Cushing Hall (1824) is a dormitory at Hampden–Sydney College in southside Virginia . Built in sections from 1822–1833, Cushing Hall is the oldest four story dormitory still in use in the United States. The building is listed in the Virginia Landmarks Register (1969) and on the National Register of Historic Places (1970) as a contributing property of Hampden–Sydney College Historic District. The structure is named after Jonathan P. Cushing , the fifth president of the college.
57-552: Cushing Hall was designed by William Phaup and Reuben Perry in the Federal style of architecture . The east wing and center section were completed by 1824, and the west section by 1833. Cushing Hall almost entirely replaced all the older buildings on the campus and was called "the College" (or "New College") until the early 20th century, when it was named Cushing Hall in honor of the College's fifth president, Jonathan P. Cushing . After almost
114-454: A a 2 − x 2 = ± ( a 2 − x 2 ) ( 1 − e 2 ) . {\displaystyle y=\pm {\frac {b}{a}}{\sqrt {a^{2}-x^{2}}}=\pm {\sqrt {\left(a^{2}-x^{2}\right)\left(1-e^{2}\right)}}.} The width and height parameters a , b {\displaystyle a,\;b} are called
171-528: A 2 x 1 b 2 ) {\displaystyle {\begin{pmatrix}-y_{1}a^{2}&x_{1}b^{2}\end{pmatrix}}} is a tangent vector at point ( x 1 , y 1 ) {\displaystyle (x_{1},\,y_{1})} , which proves the vector equation. If ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} and ( u , v ) {\displaystyle (u,v)} are two points of
228-621: A 2 + y 1 v b 2 ) + s 2 ( u 2 a 2 + v 2 b 2 ) = 0 . {\displaystyle {\frac {\left(x_{1}+su\right)^{2}}{a^{2}}}+{\frac {\left(y_{1}+sv\right)^{2}}{b^{2}}}=1\ \quad \Longrightarrow \quad 2s\left({\frac {x_{1}u}{a^{2}}}+{\frac {y_{1}v}{b^{2}}}\right)+s^{2}\left({\frac {u^{2}}{a^{2}}}+{\frac {v^{2}}{b^{2}}}\right)=0\ .} There are then cases: Using (1) one finds that ( − y 1
285-549: A 2 + y 2 b 2 = 1. {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1.} Assuming a ≥ b {\displaystyle a\geq b} , the foci are ( ± c , 0 ) {\displaystyle (\pm c,0)} for c = a 2 − b 2 {\textstyle c={\sqrt {a^{2}-b^{2}}}} . The standard parametric equation is: ( x , y ) = (
342-466: A 2 b 2 . {\displaystyle {\begin{aligned}A&=a^{2}\sin ^{2}\theta +b^{2}\cos ^{2}\theta &B&=2\left(b^{2}-a^{2}\right)\sin \theta \cos \theta \\[1ex]C&=a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta &D&=-2Ax_{\circ }-By_{\circ }\\[1ex]E&=-Bx_{\circ }-2Cy_{\circ }&F&=Ax_{\circ }^{2}+Bx_{\circ }y_{\circ }+Cy_{\circ }^{2}-a^{2}b^{2}.\end{aligned}}} These expressions can be derived from
399-542: A 2 cos 2 θ + b 2 sin 2 θ D = − 2 A x ∘ − B y ∘ E = − B x ∘ − 2 C y ∘ F = A x ∘ 2 + B x ∘ y ∘ + C y ∘ 2 −
456-462: A 2 − b 2 {\displaystyle c={\sqrt {a^{2}-b^{2}}}} . The eccentricity can be expressed as: e = c a = 1 − ( b a ) 2 , {\displaystyle e={\frac {c}{a}}={\sqrt {1-\left({\frac {b}{a}}\right)^{2}}},} assuming a > b . {\displaystyle a>b.} An ellipse with equal axes (
513-425: A ≥ b > 0 . {\displaystyle a\geq b>0\ .} In principle, the canonical ellipse equation x 2 a 2 + y 2 b 2 = 1 {\displaystyle {\tfrac {x^{2}}{a^{2}}}+{\tfrac {y^{2}}{b^{2}}}=1} may have a < b {\displaystyle a<b} (and hence
570-458: A + e x {\displaystyle a+ex} and a − e x {\displaystyle a-ex} . It follows from the equation that the ellipse is symmetric with respect to the coordinate axes and hence with respect to the origin. Throughout this article, the semi-major and semi-minor axes are denoted a {\displaystyle a} and b {\displaystyle b} , respectively, i.e.
627-596: A = b {\displaystyle a=b} ) has zero eccentricity, and is a circle. The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum . One half of it is the semi-latus rectum ℓ {\displaystyle \ell } . A calculation shows: ℓ = b 2 a = a ( 1 − e 2 ) . {\displaystyle \ell ={\frac {b^{2}}{a}}=a\left(1-e^{2}\right).} The semi-latus rectum ℓ {\displaystyle \ell }
SECTION 10
#1732854565206684-429: A cos ( t ) , b sin ( t ) ) for 0 ≤ t ≤ 2 π . {\displaystyle (x,y)=(a\cos(t),b\sin(t))\quad {\text{for}}\quad 0\leq t\leq 2\pi .} Ellipses are the closed type of conic section : a plane curve tracing the intersection of a cone with a plane (see figure). Ellipses have many similarities with
741-418: A parabola ). An ellipse has a simple algebraic solution for its area, but for its perimeter (also known as circumference ), integration is required to obtain an exact solution. Analytically , the equation of a standard ellipse centered at the origin with width 2 a {\displaystyle 2a} and height 2 b {\displaystyle 2b} is: x 2
798-760: A decade after being founded at the University of Virginia , Pi Kappa Alpha was "re-founded" as part of the Hampden–Sydney Convention, held in a student room of Cushing Hall in the late 1870s. The four delegates to the Hampden–Sydney Convention are referred to as the Junior Founders. It was at this convention that the fraternity defined itself as belonging to "the South." At the New Orleans Convention in 1909, Pi Kappa Alpha officially decided to declare itself
855-532: A dormitory) and the Randolph–Macon Building in Boydton, Virginia . As with many 19th Century buildings in academia, Cushing Hall has been used for a myriad of functions throughout its lifetime. Since the 1820s, the building has been used as an auditorium, chapel, library, classrooms, and residence hall. Federal Style Federal-style architecture is the name for the classical architecture built in
912-456: A national organization. The exterior has been restored and the interior modernized (first in 1910, more recently in 1998). Porches were added in 1910, along with a slate roof, replacing the original cedar shakes. The front of the building was originally the back, which faced the 18th century campus (which it also replaced). Cushing Hall is the model for Venable Hall (which originally housed Hampden–Sydney's seminary school, now used primarily as
969-522: A point on an ellipse and x → = ( x 1 y 1 ) + s ( u v ) {\textstyle {\vec {x}}={\begin{pmatrix}x_{1}\\y_{1}\end{pmatrix}}+s{\begin{pmatrix}u\\v\end{pmatrix}}} be the equation of any line g {\displaystyle g} containing ( x 1 , y 1 ) {\displaystyle (x_{1},\,y_{1})} . Inserting
1026-452: Is a constant. This constant ratio is the above-mentioned eccentricity: e = c a = 1 − b 2 a 2 . {\displaystyle e={\frac {c}{a}}={\sqrt {1-{\frac {b^{2}}{a^{2}}}}}.} Ellipses are common in physics , astronomy and engineering . For example, the orbit of each planet in the Solar System
1083-520: Is also the simplest Lissajous figure formed when the horizontal and vertical motions are sinusoids with the same frequency: a similar effect leads to elliptical polarization of light in optics . The name, ἔλλειψις ( élleipsis , "omission"), was given by Apollonius of Perga in his Conics . An ellipse can be defined geometrically as a set or locus of points in the Euclidean plane: The midpoint C {\displaystyle C} of
1140-559: Is approximately an ellipse with the Sun at one focus point (more precisely, the focus is the barycenter of the Sun–planet pair). The same is true for moons orbiting planets and all other systems of two astronomical bodies. The shapes of planets and stars are often well described by ellipsoids . A circle viewed from a side angle looks like an ellipse: that is, the ellipse is the image of a circle under parallel or perspective projection . The ellipse
1197-447: Is equal to the radius of curvature at the vertices (see section curvature ). An arbitrary line g {\displaystyle g} intersects an ellipse at 0, 1, or 2 points, respectively called an exterior line , tangent and secant . Through any point of an ellipse there is a unique tangent. The tangent at a point ( x 1 , y 1 ) {\displaystyle (x_{1},\,y_{1})} of
SECTION 20
#17328545652061254-473: Is included as a special type of ellipse. The equation | P F 2 | + | P F 1 | = 2 a {\displaystyle \left|PF_{2}\right|+\left|PF_{1}\right|=2a} can be viewed in a different way (see figure): c 2 {\displaystyle c_{2}} is called the circular directrix (related to focus F 2 {\displaystyle F_{2}} ) of
1311-625: Is the 2-argument arctangent function. Using trigonometric functions , a parametric representation of the standard ellipse x 2 a 2 + y 2 b 2 = 1 {\displaystyle {\tfrac {x^{2}}{a^{2}}}+{\tfrac {y^{2}}{b^{2}}}=1} is: ( x , y ) = ( a cos t , b sin t ) , 0 ≤ t < 2 π . {\displaystyle (x,\,y)=(a\cos t,\,b\sin t),\ 0\leq t<2\pi \,.} The parameter t (called
1368-805: The eccentric anomaly in astronomy) is not the angle of ( x ( t ) , y ( t ) ) {\displaystyle (x(t),y(t))} with the x -axis, but has a geometric meaning due to Philippe de La Hire (see § Drawing ellipses below). With the substitution u = tan ( t 2 ) {\textstyle u=\tan \left({\frac {t}{2}}\right)} and trigonometric formulae one obtains cos t = 1 − u 2 1 + u 2 , sin t = 2 u 1 + u 2 {\displaystyle \cos t={\frac {1-u^{2}}{1+u^{2}}}\ ,\quad \sin t={\frac {2u}{1+u^{2}}}} and
1425-553: The American colonies ' new motifs of neoclassical architecture as it was epitomized in Britain by Robert Adam , who published his designs in 1792. American Federal architecture typically uses plain surfaces with attenuated detail, usually isolated in panels, tablets, and friezes . It also had a flatter, smoother façade and rarely used pilasters . It was most influenced by the interpretation of ancient Roman architecture , fashionable after
1482-632: The Commissioners' Plan of 1811 in New York. The historic eastern part of Bleecker Street in New York, between Broadway and the Bowery , is home to Federal-style row houses at 7 to 13 and 21 to 25 Bleecker Street . The classicizing style of Federal architecture can especially be seen in the quintessential New England meeting house, with their lofty and complex towers by architects such as Lavius Fillmore and Asher Benjamin . This American neoclassical high style
1539-595: The Salem Maritime National Historic Site , consisting of 12 historic structures and about 9 acres (4 ha) of land along the waterfront. Modern reassessment of the American architecture of the Federal period began with Fiske Kimball . Ellipse In mathematics , an ellipse is a plane curve surrounding two focal points , such that for all points on the curve, the sum of the two distances to
1596-786: The degenerate cases from the non-degenerate case, let ∆ be the determinant Δ = | A 1 2 B 1 2 D 1 2 B C 1 2 E 1 2 D 1 2 E F | = A C F + 1 4 B D E − 1 4 ( A E 2 + C D 2 + F B 2 ) . {\displaystyle \Delta ={\begin{vmatrix}A&{\frac {1}{2}}B&{\frac {1}{2}}D\\{\frac {1}{2}}B&C&{\frac {1}{2}}E\\{\frac {1}{2}}D&{\frac {1}{2}}E&F\end{vmatrix}}=ACF+{\tfrac {1}{4}}BDE-{\tfrac {1}{4}}(AE^{2}+CD^{2}+FB^{2}).} Then
1653-491: The radicals by suitable squarings and using b 2 = a 2 − c 2 {\displaystyle b^{2}=a^{2}-c^{2}} (see diagram) produces the standard equation of the ellipse: x 2 a 2 + y 2 b 2 = 1 , {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1,} or, solved for y : y = ± b
1710-557: The rational parametric equation of an ellipse { x ( u ) = a 1 − u 2 1 + u 2 y ( u ) = b 2 u 1 + u 2 − ∞ < u < ∞ {\displaystyle {\begin{cases}x(u)=a\,{\dfrac {1-u^{2}}{1+u^{2}}}\\[10mu]y(u)=b\,{\dfrac {2u}{1+u^{2}}}\\[10mu]-\infty <u<\infty \end{cases}}} which covers any point of
1767-423: The semi-major and semi-minor axes . The top and bottom points V 3 = ( 0 , b ) , V 4 = ( 0 , − b ) {\displaystyle V_{3}=(0,\,b),\;V_{4}=(0,\,-b)} are the co-vertices . The distances from a point ( x , y ) {\displaystyle (x,\,y)} on the ellipse to the left and right foci are
Cushing Hall - Misplaced Pages Continue
1824-648: The x - and y -axes. In analytic geometry , the ellipse is defined as a quadric : the set of points ( x , y ) {\displaystyle (x,\,y)} of the Cartesian plane that, in non-degenerate cases, satisfy the implicit equation A x 2 + B x y + C y 2 + D x + E y + F = 0 {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0} provided B 2 − 4 A C < 0. {\displaystyle B^{2}-4AC<0.} To distinguish
1881-575: The United States following the American Revolution between c. 1780 and 1830, and particularly from 1785 to 1815, which was influenced heavily by the works of Andrea Palladio with several innovations on Palladian architecture by Thomas Jefferson and his contemporaries. Jefferson's Monticello estate and several federal government buildings, including the White House , are among
1938-1060: The canonical equation X 2 a 2 + Y 2 b 2 = 1 {\displaystyle {\frac {X^{2}}{a^{2}}}+{\frac {Y^{2}}{b^{2}}}=1} by a Euclidean transformation of the coordinates ( X , Y ) {\displaystyle (X,\,Y)} : X = ( x − x ∘ ) cos θ + ( y − y ∘ ) sin θ , Y = − ( x − x ∘ ) sin θ + ( y − y ∘ ) cos θ . {\displaystyle {\begin{aligned}X&=\left(x-x_{\circ }\right)\cos \theta +\left(y-y_{\circ }\right)\sin \theta ,\\Y&=-\left(x-x_{\circ }\right)\sin \theta +\left(y-y_{\circ }\right)\cos \theta .\end{aligned}}} Conversely,
1995-1385: The canonical form parameters can be obtained from the general-form coefficients by the equations: a , b = − 2 ( A E 2 + C D 2 − B D E + ( B 2 − 4 A C ) F ) ( ( A + C ) ± ( A − C ) 2 + B 2 ) B 2 − 4 A C , x ∘ = 2 C D − B E B 2 − 4 A C , y ∘ = 2 A E − B D B 2 − 4 A C , θ = 1 2 atan2 ( − B , C − A ) , {\displaystyle {\begin{aligned}a,b&={\frac {-{\sqrt {2{\big (}AE^{2}+CD^{2}-BDE+(B^{2}-4AC)F{\big )}{\big (}(A+C)\pm {\sqrt {(A-C)^{2}+B^{2}}}{\big )}}}}{B^{2}-4AC}},\\x_{\circ }&={\frac {2CD-BE}{B^{2}-4AC}},\\[5mu]y_{\circ }&={\frac {2AE-BD}{B^{2}-4AC}},\\[5mu]\theta &={\tfrac {1}{2}}\operatorname {atan2} (-B,\,C-A),\end{aligned}}} where atan2
2052-399: The center. The distance c {\displaystyle c} of the foci to the center is called the focal distance or linear eccentricity. The quotient e = c a {\displaystyle e={\tfrac {c}{a}}} is the eccentricity . The case F 1 = F 2 {\displaystyle F_{1}=F_{2}} yields a circle and
2109-456: The early United States, the founding generation consciously chose to associate the nation with the ancient democracies of Greece and the republican values of Rome . Grecian aspirations informed the Greek Revival , lasting into the 1850s. Using Roman architectural vocabulary, the Federal style applied to the balanced and symmetrical version of Georgian architecture that had been practiced in
2166-456: The ellipse x 2 a 2 + y 2 b 2 = 1 {\displaystyle {\tfrac {x^{2}}{a^{2}}}+{\tfrac {y^{2}}{b^{2}}}=1} except the left vertex ( − a , 0 ) {\displaystyle (-a,\,0)} . For u ∈ [ 0 , 1 ] , {\displaystyle u\in [0,\,1],} this formula represents
2223-479: The ellipse x 2 a 2 + y 2 b 2 = 1 {\displaystyle {\tfrac {x^{2}}{a^{2}}}+{\tfrac {y^{2}}{b^{2}}}=1} has the coordinate equation: x 1 a 2 x + y 1 b 2 y = 1. {\displaystyle {\frac {x_{1}}{a^{2}}}x+{\frac {y_{1}}{b^{2}}}y=1.} A vector parametric equation of
2280-620: The ellipse is a non-degenerate real ellipse if and only if C∆ < 0. If C∆ > 0, we have an imaginary ellipse, and if ∆ = 0, we have a point ellipse. The general equation's coefficients can be obtained from known semi-major axis a {\displaystyle a} , semi-minor axis b {\displaystyle b} , center coordinates ( x ∘ , y ∘ ) {\displaystyle \left(x_{\circ },\,y_{\circ }\right)} , and rotation angle θ {\displaystyle \theta } (the angle from
2337-427: The ellipse such that x 1 u a 2 + y 1 v b 2 = 0 {\textstyle {\frac {x_{1}u}{a^{2}}}+{\tfrac {y_{1}v}{b^{2}}}=0} , then the points lie on two conjugate diameters (see below ). (If a = b {\displaystyle a=b} , the ellipse is a circle and "conjugate" means "orthogonal".) If
Cushing Hall - Misplaced Pages Continue
2394-418: The ellipse would be taller than it is wide). This form can be converted to the standard form by transposing the variable names x {\displaystyle x} and y {\displaystyle y} and the parameter names a {\displaystyle a} and b . {\displaystyle b.} This is the distance from the center to a focus: c =
2451-543: The ellipse, the x -axis is the major axis, and: For an arbitrary point ( x , y ) {\displaystyle (x,y)} the distance to the focus ( c , 0 ) {\displaystyle (c,0)} is ( x − c ) 2 + y 2 {\textstyle {\sqrt {(x-c)^{2}+y^{2}}}} and to the other focus ( x + c ) 2 + y 2 {\textstyle {\sqrt {(x+c)^{2}+y^{2}}}} . Hence
2508-464: The ellipse. This property should not be confused with the definition of an ellipse using a directrix line below. Using Dandelin spheres , one can prove that any section of a cone with a plane is an ellipse, assuming the plane does not contain the apex and has slope less than that of the lines on the cone. The standard form of an ellipse in Cartesian coordinates assumes that the origin is the center of
2565-492: The focal points is a constant. It generalizes a circle , which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity e {\displaystyle e} , a number ranging from e = 0 {\displaystyle e=0} (the limiting case of a circle) to e = 1 {\displaystyle e=1} (the limiting case of infinite elongation, no longer an ellipse but
2622-420: The line segment joining the foci is called the center of the ellipse. The line through the foci is called the major axis , and the line perpendicular to it through the center is the minor axis . The major axis intersects the ellipse at two vertices V 1 , V 2 {\displaystyle V_{1},V_{2}} , which have distance a {\displaystyle a} to
2679-558: The line's equation into the ellipse equation and respecting x 1 2 a 2 + y 1 2 b 2 = 1 {\textstyle {\frac {x_{1}^{2}}{a^{2}}}+{\frac {y_{1}^{2}}{b^{2}}}=1} yields: ( x 1 + s u ) 2 a 2 + ( y 1 + s v ) 2 b 2 = 1 ⟹ 2 s ( x 1 u
2736-605: The most prominent examples of buildings constructed in Federal style. Federal style is also used in association with furniture design in the United States of the same time period. The style broadly corresponds to the classicism of Biedermeier style in the German -speaking lands, Regency architecture in Britain, and the French Empire style . It may also be termed Adamesque architecture . The White House and Monticello were setting stones for what Federal architecture has become. In
2793-412: The other two forms of conic sections, parabolas and hyperbolas , both of which are open and unbounded . An angled cross section of a right circular cylinder is also an ellipse. An ellipse may also be defined in terms of one focal point and a line outside the ellipse called the directrix : for all points on the ellipse, the ratio between the distance to the focus and the distance to the directrix
2850-737: The parameter [ u : v ] {\displaystyle [u:v]} is considered to be a point on the real projective line P ( R ) {\textstyle \mathbf {P} (\mathbf {R} )} , then the corresponding rational parametrization is [ u : v ] ↦ ( a v 2 − u 2 v 2 + u 2 , b 2 u v v 2 + u 2 ) . {\displaystyle [u:v]\mapsto \left(a{\frac {v^{2}-u^{2}}{v^{2}+u^{2}}},b{\frac {2uv}{v^{2}+u^{2}}}\right).} Then [ 1 : 0 ] ↦ ( −
2907-399: The point ( x , y ) {\displaystyle (x,\,y)} is on the ellipse whenever: ( x − c ) 2 + y 2 + ( x + c ) 2 + y 2 = 2 a . {\displaystyle {\sqrt {(x-c)^{2}+y^{2}}}+{\sqrt {(x+c)^{2}+y^{2}}}=2a\ .} Removing
SECTION 50
#17328545652062964-429: The positive horizontal axis to the ellipse's major axis) using the formulae: A = a 2 sin 2 θ + b 2 cos 2 θ B = 2 ( b 2 − a 2 ) sin θ cos θ C =
3021-432: The right upper quarter of the ellipse moving counter-clockwise with increasing u . {\displaystyle u.} The left vertex is the limit lim u → ± ∞ ( x ( u ) , y ( u ) ) = ( − a , 0 ) . {\textstyle \lim _{u\to \pm \infty }(x(u),\,y(u))=(-a,\,0)\;.} Alternately, if
3078-618: The standard ellipse is shifted to have center ( x ∘ , y ∘ ) {\displaystyle \left(x_{\circ },\,y_{\circ }\right)} , its equation is ( x − x ∘ ) 2 a 2 + ( y − y ∘ ) 2 b 2 = 1 . {\displaystyle {\frac {\left(x-x_{\circ }\right)^{2}}{a^{2}}}+{\frac {\left(y-y_{\circ }\right)^{2}}{b^{2}}}=1\ .} The axes are still parallel to
3135-606: The tangent is: x → = ( x 1 y 1 ) + s ( − y 1 a 2 x 1 b 2 ) , s ∈ R . {\displaystyle {\vec {x}}={\begin{pmatrix}x_{1}\\y_{1}\end{pmatrix}}+s\left({\begin{array}{r}-y_{1}a^{2}\\x_{1}b^{2}\end{array}}\right),\quad s\in \mathbb {R} .} Proof: Let ( x 1 , y 1 ) {\displaystyle (x_{1},\,y_{1})} be
3192-452: The unearthing of Pompeii and Herculaneum . The bald eagle was a common symbol used in this style, with the ellipse a frequent architectural motif. The classicizing manner of constructions and town planning undertaken by the federal government was expressed in early federal projects of lighthouses, harbor buildings, universities, and hospitals. It can be seen in the rationalizing, urbanistic layout of L'Enfant Plan of Washington and in
3249-518: Was the idiom of America's first professional architects, such as Charles Bulfinch and Minard Lafever . Robert Adam and James Adam were leading influences through their books. In Salem, Massachusetts , there are numerous examples of American colonial architecture and Federal architecture in two historic districts: Chestnut Street District , which is part of the Samuel McIntire Historic District containing 407 buildings, and
#205794