameter for Milky Way about 23 kpc (75,000 ly). A 2015 paper discovered that there
18034-431: The same chemical abundance. Some clusters feature multiple populations, slightly differing in composition and age; for example, high-precision imagery of cluster NGC 2808 discerned three close, but distinct, main sequences. Further, the placements of the cluster stars in an H–R diagram (including the brightnesses of distance indicators) can be influenced by observational biases. One such effect, called blending, arises when
18176-476: The same time from one star-forming nebula , but nearly all globular clusters contain stars that formed at different times, or that have differing compositions. Some clusters may have had multiple episodes of star formation, and some may be remnants of smaller galaxies captured by larger galaxies. The first known globular cluster, now called M 22 , was discovered in 1665 by Abraham Ihle , a German amateur astronomer. The cluster Omega Centauri , easily visible in
18318-512: The size of a galaxy, and each of them can yield different results with respect to one another. The most commonly employed method is the D 25 standard – the isophote where the photometric brightness of a galaxy in the B-band (445 nm wavelength of light, in the blue part of the visible spectrum ) reaches 25 mag/arcsec . An estimate from 1997 by Goodwin and others compared the distribution of Cepheid variable stars in 17 other spiral galaxies to
18460-538: The south galactic pole is near α Sculptoris . Because of this high inclination, depending on the time of night and year, the Milky Way arch may appear relatively low or relatively high in the sky. For observers from latitudes approximately 65° north to 65° south, the Milky Way passes directly overhead twice a day. In Meteorologica , Aristotle (384–322 BC) states that the Greek philosophers Anaxagoras ( c. 500 –428 BC) and Democritus (460–370 BC) proposed that
18602-449: The southern sky with the naked eye, was known to ancient astronomers like Ptolemy as a star, but was reclassified as a nebula by Edmond Halley in 1677, then finally as a globular cluster in the early 19th century by John Herschel . The French astronomer Abbé Lacaille listed NGC 104 , NGC 4833 , M 55 , M 69 , and NGC 6397 in his 1751–1752 catalogue. The low resolution of early telescopes prevented individual stars in
18744-413: The stars in a globular cluster have about the same distance from Earth, a color–magnitude diagram using their observed magnitudes looks like a shifted H–R diagram (because of the roughly constant difference between their apparent and absolute magnitudes). This shift is called the distance modulus and can be used to calculate the distance to the cluster. The modulus is determined by comparing features (like
18886-512: The stellar disk larger by increasing to this size. A more recent 2018 paper later somewhat ruled out this hypothesis, and supported a conclusion that the Monoceros Ring, A13 and TriAnd Ring were stellar overdensities rather kicked out from the main stellar disk, with the velocity dispersion of the RR Lyrae stars found to be higher and consistent with halo membership. Another 2018 study revealed
19028-460: The transfer of material from one star to another, or even an encounter between two binary systems. The resulting star has a higher temperature than other stars in the cluster with comparable luminosity and thus differs from the main-sequence stars formed early in the cluster's existence. Some clusters have two distinct sequences of blue stragglers, one bluer than the other. Astronomers have searched for black holes within globular clusters since
19170-400: The two, discoveries of outliers had made the distinction between the two less clear by the early 21st century. Their name is derived from Latin globulus (small sphere). Globular clusters are occasionally known simply as "globulars". Although one globular cluster, Omega Centauri , was observed in antiquity and long thought to be a star, recognition of the clusters' true nature came with
19312-465: The universe and the Hubble constant . The blue stragglers appear on the H–R diagram as a series diverging from the main sequence in the direction of brighter, bluer stars. White dwarfs (the final remnants of some Sun-like stars), which are much fainter and somewhat hotter than the main-sequence stars, lie on the bottom-left of an H–R diagram. Globular clusters can be dated by looking at the temperatures of
19454-422: The universe itself and are of similar ages. Suggested scenarios to explain these subpopulations include violent gas-rich galaxy mergers, the accretion of dwarf galaxies, and multiple phases of star formation in a single galaxy. In the Milky Way, the metal-poor clusters are associated with the halo and the metal-rich clusters with the bulge. A large majority of the metal-poor clusters in the Milky Way are aligned on
19596-456: The universe, the Milky Way galaxy has a below average amount of neutrino luminosity making our galaxy a " neutrino desert ". The Milky Way consists of a bar-shaped core region surrounded by a warped disk of gas, dust and stars. The mass distribution within the Milky Way closely resembles the type Sbc in the Hubble classification , which represents spiral galaxies with relatively loosely wound arms. Astronomers first began to conjecture that
19738-399: The very probable presence of disk stars at 26–31.5 kpc (84,800–103,000 ly) from the Galactic Center or perhaps even farther, significantly beyond approximately 13–20 kpc (40,000–70,000 ly), in which it was once believed to be the abrupt drop-off of the stellar density of the disk, meaning that few or no stars were expected to be above this limit, save for stars that belong to
19880-478: The visible sky. He produced a diagram of the shape of the Milky Way with the Solar System close to the center. In 1845, Lord Rosse constructed a new telescope and was able to distinguish between elliptical and spiral-shaped nebulae. He also managed to make out individual point sources in some of these nebulae, lending credence to Kant's earlier conjecture. In 1904, studying the proper motions of stars, Jacobus Kapteyn reported that these were not random, as it
20022-412: The way to the core region. Models of globular clusters predict that core collapse occurs when the more massive stars in a globular cluster encounter their less massive counterparts. Over time, dynamic processes cause individual stars to migrate from the center of the cluster to the outside, resulting in a net loss of kinetic energy from the core region and leading the region's remaining stars to occupy
20164-505: Was believed in that time; stars could be divided into two streams, moving in nearly opposite directions. It was later realized that Kapteyn's data had been the first evidence of the rotation of our galaxy, which ultimately led to the finding of galactic rotation by Bertil Lindblad and Jan Oort . In 1917, Heber Doust Curtis had observed the nova S Andromedae within the Great Andromeda Nebula ( Messier object 31). Searching
#381618