Climate change vulnerability is a concept that describes how strongly people or ecosystems are likely to be affected by climate change . Its formal definition is the " propensity or predisposition to be adversely affected" by climate change. It can apply to humans and also to natural systems (or ecosystems). Issues around the capacity to cope and adapt are also part of this concept. Vulnerability is a component of climate risk . It differs within communities and also across societies, regions, and countries. It can increase or decrease over time. Vulnerability is generally a bigger problem for people in low-income countries than for those in high-income countries.
114-454: This is a list of climate change initiatives of international, national, regional, and local political initiatives to take action on climate change ( global warming ). A Climate Action Plan (CAP) is a set of strategies intended to guide efforts for climate change mitigation . On the municipal and regional level, many cities have created climate action plans. The Federation of Canadian Municipalities coordinates local climate action through
228-532: A characteristic of people or places independently of physical events. The report included two additional definitions, one of contextual vulnerability and one of outcome vulnerability. In the climate change context, exposure is defined as "the presence of people; livelihoods; species or ecosystems; environmental functions, services, and resources; infrastructure; or economic, social, or cultural assets in places and settings that could be adversely affected.". In earlier definitions of vulnerability to climate change (in
342-426: A community that is economically vulnerable is one that is ill-prepared for the effects of climate change because it lacks the needed financial resources. Preparing a climate resilient society will require huge investments in infrastructure, city planning, engineering sustainable energy sources, and preparedness systems. From a global perspective, it is more likely that people living at or below poverty will be affected
456-635: A decadal timescale. Other changes are caused by an imbalance of energy from external forcings . Examples of these include changes in the concentrations of greenhouse gases , solar luminosity , volcanic eruptions, and variations in the Earth's orbit around the Sun. To determine the human contribution to climate change, unique "fingerprints" for all potential causes are developed and compared with both observed patterns and known internal climate variability . For example, solar forcing—whose fingerprint involves warming
570-532: A lot of light to being dark after the ice has melted, they start absorbing more heat . Local black carbon deposits on snow and ice also contribute to Arctic warming. Arctic surface temperatures are increasing between three and four times faster than in the rest of the world. Melting of ice sheets near the poles weakens both the Atlantic and the Antarctic limb of thermohaline circulation , which further changes
684-412: A marked increase in temperature. Ongoing changes in climate have had no precedent for several thousand years. Multiple independent datasets all show worldwide increases in surface temperature, at a rate of around 0.2 °C per decade. The 2014–2023 decade warmed to an average 1.19 °C [1.06–1.30 °C] compared to the pre-industrial baseline (1850–1900). Not every single year was warmer than
798-408: A physical climate model. These models simulate how population, economic growth , and energy use affect—and interact with—the physical climate. With this information, these models can produce scenarios of future greenhouse gas emissions. This is then used as input for physical climate models and carbon cycle models to predict how atmospheric concentrations of greenhouse gases might change. Depending on
912-445: A program called Partners for Climate Protection. Climate change Present-day climate change includes both global warming —the ongoing increase in global average temperature —and its wider effects on Earth's climate . Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global temperatures is driven by human activities , especially fossil fuel burning since
1026-552: A relationship between different levels of climate-related hazards (like extreme temperatures, sea-level rise, or intense precipitation) and the effects, or damages. Similarly as for climate risk assessment, tools for vulnerability assessment vary depending on the sector, the scale at which the study is being carried out, and the entity or system which is thought to vulnerable. Modelling and other participatory tools include WEAP for understanding water resource vulnerabilities and assessing adaptation options. The Vulnerability Sourcebook
1140-552: A report for the whole country in 2017-18 while the Rochester, New York commissioned a much more local report for the city in 2018. Or, for example, NOAA Fisheries commissioned Climate Vulnerability assessments for marine fishers in the United States. In some cases vulnerability assessment is done in advance of preparing local climate adaptation plans or risk management plans. Global indices for climate change vulnerability include
1254-682: A report published in The Lancet found that the greatest impact tends to fall on the most vulnerable people such as the poor, women, children, the elderly, people with pre-existing health concerns, other minorities and outdoor workers. There can be "structural deficits related to social, economic, cultural, political, and institutional conditions" which would explain why some parts of the population are more impacted than others. This applies for example to climate-related risks to household water security for women in remote rural regions in Burkina Faso or
SECTION 10
#17328488940161368-457: A result of climate change. Global sea level is rising as a consequence of thermal expansion and the melting of glaciers and ice sheets . Sea level rise has increased over time, reaching 4.8 cm per decade between 2014 and 2023. Over the 21st century, the IPCC projects 32–62 cm of sea level rise under a low emission scenario, 44–76 cm under an intermediate one and 65–101 cm under
1482-474: A result. The World Health Organization calls climate change one of the biggest threats to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming . Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for
1596-698: A role in the difference of health outcomes amongst varying ethnic groups as a result of climate change. Reduced access to English media and important public health statements as a result of linguistic barriers. This may also lead to a reduction of adaptive behavior and can put some individuals in danger of experiencing heat-related illnesses or exacerbating existing conditions. As global temperatures rise, extreme weather events become more frequent, and air quality worsens due to climate change, older adults (aged 65 and above) face increased risks of heat-related illnesses, chronic disease, and infectious diseases. Both physiological vulnerabilities and sociological factors compound
1710-423: A set of standardized values. However, sometimes weighting is done according what are thought to be the most important determinants of vulnerability. Climate vulnerability tracking starts identifying the relevant information, preferably open access, produced by state or international bodies at the scale of interest. Then a further effort to make the vulnerability information freely accessible to all development actors
1824-501: A significant health hazard. It is also important to discuss occupational hazards when elaborating upon the impact of climate change on the health outcomes of varying racial and ethnic groups. Extreme heat can be detrimental to outdoor workers. Several studies have revealed that the agricultural workforce has been negatively affected by the growing effects of climate change. The majority of agricultural workers are from Latin America, with also
1938-653: A significant population who are also composed of Asian and Caribbean migrants, and people of Native American and African American descent. In the same analysis done on the 2006 heat wave in California, it was found that there was a significantly increased rate of hospitalization for cardiac-related illnesses amongst crop workers of Hispanic backgrounds as a result of occupational hazards. To mitigate this concern, more relevant occupational health and safety training programs should be set in place and working conditions should be more carefully monitored. Language barriers may also play
2052-417: A small share of global emissions , yet have the least ability to adapt and are most vulnerable to climate change . Many climate change impacts have been observed in the first decades of the 21st century, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points , such as melting all of
2166-579: A study done in Los Angeles, California during a heat wave, it was found that African American populations were at greater risk of mortality. In fact, the mortality rate of African Americans during this 2006 heat wave was double that of the average population. Heat-related emergency department visits were also significantly increased for ethnic populations as there was a spike in emergency department visits found amongst Asian/Pacific Islander populations and African American populations. Although some may attribute
2280-426: A sustenance based lifestyle are also at greater risk. Around the world, climate change affects rural communities that heavily depend on their agriculture and natural resources for their livelihood. Increased frequency and severity of climate events disproportionately affects women, rural, dryland, and island communities. This leads to more drastic changes in their lifestyles and forces them to adapt to this change. It
2394-442: A system is susceptible to, and unable to cope with, adverse effects of climate change, including climate variability and extremes". Early studies focused on biophysical vulnerability to climate change. In other words, the effects of physical climate hazards such as a heat wave or heavy rain events. This direction of research was shaped by earlier natural hazards research and it emphasised physical changes and energy flows in
SECTION 20
#17328488940162508-538: A very high emission scenario. Marine ice sheet instability processes in Antarctica may add substantially to these values, including the possibility of a 2-meter sea level rise by 2100 under high emissions. Climate change has led to decades of shrinking and thinning of the Arctic sea ice . While ice-free summers are expected to be rare at 1.5 °C degrees of warming, they are set to occur once every three to ten years at
2622-519: A warming level of 2 °C. Higher atmospheric CO 2 concentrations cause more CO 2 to dissolve in the oceans, which is making them more acidic . Because oxygen is less soluble in warmer water, its concentrations in the ocean are decreasing , and dead zones are expanding. Greater degrees of global warming increase the risk of passing through ' tipping points '—thresholds beyond which certain major impacts can no longer be avoided even if temperatures return to their previous state. For instance,
2736-459: Is a component of climate risk . Vulnerability will be higher if the capacity to cope and adapt is low. Climate vulnerability can include a wide variety of different meanings, situations, and contexts in climate change research. It has been a central concept in academic research and IPCC assessments since 2001. The concept was defined in the Third IPCC report (2001) as "the degree to which
2850-679: Is a guide for practical and scientific knowledge on vulnerability assessment. Climate vulnerability mapping is also used to understand which areas are the most geographically vulnerable. A systematic review published in 2019 found 84 studies focused on the use of mapping to communicate and do analysis of climate vulnerability. All regions of the world are vulnerable to climate change but to a different degree. With high confidence, researchers concluded in 2001 that developing countries would tend to be more vulnerable to climate change than developed countries . Based on development trends in 2001, scientists have found that few developing countries would have
2964-483: Is also important in this case to note that social positions can be denoted by race or ethnicity. Therefore, there can exist a variance in health outcomes as a result of differences in exposure and accessibility to healthcare to mitigate the health damages caused by climate change. It is understood that increased exposure to high temperatures as a result of global warming can lead to acute heat-related illnesses such as heat stroke or can aggravate pre-existing conditions. In
3078-557: Is an estimated total sea level rise of 2.3 metres per degree Celsius (4.2 ft/°F) after 2000 years. Oceanic CO 2 uptake is slow enough that ocean acidification will also continue for hundreds to thousands of years. Deep oceans (below 2,000 metres (6,600 ft)) are also already committed to losing over 10% of their dissolved oxygen by the warming which occurred to date. Further, the West Antarctic ice sheet appears committed to practically irreversible melting, which would increase
3192-566: Is becoming more important for local and government agencies to create strategies to react to change and adapt infrastructure to meet the needs of those impacted. Various organizations work to create adaptation , mitigation, and resilience plans that will help rural and at risk communities around the world that depend on the earth's resources to survive. It has been estimated in 2021 that "approximately 3.3 to 3.6 billion people live in contexts that are highly vulnerable to climate change". The vulnerability of ecosystems and people to climate change
3306-420: Is between biophysical and social (or socioeconomic) vulnerability: Early studies focused on biophysical vulnerability to climate change. In other words, the effects of physical climate hazards such as a heat wave or heavy rain events. This direction of research was shaped by earlier natural hazards research and it emphasised physical changes and energy flows in the landscape. It aims to quantify and measure
3420-533: Is between biophysical and social vulnerability. Biophysical vulnerability is about the effects of climate hazards such as heat waves or tropical cyclones . Social vulnerability, on the other hand, is about the underlying political, institutional, economic and social factors within societies. These factors matter for how and why people are affected, and they put some people and places more at risk than others. People who are more vulnerable include for example people with low incomes, indigenous peoples , women, children,
3534-711: Is determined by modelling the carbon cycle and climate sensitivity to greenhouse gases. According to UNEP , global warming can be kept below 1.5 °C with a 50% chance if emissions after 2023 do not exceed 200 gigatonnes of CO 2 . This corresponds to around 4 years of current emissions. To stay under 2.0 °C, the carbon budget is 900 gigatonnes of CO 2 , or 16 years of current emissions. The climate system experiences various cycles on its own which can last for years, decades or even centuries. For example, El Niño events cause short-term spikes in surface temperature while La Niña events cause short term cooling. Their relative frequency can affect global temperature trends on
List of climate change initiatives - Misplaced Pages Continue
3648-428: Is forcing many species to relocate or become extinct . Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating , ocean acidification and sea level rise . Climate change threatens people with increased flooding , extreme heat, increased food and water scarcity, more disease, and economic loss . Human migration and conflict can also be
3762-414: Is higher in some locations than in others. Certain aspects within a region increase vulnerability, for example poverty, governance challenges and violent conflict . Some types of livelihoods are regarded as particularly climate-sensitive, resulting in a higher level of climate change vulnerability. These include for example smallholder farmers, pastoralists and fishing communities. At its basic level,
3876-399: Is independent of where greenhouse gases are emitted, because the gases persist long enough to diffuse across the planet. Since the pre-industrial period, the average surface temperature over land regions has increased almost twice as fast as the global average surface temperature. This is because oceans lose more heat by evaporation and oceans can store a lot of heat . The thermal energy in
3990-447: Is not the same everywhere: there are marked differences among and within regions (see regions that are particularly vulnerable below). Vulnerability can also increase or decrease over time. People who are more vulnerable to the effects of climate change than others include for example people with low incomes, indigenous peoples, women, children, the elderly. For example, when looking at the effects of climate change on human health ,
4104-450: Is primarily attributed to sulfate aerosols produced by the combustion of fossil fuels with heavy sulfur concentrations like coal and bunker fuel . Smaller contributions come from black carbon (from combustion of fossil fuels and biomass), and from dust. Globally, aerosols have been declining since 1990 due to pollution controls, meaning that they no longer mask greenhouse gas warming as much. Aerosols also have indirect effects on
4218-444: Is radiating into space. Warming reduces average snow cover and forces the retreat of glaciers . At the same time, warming also causes greater evaporation from the oceans , leading to more atmospheric humidity , more and heavier precipitation . Plants are flowering earlier in spring, and thousands of animal species have been permanently moving to cooler areas. Different regions of the world warm at different rates . The pattern
4332-466: Is required. Vulnerability tracking has many applications. It constitutes an indicator for the monitoring and evaluation of programs and projects for resilience and adaptation to climate change. Vulnerability tracking is also a decision making tool in regional and national adaptation policies. Climate vulnerability curves are a method of assessing physical vulnerability on various sectors such as agriculture, infrastructure, health, and ecosystems. They show
4446-516: Is shaped by feedbacks, which either amplify or dampen the change. Self-reinforcing or positive feedbacks increase the response, while balancing or negative feedbacks reduce it. The main reinforcing feedbacks are the water-vapour feedback , the ice–albedo feedback , and the net effect of clouds. The primary balancing mechanism is radiative cooling , as Earth's surface gives off more heat to space in response to rising temperature. In addition to temperature feedbacks, there are feedbacks in
4560-407: Is the major reason why different climate models project different magnitudes of warming for a given amount of emissions. A climate model is a representation of the physical, chemical and biological processes that affect the climate system. Models include natural processes like changes in the Earth's orbit, historical changes in the Sun's activity, and volcanic forcing. Models are used to estimate
4674-417: Is unclear. A related phenomenon driven by climate change is woody plant encroachment , affecting up to 500 million hectares globally. Climate change has contributed to the expansion of drier climate zones, such as the expansion of deserts in the subtropics . The size and speed of global warming is making abrupt changes in ecosystems more likely. Overall, it is expected that climate change will result in
List of climate change initiatives - Misplaced Pages Continue
4788-438: Is understood as independent of exposure (and hazard) but is contextual. Second, it means that vulnerability assessment could focus on indicators for sensitivity and adaptive capacity to understand the current system weaknesses. For example, weaknesses such as the high ground slope of a farmland or marginalization of households in a community would make people or places sensitive to climate impacts. This makes it important to select
4902-489: Is useful to carry out vulnerability assessments in advance of preparing local climate adaptation plans or risk management plans. Global vulnerability assessments use spatial mapping with aggregated data for the regional or national level. Climate change vulnerability is defined as the "propensity or predisposition to be adversely affected" by climate change . It can apply to humans but also to natural systems ( ecosystems ), and both are interdependent. Vulnerability
5016-507: The Atlantic meridional overturning circulation (AMOC), and irreversible damage to key ecosystems like the Amazon rainforest and coral reefs can unfold in a matter of decades. The long-term effects of climate change on oceans include further ice melt, ocean warming , sea level rise, ocean acidification and ocean deoxygenation. The timescale of long-term impacts are centuries to millennia due to CO 2 's long atmospheric lifetime. The result
5130-657: The Earth's energy budget . Sulfate aerosols act as cloud condensation nuclei and lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets. They also reduce the growth of raindrops , which makes clouds more reflective to incoming sunlight. Indirect effects of aerosols are the largest uncertainty in radiative forcing . While aerosols typically limit global warming by reflecting sunlight, black carbon in soot that falls on snow or ice can contribute to global warming. Not only does this increase
5244-568: The Greenland ice sheet is already melting, but if global warming reaches levels between 1.7 °C and 2.3 °C, its melting will continue until it fully disappears. If the warming is later reduced to 1.5 °C or less, it will still lose a lot more ice than if the warming was never allowed to reach the threshold in the first place. While the ice sheets would melt over millennia, other tipping points would occur faster and give societies less time to respond. The collapse of major ocean currents like
5358-835: The Greenland ice sheet . Under the 2015 Paris Agreement , nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050. Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind , solar , hydro , and nuclear power . Cleanly generated electricity can replace fossil fuels for powering transportation , heating buildings , and running industrial processes. Carbon can also be removed from
5472-689: The Industrial Revolution , naturally-occurring amounts of greenhouse gases caused the air near the surface to be about 33 °C warmer than it would have been in their absence. Human activity since the Industrial Revolution, mainly extracting and burning fossil fuels ( coal , oil , and natural gas ), has increased the amount of greenhouse gases in the atmosphere. In 2022, the concentrations of CO 2 and methane had increased by about 50% and 164%, respectively, since 1750. These CO 2 levels are higher than they have been at any time during
5586-468: The Industrial Revolution . Fossil fuel use, deforestation , and some agricultural and industrial practices release greenhouse gases . These gases absorb some of the heat that the Earth radiates after it warms from sunlight , warming the lower atmosphere. Carbon dioxide , the primary greenhouse gas driving global warming, has grown by about 50% and is at levels not seen for millions of years. Climate change has an increasingly large impact on
5700-524: The ND-GAIN Country Index, which measures national climate vulnerability globally, INFORM Risk Index and the WorldRiskIndex , which include social vulnerability indices. Indicator approaches are also used at national and sub-national levels. They use a composite index of many individual quantifiable indicators. To generate the index value or 'score', most often a simple average is calculated across
5814-465: The Third IPCC report and Fourth IPCC report ) vulnerability was defined as a function of exposure, sensitivity and adaptive capacity. This changed during the Fifth IPCC cycle. In this report, exposure was defined as one of the three interacting elements of climate risk , rather than as one of the external drivers of vulnerability. This change had two main implications. First, it means that vulnerability
SECTION 50
#17328488940165928-509: The World Economic Forum , 14.5 million more deaths are expected due to climate change by 2050. 30% of the global population currently live in areas where extreme heat and humidity are already associated with excess deaths. By 2100, 50% to 75% of the global population would live in such areas. While total crop yields have been increasing in the past 50 years due to agricultural improvements, climate change has already decreased
6042-414: The carbon cycle . While plants on land and in the ocean absorb most excess emissions of CO 2 every year, that CO 2 is returned to the atmosphere when biological matter is digested, burns, or decays. Land-surface carbon sink processes, such as carbon fixation in the soil and photosynthesis, remove about 29% of annual global CO 2 emissions. The ocean has absorbed 20 to 30% of emitted CO 2 over
6156-402: The climate system . Solar irradiance has been measured directly by satellites , and indirect measurements are available from the early 1600s onwards. Since 1880, there has been no upward trend in the amount of the Sun's energy reaching the Earth, in contrast to the warming of the lower atmosphere (the troposphere ). The upper atmosphere (the stratosphere ) would also be warming if the Sun
6270-427: The effects of climate change than others. Smallholder farmers, pastoralists , and fishing communities are livelihoods that may be especially vulnerable. Further drivers for vulnerability are unsustainable land and ocean use, inequity, marginalization, and historical and ongoing patterns of inequity and poor governance. There are many different notions of what it means to be vulnerable. An important distinction
6384-971: The extinction of many species. The oceans have heated more slowly than the land, but plants and animals in the ocean have migrated towards the colder poles faster than species on land. Just as on land, heat waves in the ocean occur more frequently due to climate change, harming a wide range of organisms such as corals, kelp , and seabirds . Ocean acidification makes it harder for marine calcifying organisms such as mussels , barnacles and corals to produce shells and skeletons ; and heatwaves have bleached coral reefs . Harmful algal blooms enhanced by climate change and eutrophication lower oxygen levels, disrupt food webs and cause great loss of marine life. Coastal ecosystems are under particular stress. Almost half of global wetlands have disappeared due to climate change and other human impacts. Plants have come under increased stress from damage by insects. The effects of climate change are impacting humans everywhere in
6498-533: The situational variables (where they live, their health, who lives with them in the household, how much they earn). Geographic, or place-based vulnerability to climate change is an important dimension. The most geographically vulnerable locations to climate change are those that will be impacted by side effects of natural hazards, such as rising sea levels and by dramatic changes in ecosystem services , including access to food. Island nations are usually noted as more vulnerable but communities that rely heavily on
6612-432: The socioeconomic scenario and the mitigation scenario, models produce atmospheric CO 2 concentrations that range widely between 380 and 1400 ppm. The environmental effects of climate change are broad and far-reaching, affecting oceans , ice, and weather. Changes may occur gradually or rapidly. Evidence for these effects comes from studying climate change in the past, from modelling, and from modern observations. Since
6726-613: The "degree of loss" on a scale of 0 (no loss) to 1 (total loss). In this framework, for example, physical vulnerability to surface water hazards in mountain areas has been widely studied. Social vulnerability is a more people-centred, holistic perspective on how and why people are affected by climate change. Vulnerability of ecosystems and people to climate change is driven by certain unsustainable development patterns such as "unsustainable ocean and land use, inequity, marginalization, historical and ongoing patterns of inequity such as colonialism , and governance". Therefore, vulnerability
6840-405: The 18th century and 1970 there was little net warming, as the warming impact of greenhouse gas emissions was offset by cooling from sulfur dioxide emissions. Sulfur dioxide causes acid rain , but it also produces sulfate aerosols in the atmosphere, which reflect sunlight and cause global dimming . After 1970, the increasing accumulation of greenhouse gases and controls on sulfur pollution led to
6954-599: The 1950s, droughts and heat waves have appeared simultaneously with increasing frequency. Extremely wet or dry events within the monsoon period have increased in India and East Asia. Monsoonal precipitation over the Northern Hemisphere has increased since 1980. The rainfall rate and intensity of hurricanes and typhoons is likely increasing , and the geographic range likely expanding poleward in response to climate warming. Frequency of tropical cyclones has not increased as
SECTION 60
#17328488940167068-500: The 1980s, the terms global warming and climate change became more common, often being used interchangeably. Scientifically, global warming refers only to increased surface warming, while climate change describes both global warming and its effects on Earth's climate system , such as precipitation changes. Climate change can also be used more broadly to include changes to the climate that have happened throughout Earth's history. Global warming —used as early as 1975 —became
7182-435: The Arctic is another major feedback, this reduces the reflectivity of the Earth's surface in the region and accelerates Arctic warming . This additional warming also contributes to permafrost thawing, which releases methane and CO 2 into the atmosphere. Around half of human-caused CO 2 emissions have been absorbed by land plants and by the oceans. This fraction is not static and if future CO 2 emissions decrease,
7296-542: The CO 2 released by the chemical reactions for making cement , steel , aluminum , and fertilizer . Methane emissions come from livestock , manure, rice cultivation , landfills, wastewater, and coal mining , as well as oil and gas extraction . Nitrous oxide emissions largely come from the microbial decomposition of fertilizer . While methane only lasts in the atmosphere for an average of 12 years, CO 2 lasts much longer. The Earth's surface absorbs CO 2 as part of
7410-604: The Earth will be able to absorb up to around 70%. If they increase substantially, it'll still absorb more carbon than now, but the overall fraction will decrease to below 40%. This is because climate change increases droughts and heat waves that eventually inhibit plant growth on land, and soils will release more carbon from dead plants when they are warmer . The rate at which oceans absorb atmospheric carbon will be lowered as they become more acidic and experience changes in thermohaline circulation and phytoplankton distribution. Uncertainty over feedbacks, particularly cloud cover,
7524-626: The Indigenous peoples of the Arctic, such as the Inuit , Yupik , and Saami , who are particularly vulnerable. Traditional livelihoods, including hunting, fishing, and reindeer herding, are threatened by changes in ice conditions, wildlife migration patterns, and habitat availability. Additionally, thawing permafrost can damage infrastructure and contaminate water sources, posing health and safety risks to communities. Small island Developing States are particularly vulnerable to climate change. Partly this
7638-769: The U.S Environmental Protection Agency has implemented projects region by region to ensure the development of environmental justice. These developments include but are not limited to population vulnerability, green space development locally as well as federally, and the reevaluation of environmentally disproportionate health burdens. Vulnerability assessment is important because it provides information that can be used to develop management actions in response to climate change. Climate change vulnerability assessments and tools are available at all scales. Macro-scale vulnerability assessment often uses indices. Modelling and participatory approaches are also in use. Global vulnerability assessments are based on spatial mapping using aggregated data for
7752-441: The absorption of sunlight, it also increases melting and sea-level rise. Limiting new black carbon deposits in the Arctic could reduce global warming by 0.2 °C by 2050. The effect of decreasing sulfur content of fuel oil for ships since 2020 is estimated to cause an additional 0.05 °C increase in global mean temperature by 2050. As the Sun is the Earth's primary energy source, changes in incoming sunlight directly affect
7866-411: The atmosphere , for instance by increasing forest cover and farming with methods that capture carbon in soil . Before the 1980s it was unclear whether the warming effect of increased greenhouse gases was stronger than the cooling effect of airborne particulates in air pollution . Scientists used the term inadvertent climate modification to refer to human impacts on the climate at this time. In
7980-452: The atmosphere. volcanic CO 2 emissions are more persistent, but they are equivalent to less than 1% of current human-caused CO 2 emissions. Volcanic activity still represents the single largest natural impact (forcing) on temperature in the industrial era. Yet, like the other natural forcings, it has had negligible impacts on global temperature trends since the Industrial Revolution. The climate system's response to an initial forcing
8094-454: The biggest threats to global health in the 21st century. Scientists have warned about the irreversible harms it poses. Extreme weather events affect public health, and food and water security . Temperature extremes lead to increased illness and death. Climate change increases the intensity and frequency of extreme weather events. It can affect transmission of infectious diseases , such as dengue fever and malaria . According to
8208-429: The capacity to efficiently adapt to climate change. This was partly due to their low adaptive capacity and the high costs of adaptation in proportion to their GDP. The Arctic is extremely vulnerable to climate change. It was predicted in 2007 that there would be major ecological, sociological, and economic impacts in the region. Among those being disproportionately impacted by issues regarding climate change have been
8322-540: The carbon cycle, such as the fertilizing effect of CO 2 on plant growth. Feedbacks are expected to trend in a positive direction as greenhouse gas emissions continue, raising climate sensitivity. These feedback processes alter the pace of global warming. For instance, warmer air can hold more moisture in the form of water vapour , which is itself a potent greenhouse gas. Warmer air can also make clouds higher and thinner, and therefore more insulating, increasing climate warming. The reduction of snow cover and sea ice in
8436-543: The climate cycled through ice ages . One of the hotter periods was the Last Interglacial , around 125,000 years ago, where temperatures were between 0.5 °C and 1.5 °C warmer than before the start of global warming. This period saw sea levels 5 to 10 metres higher than today. The most recent glacial maximum 20,000 years ago was some 5–7 °C colder. This period has sea levels that were over 125 metres (410 ft) lower than today. Temperatures stabilized in
8550-668: The current interglacial period beginning 11,700 years ago . This period also saw the start of agriculture. Historical patterns of warming and cooling, like the Medieval Warm Period and the Little Ice Age , did not occur at the same time across different regions. Temperatures may have reached as high as those of the late 20th century in a limited set of regions. Climate information for that period comes from climate proxies , such as trees and ice cores . Around 1850 thermometer records began to provide global coverage. Between
8664-403: The degree of warming future emissions will cause when accounting for the strength of climate feedbacks . Models also predict the circulation of the oceans, the annual cycle of the seasons, and the flows of carbon between the land surface and the atmosphere. The physical realism of models is tested by examining their ability to simulate current or past climates. Past models have underestimated
8778-427: The destroyed trees release CO 2 , and are not replaced by new trees, removing that carbon sink . Between 2001 and 2018, 27% of deforestation was from permanent clearing to enable agricultural expansion for crops and livestock. Another 24% has been lost to temporary clearing under the shifting cultivation agricultural systems. 26% was due to logging for wood and derived products, and wildfires have accounted for
8892-555: The discrepancy in mortality and hospitalization rates among ethnic groups to physiological differences between populations, not enough evidence has been provided to support this statement. Rather, studies show that these differences in health outcomes amongst different racial and ethnic groups are more likely to be the result of socioeconomic variance. Racial minorities are more likely to be socioeconomically disadvantaged and are therefore more likely to take on underpaid high-risk occupations, live in hazardous areas, and have difficulty finding
9006-401: The distribution of heat and precipitation around the globe. The World Meteorological Organization estimates there is an 80% chance that global temperatures will exceed 1.5 °C warming for at least one year between 2024 and 2028. The chance of the 5-year average being above 1.5 °C is almost half. The IPCC expects the 20-year average global temperature to exceed +1.5 °C in
9120-444: The dominant direct influence on temperature from land use change. Thus, land use change to date is estimated to have a slight cooling effect. Air pollution, in the form of aerosols, affects the climate on a large scale. Aerosols scatter and absorb solar radiation. From 1961 to 1990, a gradual reduction in the amount of sunlight reaching the Earth's surface was observed. This phenomenon is popularly known as global dimming , and
9234-610: The early 2030s. The IPCC Sixth Assessment Report (2021) included projections that by 2100 global warming is very likely to reach 1.0–1.8 °C under a scenario with very low emissions of greenhouse gases , 2.1–3.5 °C under an intermediate emissions scenario , or 3.3–5.7 °C under a very high emissions scenario . The warming will continue past 2100 in the intermediate and high emission scenarios, with future projections of global surface temperatures by year 2300 being similar to millions of years ago. The remaining carbon budget for staying beneath certain temperature increases
9348-507: The elderly. Tools for vulnerability assessment vary depending on the sector, the scale and the entity or system which is thought to vulnerable. For example, the Vulnerability Sourcebook is a guide for practical and scientific knowledge on vulnerability assessment. Climate vulnerability mapping helps to understand which areas are the most vulnerable. Mapping can also help to communicate climate vulnerability to stakeholders. It
9462-953: The emissions continue to increase for the rest of century, then over 9 million climate-related deaths would occur annually by 2100. Economic damages due to climate change may be severe and there is a chance of disastrous consequences. Severe impacts are expected in South-East Asia and sub-Saharan Africa , where most of the local inhabitants are dependent upon natural and agricultural resources. Heat stress can prevent outdoor labourers from working. If warming reaches 4 °C then labour capacity in those regions could be reduced by 30 to 50%. The World Bank estimates that between 2016 and 2030, climate change could drive over 120 million people into extreme poverty without adaptation. Climate change vulnerability Higher levels of vulnerability are found in areas with poverty , poor governance and conflict . Also, some livelihoods are more sensitive to
9576-430: The entire atmosphere—is ruled out because only the lower atmosphere has warmed. Atmospheric aerosols produce a smaller, cooling effect. Other drivers, such as changes in albedo , are less impactful. Greenhouse gases are transparent to sunlight , and thus allow it to pass through the atmosphere to heat the Earth's surface. The Earth radiates it as heat , and greenhouse gases absorb a portion of it. This absorption slows
9690-400: The environment . Deserts are expanding , while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost , retreat of glaciers and sea ice decline . Higher temperatures are also causing more intense storms , droughts, and other weather extremes . Rapid environmental change in mountains , coral reefs , and the Arctic
9804-463: The factors that "put people and places at risk and reduce capacity to respond". See the section on 'Causes' below. In the Fifth IPCC report , the social context was emphasized. It noted factors such as wealth and employment, access to technology and information, societal values and the role of institutions to resolve conflicts or develop relations among states as important. Vulnerability was defined as
9918-462: The financial resources to maintain a healthy level of thermal comfort. A study done in Phoenix, Arizona highlighted that more heat distress calls were made in neighborhoods consisting of primarily African American and low-income Hispanic populations. It is found that financially disadvantaged communities, often which are composed of ethnic minorities, have a propensity to be warmer neighborhoods despite
10032-592: The global climate system has grown with only brief pauses since at least 1970, and over 90% of this extra energy has been stored in the ocean . The rest has heated the atmosphere , melted ice, and warmed the continents. The Northern Hemisphere and the North Pole have warmed much faster than the South Pole and Southern Hemisphere . The Northern Hemisphere not only has much more land, but also more seasonal snow cover and sea ice . As these surfaces flip from reflecting
10146-500: The goals of Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations. E.O 12898 states the goals of implementing federal environmental justice initiatives that work toward aiding minority and low-income communities that suffer from disproportionate environmental or human health impacts. To alleviate environmental and health challenges within many American communities
10260-427: The impacts of an event on the environment and on people. It plays down the role of people themselves in managing these impacts. Since (biophysical) vulnerability is interpreted here as the negative outcome of climate change on people or places, it is also sometimes referred to as 'outcome vulnerability'. Physical vulnerability tends to focus on outcomes of monetary loss and disruptions. It is also sometimes defined as
10374-623: The lack of access to means of thermal regulation. The urban heat island effect emphasizes the fact that urban areas tend to be most impacted. During a heat wave in Oklahoma City, a study examined the urban island heat effect in varying communities. It was found that the hotter inner city region, one densely populated by minority residents, was severely inadequately equipped with air-conditioning. This inadequate access to resources that allow for thermal regulation in homes, coupled with overcrowded living spaces in low-income, minority communities can be
10488-434: The landscape. It aims to quantify and measure the impacts of an event on the environment and on people. Since (biophysical) vulnerability is interpreted here as the negative outcome of climate change on people or places, it is also sometimes referred to as 'outcome vulnerability'. An alternative framing focuses on social dimensions of vulnerability that set the context in which climate change happens. These dimensions include
10602-572: The last 14 million years. Concentrations of methane are far higher than they were over the last 800,000 years. Global human-caused greenhouse gas emissions in 2019 were equivalent to 59 billion tonnes of CO 2 . Of these emissions, 75% was CO 2 , 18% was methane , 4% was nitrous oxide, and 2% was fluorinated gases . CO 2 emissions primarily come from burning fossil fuels to provide energy for transport , manufacturing, heating , and electricity. Additional CO 2 emissions come from deforestation and industrial processes , which include
10716-436: The last two decades. CO 2 is only removed from the atmosphere for the long term when it is stored in the Earth's crust, which is a process that can take millions of years to complete. Around 30% of Earth's land area is largely unusable for humans ( glaciers , deserts , etc.), 26% is forests , 10% is shrubland and 34% is agricultural land . Deforestation is the main land use change contributor to global warming, as
10830-441: The last: internal climate variability processes can make any year 0.2 °C warmer or colder than the average. From 1998 to 2013, negative phases of two such processes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) caused a short slower period of warming called the " global warming hiatus ". After the "hiatus", the opposite occurred, with years like 2023 exhibiting temperatures well above even
10944-413: The more popular term after NASA climate scientist James Hansen used it in his 1988 testimony in the U.S. Senate . Since the 2000s, climate change has increased usage. Various scientists, politicians and media may use the terms climate crisis or climate emergency to talk about climate change, and may use the term global heating instead of global warming . Over the last few million years
11058-457: The most benefits for the poor, utilitarianism which seeks to find the most benefits for the most people, egalitarianism which attempts to reduce inequality, and libertarianism which emphasizes a fair share of burden but also individual freedoms. Examples of climate justices approach can be seen by the work done by the United States government on both federal and local levels. On a federal level, The Environmental Protection Agency works toward
11172-680: The most by climate change and are thus the most vulnerable, because they will have the least amount of resource dollars to invest in resiliency infrastructure. They will also have the least amount of resource dollars for cleanup efforts after more frequently occurring natural climate change related disasters. Vulnerability for people of a certain gender or age can be caused by "systemic reproduction of historical legacies of inequality ", for example as part of "(post)colonial, (post)apartheid, and poverty discrimination". Social vulnerability of people can be related to aspects that make people different from one another (gender, class, race, age, etc.), and also
11286-431: The most hazard-relevant indicators for any vulnerability assessment. For example, to assess the vulnerability of traditional coastal fishing communities to sea surge, ‘distance of dwellings from sea’ and ‘elevation of dwellings from sea level’ would be hazard-relevant indicators. Climate change vulnerability has a wide variety of different meanings and uses of the term have varied and evolved over time. The main distinction
11400-489: The political, institutional, economic and social structures that interact with the physical climate changes. For example, water privatization might affect the ability of people to respond to drought. This direction of research was shaped by human security research and they focus on the current context or 'starting point' for the social and biophysical processes. They are sometimes also referred to as 'contextual vulnerability' approaches. Research in this area focuses on analysing
11514-619: The rate at which heat escapes into space, trapping heat near the Earth's surface and warming it over time. While water vapour (≈50%) and clouds (≈25%) are the biggest contributors to the greenhouse effect, they primarily change as a function of temperature and are therefore mostly considered to be feedbacks that change climate sensitivity . On the other hand, concentrations of gases such as CO 2 (≈20%), tropospheric ozone , CFCs and nitrous oxide are added or removed independently from temperature, and are therefore considered to be external forcings that change global temperatures. Before
11628-522: The rate of Arctic shrinkage and underestimated the rate of precipitation increase. Sea level rise since 1990 was underestimated in older models, but more recent models agree well with observations. The 2017 United States-published National Climate Assessment notes that "climate models may still be underestimating or missing relevant feedback processes". Additionally, climate models may be unable to adequately predict short-term regional climatic shifts. A subset of climate models add societal factors to
11742-613: The rate of yield growth . Fisheries have been negatively affected in multiple regions. While agricultural productivity has been positively affected in some high latitude areas, mid- and low-latitude areas have been negatively affected. According to the World Economic Forum, an increase in drought in certain regions could cause 3.2 million deaths from malnutrition by 2050 and stunting in children. With 2 °C warming, global livestock headcounts could decline by 7–10% by 2050, as less animal feed will be available. If
11856-405: The recent average. This is why the temperature change is defined in terms of a 20-year average, which reduces the noise of hot and cold years and decadal climate patterns, and detects the long-term signal. A wide range of other observations reinforce the evidence of warming. The upper atmosphere is cooling, because greenhouse gases are trapping heat near the Earth's surface, and so less heat
11970-497: The regional or national level. Assessments are also done at sub-national and sectoral level, and also increasingly for cities on an urban district or neighbourhood scale. Vulnerability assessment is also done for local communities to evaluate where and how communities and livelihoods are vulnerable to climate change. Studies can vary widely in scope and scale— for example the World Bank and Ministry of Economy of Fiji commissioned
12084-411: The release of chemical compounds that influence clouds, and by changing wind patterns. In tropic and temperate areas the net effect is to produce significant warming, and forest restoration can make local temperatures cooler. At latitudes closer to the poles, there is a cooling effect as forest is replaced by snow-covered (and more reflective) plains. Globally, these increases in surface albedo have been
12198-476: The remaining 23%. Some forests have not been fully cleared, but were already degraded by these impacts. Restoring these forests also recovers their potential as a carbon sink. Local vegetation cover impacts how much of the sunlight gets reflected back into space ( albedo ), and how much heat is lost by evaporation . For instance, the change from a dark forest to grassland makes the surface lighter, causing it to reflect more sunlight. Deforestation can also modify
12312-478: The risk of negative health outcomes that older adults face from climate change. Vulnerability can be reduced through climate change adaptation measures. For this reason, vulnerability is often framed in dialogue with climate change adaptation. Furthermore, measures that reduce poverty, gender inequality, bad governance and violent conflict would also reduce vulnerability. And finally, vulnerability would be reduced for everyone if decisive action on climate change
12426-583: The sea levels by at least 3.3 m (10 ft 10 in) over approximately 2000 years. Recent warming has driven many terrestrial and freshwater species poleward and towards higher altitudes . For instance, the range of hundreds of North American birds has shifted northward at an average rate of 1.5 km/year over the past 55 years. Higher atmospheric CO 2 levels and an extended growing season have resulted in global greening. However, heatwaves and drought have reduced ecosystem productivity in some regions. The future balance of these opposing effects
12540-412: The urban poor in sub-Saharan Africa . Climate change does not affect people within communities in the same way. It can have a bigger impact on vulnerable groups such as women, the elderly, religious minorities and refugees than on others. The extent to which climate change can negatively impact the health outcomes of populations may vary amongst different racial and ethnic groups across the globe. It
12654-438: The world. Impacts can be observed on all continents and ocean regions, with low-latitude, less developed areas facing the greatest risk. Continued warming has potentially "severe, pervasive and irreversible impacts" for people and ecosystems. The risks are unevenly distributed, but are generally greater for disadvantaged people in developing and developed countries. The World Health Organization calls climate change one of
12768-415: Was attributed to their low adaptive capacity and the high costs of adaptation in proportion to their GDP. Climate change leads to more frequent and intense extreme weather events such as hurricanes, typhoons, and cyclones. Small islands are especially susceptible to these events, which can cause widespread destruction, loss of life, and economic setbacks. In comparison, the climate vulnerability of Europe
12882-524: Was sending more energy to Earth, but instead, it has been cooling. This is consistent with greenhouse gases preventing heat from leaving the Earth's atmosphere. Explosive volcanic eruptions can release gases, dust and ash that partially block sunlight and reduce temperatures, or they can send water vapour into the atmosphere, which adds to greenhouse gases and increases temperatures. These impacts on temperature only last for several years, because both water vapour and volcanic material have low persistence in
12996-575: Was taken ( climate change mitigation ) so that the effects of climate change are less severe. Equity is another essential component of vulnerability and is closely tied to issues of environmental justice and climate justice . As the most vulnerable communities are likely to be the most heavily impacted, a climate justice movement is coalescing in response. There are many aspects of climate justice that relate to vulnerability and resiliency. The frameworks are similar to other types of justice movements and include contractarianism which attempts to allocate
#15984